Berkovich spaces, Problem List 7

Let (\mathbb{U}, v, Γ) be a "monster model" of ACVF, $(k, v|_k, \Gamma_k) \prec \mathbb{U}$ and $V \subseteq \mathbb{U}^n$ be an irreducible affine algebraic variety defined over k.

- 1. Show that for any semi-norm v' on k[V] extending $v|_k$ there is a type $p \in S_V(k)$ such that $v_p = v'/\sim$.
- 2. Assume that $F \subset k$ is a subfield such that v restricted to F is trivial. Show that v restricted to F^{alg} is trivial as well.
- 3. Let $p \in S_V(k)$. Show that if for all finite-dimensional k-vector subspaces E < k[V] the following sets are k-definable

$$\{e \in E \mid v_p(e) = 0\}, \{e \in E \mid v_p(e) \leq 1\};\$$

then the type p is definable.

- 4. Let $p \in S_V(k)$ and $f: V \to \Gamma$ be a definable function. Show that the following conditions are equivalent.
 - (a) The function f is generically constant on p.
 - (b) The function f is constant on $p^{\mathbb{U}}$.
 - (c) $f(p^{\mathbb{U}}) \subseteq \Gamma_k$.
 - (d) $f(p^{\mathbb{U}}) \cap \Gamma_k \neq \emptyset$.
- 5. Assume that $v(K) \subseteq \mathbb{R}_{\geq 0}$. Show that the map (defined during the lecture)

$$\pi: V^{\mathrm{an}} \to S_V(k)$$

is continuous.

6. Assume that $v(K) \subseteq \mathbb{R}_{\geq 0}$ and assume that $p \in S_{\mathbb{A}^1}(k)$ is in the image of the map

$$\pi: \mathbb{A}^1_{\mathrm{Berk}} \to S_{\mathbb{A}^1}(k).$$

Show that the following conditions are equivalent.

- p is definable,
- p is of type (1) or p is of type (2).