Berkovich spaces, Problem List 1

Let F be a field and $\|\cdot\|: F \to \mathbb{R}_{\geq 0}$ be a function.

- 1. Suppose that ||0|| = 0 and that for all $a, b \in F$ we have
 - ||ab|| = ||a|| ||b||,
 - $||1 + a|| \leq 1 + ||a||.$

Show that $\|\cdot\|$ is a semi-norm.

- 2. Suppose that $\|\cdot\|$ is a semi-norm on F which is equivalent to the trivial norm. Show that $\|\cdot\|$ is the trivial norm.
- 3. Assume that $\|\cdot\|$ is a norm. Show that the following are equivalent.
 - (a) The norm $\|\cdot\|$ is Archimedean.
 - (b) For all $x \in F^*$ there is $n \in \mathbb{N}$ such that $||n \cdot x|| > 1$.
 - (c) There is $n \in \mathbb{N}$ such that $||n \cdot 1|| > 1$.
 - (d) The function

$$\mathbb{N} \ni n \mapsto \|n \cdot 1\| \in \mathbb{R}$$

is unbounded.

- 4. Show that if $\|\cdot\|$ is a norm which is equivalent to an Archimedean norm, then $\|\cdot\|$ is Archimedean.
- 5. Suppose that $\|\cdot\|$ is an Archimedean norm on F. Show that char(F) = 0.
- 6. Let p, q be different prime numbers. Show that $|\cdot|_p$ and $|\cdot|_q$ are non-equivalent non-Archimedean norms.
- 7. Suppose that $\|\cdot\|$ is a non-Archimedean non-trivial norm on \mathbb{Q} . Show that
 - (a) there is a prime number p such that

$$p\mathbb{Z} = \{ a \in \mathbb{Z} \mid ||a|| < 1 \};$$

- (b) the norm $\|\cdot\|$ is equivalent to the *p*-adic norm $|\cdot|_p$.
- 8. Suppose that $\|\cdot\|$ is an Archimedean norm on \mathbb{Q} . Show that $\|\cdot\|$ is equivalent to the absolute value $|\cdot|_{\infty}$.
- 9. Suppose that $\|\cdot\|$ is a non-trivial norm on F(X) which is trivial on F. Show that $\|\cdot\|$ is equivalent to $|\cdot|_{\infty}$ or there is an irreducible polynomial $f \in F[T]$ such that $\|\cdot\|$ is equivalent to $|\cdot|_f$.
- 10. Let $\|\cdot\|$ be a norm, $(F, d_{\|\cdot\|})$ be the corresponding metric space and $(\widehat{F}, \widehat{d}_{\|\cdot\|})$ be its (metric) completion. Find a structure $\widehat{+}, \widehat{\cdot}, \|\widehat{\cdot}\|$ of a normed field on \widehat{F} such that

$$d_{\|\cdot\|} = d_{\widehat{\|\cdot\|}}.$$

Show that the natural map $F \to \widehat{F}$ is a normed field homomorphism.

11. Show that F((T)) is complete (with the T-adic norm).