Berkovich spaces, Problem List 5

Let $(\mathcal{A}, |\cdot|), (\mathcal{B}, |\cdot|)$ be Banach rings and k be a field.

1. Show that

$$\mathcal{M}(\mathcal{A}) = \{ x \in \mathcal{M}(\mathcal{A}) \mid (\forall a \in \mathcal{A}) \mid a \mid_x \leq |a| \}.$$

- 2. Let C > 0 and $\|\cdot\|_1, \|\cdot\|_2$ be norms on k such that for all $x \in k$ we have $\|x\|_1 \leq C \|x\|_2$. Show that $\|\cdot\|_1 = \|\cdot\|_2$.
- 3. Show that any bounded homomorphism $\mathcal{A} \to \mathcal{B}$ induces a continuous map $\mathcal{M}(\mathcal{B}) \to \mathcal{M}(\mathcal{A})$.
- 4. Show that the set \mathcal{A}^* (invertible elements of \mathcal{A}) is open.
- 5. Show that any maximal ideal of \mathcal{A} is closed.
- 6. Let I be a closed ideal of \mathcal{A} and for $a \in \mathcal{A}$ define:

$$|a + I|_I := \inf\{|a + x| \mid x \in I\}.$$

Show that $(\mathcal{A}/I, \|\cdot\|_I)$ is a Banach ring.

7. Let $(\mathcal{A}_i, |\cdot|_i)_{i \in I}$ be a collection of Banach rings. We define

$$\prod_{i \in I} \mathcal{A}_i := \{ (a_i)_{i \in I} \mid (\exists C > 0) \; (\forall i \in I) \; |f_i|_i < C \}, \quad |(a_i)_{i \in I}| := \sup_{i \in I} |f_i|_i.$$

Show that $(\prod_{i \in I} \mathcal{A}_i, |\cdot|)$ is a Banach ring.

8. Show that the maps $\mathbf{a} \mapsto \Phi_{\mathbf{a}}$, $\Phi \mapsto \mathbf{a}_{\Phi}$ defined during the lecture are mutually inversive bijections.