Berkovich spaces, Problem List 3

Let $(k, |\cdot|)$ be an algebraically closed complete non-Archimedean non-trivial normed field and let $\mathbb{A}^1_{\text{Berk}}$ denote the Berkovich affine line over k.

1. Show that

$$\mathcal{O}_{\mathbb{Q}_p} \cong \varprojlim_n \mathbb{Z}/p^n \mathbb{Z}$$

(an isomorphism of topological rings).

- 2. Let D, D' be closed balls in k. Show that $|\cdot|_D \leq |\cdot|_{D'}$ if and only if $D \subseteq D'$.
- 3. Let $|\cdot|_0 \ge |\cdot|_1 \ge |\cdot|_2 \ge \ldots$ be semi-norms on a ring R. For $r \in R$ we define

$$|r| := \inf_i |r|_i.$$

Show that $|\cdot|$ is a semi-norm on R.

- 4. Let ξ be a nested set of balls, $B := \bigcap \xi$ and assume that $B \neq \emptyset$. Show that:
 - (a) B is a closed ball,
 - (b) $|\cdot|_{\xi} = |\cdot|_{B}$.
- 5. Let $x \in \mathbb{A}^1_{\text{Berk}}$. Show that x is of type (1) if and only if the radius of x is 0.
- 6. Let $a \in k$ and $r \in \mathbb{R}_{\geq 0}$. Show that

$$\zeta_{a,r}(T-a) = r.$$

7. Let r < r' be non-negative real numbers and $a \in k$. Show that $[\zeta_{a,r}, \zeta_{a,r'}]$ (an interval in $\mathbb{A}^1_{\text{Berk}}$) is homeomorphic to [r, r'] (an interval in \mathbb{R}).