
HOMOLOGICAL ALGEBRA

These are the notes for an informal mini-course on homological algebra given at the
Istanbul Bilgi University in Spring Semester 2015. They are based on my Polish
notes for a similar (but about twice larger) course given at Wroc law University.

LECTURE 1

Homological algebra is the branch of mathematics that studies homology in a gen-
eral algebraic setting. Originally, it is a part of the theory of modules which is
needed for homology theories in algebraic topology. However, the development of
homological algebra was closely connected to category theory. It turned out that
homological algebra applies to much wider context than just modules. This con-
text is phrased in the language of categories, so we start with introducing the basic
notions from category theory.

Categories
Definition Category C consists of:

• A class Ob(C), whose elements are called objects of C.
• For each X,Y ∈ Ob(C), a set Hom(X,Y ), whose elements are called mor-

phisms between X and Y .
• For each X,Y, Z ∈ Ob(C), a function

◦ : Hom(X,Y )×Hom(Y,Z)→ Hom(Y, Z)

called the composition function

such that ∀X,Y, Z, T ∈ Ob(C):
(1) (X,Y ) 6= (Z, T ) ⇒ Hom(X,Y ) ∩Hom(Z, T ) = ∅.
(2) ∃! idX ∈ Hom(X,X) such that ∀f ∈ Hom(X,Y ) ∀g ∈ Hom(Z,X)

f ◦ idX = f, idX ◦g = g.

(3) ∀f ∈ Hom(X,Y ), ∀g ∈ Hom(Y, Z), ∀h ∈ Hom(Z, T )

(h ◦ g) ◦ f = h ◦ (g ◦ f).

Warning

• Hom(X,Y ) need not consist of functions from X to Y !
• The “composition” map ◦ need not be the composition of functions!

Conventions

• Instead of Ob(C), we may write C, so “X ∈ C” means “X is an object in
the category C”.
• Instead of f ∈ Hom(X,Y ), we may write f : X → Y .
• Instead of g ◦ f , we may write gf .
• Instead of Hom(X,Y ) we may write HomC(X,Y ) or C(X,Y ).

Examples of categories

(1) Set
Ob(Set) is the class of all sets, and for X,Y ∈ Set, Hom(X,Y ) = Y X

(the set of all functions from X to Y ). (Formally, each function should also
carry a “label” specifying its codomain.)
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(2) Top, Top∗
Ob(Top) is the class of all topological spaces, morphisms are the continuous
functions.
Ob(Top∗) is the class of all topological spaces with a distinguished point,
morphisms are the continuous functions which preserve the fixed points.

(3) Toph, Toph∗
Ob(Toph) = Ob(Top), morphisms are the homotopy classes of continuous
functions (Problem 1).
Ob(Toph∗) = Ob(Top∗), morphisms are the homotopy classes of continu-
ous functions which preserve the fixed points, homotopies also preserve the
fixed points.

(4) Diff
Ob(Diff) is the class of all smooth manifolds, morphisms are the smooth
functions.

(5) AfVarK , where K is an algebraically closed field K
Ob(AfVarK) is the class of all Zariski closed subsets ofKn (where n varies),
morphisms are the restrictions of the polynomial functions.

(6) ModR, where R is a ring
Ob(ModR) is the class of all (left) R-modules, morphisms are the R-
modules homomorphisms.
We denote ModZ by Ab (Abelian groups), and ModK by VectK (vector
spaces over K) if K is a field.

(7) AlgR, where R is a commutative ring
Ob(AlgR) is the class of all R-algebras (with 1), morphisms are the R-
algebra homomorphisms (preserving 1).

(8) Grp
Ob(Grp) is the class of all groups, morphisms are the group homomor-
phisms.

(9) Top(X), where X is a topological space
Ob(Top(X)) = OPEN(X) the set of all open subsets of X, morphisms are
the inclusions (Problem 2).

(10) CG, where (G, ·) is a group
Ob(CG) = {∗} (a singleton), (Hom(∗, ∗), ◦) = (G, ·).

More definitions
Let C and D be categories.

• The category C is small, if Ob(C) is a set (only the categories 5., 9. and 10.
above are small).
• C × D, the product of categories C,D

Ob(C × D) = Ob(C) × Ob(D) and morphisms are the appropriate pairs of
morphisms (Problem 2).

• Cop, the opposite category to C
Ob(Cop) = Ob(C), ∀ X,Y ∈ C, HomCop(X,Y ) = HomC(Y,X) (Problem 2).

• A morphism f : X → Y is an isomorphism, if there is g : Y → X such
that: gf = idX , fg = idY . If there is an isomorphism X → Y , then we
say that X and Y are isomorphic and write X ∼= Y .
• A category C is a subcategory of the category D, if Ob(C) is a subclass of

Ob(D) and for all X,Y ∈ C, we have HomC(X,Y ) ⊆ HomD(X,Y ).
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• A subcategory C is a full subcategory of the category D, if for all X,Y ∈ C,
we have HomC(X,Y ) = HomD(X,Y ).

Examples

• Ab is a full subcategory of Grp.
• Top is not a subcategory Set.
• Let Rel be a category, such that Ob(Rel) = Ob(Set) and morphisms are

relations (note that relations can be composed). Then Set is a subcategory
of Rel and is not full.
• Let U be an open subset of a topological space X. Then Top(U) is a full

subcategory of Top(X).

Definitions of initial and terminal objects
Let C be a category. An object X ∈ C is an initial object in C, if for all Y ∈ C, we
have |Hom(X,Y )| = 1. The definition of a terminal object is dual, i.e. a terminal
object in C is an initial object in Cop, i.e. for all Y ∈ C, we have |Hom(Y,X)| = 1.

Examples

• ∅ is an initial object in Set, any singleton is a terminal object in Set.
• {e} is both an initial and a terminal object in Grp, i.e. it is a zero object

in Grp.
• R is an initial object in AlgR. The zero ring is a terminal object in AlgR.
• ∅ is an initial object in Top(X) and X is a terminal object in Top(X).

Remark (Problem 3)
If an initial (resp. a terminal) object exists, it is unique up to an isomorphism.

Functors
Definition
A (covariant) functor F from a category C into a category D (notation F : C → D)
consists of:

• An assignment

C 3 X 7→ F (X) ∈ D
• For all X,Y ∈ C, a function

HomC(X,Y ) 3 f 7→ F (f) ∈ HomD(F (X), F (Y ))

such that F (fg) = F (f)F (g) (for appropriate f, g), and F (idX) = idF (X).

A contravariant functor F (notation F : Cop → D), is a functor from the opposite
category to C into D, i.e. F (fg) = F (g)F (f) (for appropriate f, g).

Examples

(1) Cat is the category of small categories, morphisms are the functors (they
can be composed).

(2) Forgetful functors

AlgR →ModR → Ab→ Set

Diff → Top→ Set

AfVarK → Top (Zariski topology)

AfVarC → Top (Euclidean topology)
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A category C is called (informally, so far) concrete, if there is a forgetful
functor C → Set.

(3) Representable functors.
For each category C, there is a functor

Hom : Cop × C → Set.

For each X ∈ C, we have two functors:

hX : C → Set, hX(Y ) = Hom(X,Y )

hX : C → Setop, hX(Y ) = Hom(Y,X).

Both of them act on morphisms by the composition.

Let F : Top → Toph, F∗ : Top∗ → Toph∗. Then for all n ∈ N we have
the functor of

πn : Top∗ → Set, πn = hSn ◦ F∗
the n-th homotopy group (Sn is the n-dimensional sphere). We will see
later than π1 : Top∗ → Grp i dla n > 1, πn : Top∗ → Ab.

For an algebraically closed field K, we have a functor

hK : AfVarK → (AlgK)op, hK(V ) = HomAfVarK (V,K).

We denote hK(V ) by K[V ] (the ring of regular functions).
(4) Presheaves and sheaves

For a topological space X and a category C, a functor

F : Top(X)→ Cop

is called a presheaf on X of objects of C.
For example, if C = Ab, then we consider presheaves of Abelian groups, if
C = AlgK , then we consider presheaves of K-algebras.
Let U ⊆ V be open sets in X and F be a presheaf. The elements of F (U) are
called the sections of F over U . For s ∈ F (V ) the value on the morphism
F (V ) → F (U) on s is denoted by s|U , and is called the restriction of s to
U .
A presheaf F is called a sheaf, if it satisfies:
(a) Locality. For all U ∈ Top(X) and each covering U =

⋃
i∈I Ui and each

s, s′ ∈ F (U), if for all i ∈ I we have si|Ui = sj |Uj then s = s′.
(b) Gluing. For all U ∈ Top(X) and each covering U =

⋃
i∈I Ui together

with a choice of si ∈ F (Ui) such that for all i, j ∈ I, si|Uij = sj |Uij ,
there is s ∈ F (U) such that for all i ∈ I, we have s|Ui = si,

Examples of pre-sheaves.
(a) For X ∈ Diff , we have C∞X , the sheaf (of R-algebras) of the smooth

functions (into R).
(b) For X ∈ Top, we have CX , the sheaf (of R-algebras) of the continuous

functions (into R).
(c) For X ∈ AnfVarK , we have OX , the structural sheaf (of R-algebras):

for U ⊆ X open in X, OX(U) is the set of the rational functions into
K everywhere defined on U .

(d) For X ∈ Top and A ∈ Ab, we have three “constant” presheaves.
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• The constant presheaf AX
For each open set U , AX(U) = A and the restriction functions
are the identities. This presheaf does not satisfy Locality (empty
family of open sets covering empty set). Note that if F is a
presheaf of Abelian groups satisfying Locality, then F (∅) = {0}.

• The presheaf A0
X

We haveA0
X(∅) = {0} and for each open non-empty setAX(U) =

A. The restriction functions are either identities or the zero func-
tions. This presheaf does not satisfy Gluing.

• The sheaf AX
This is the sheaf of continuous functions in A considered with
the discrete topology. On connected non-empty open sets, the
sections of all three sheaves coincide with A.

Definitions
Let F : C → D be a functor.

• F is faithful, if it is “1-1” on each set of morphisms.
• F is full, if it is “onto” on each set of morphisms.
• F is faithfully full, if it is faithful and full.
• A concrete category is a pair (C, F ), where F is a faithful functor from C

into Set.

Examples

(1) The categories 1. – 9. above are concrete with the obvious forgetful func-
tors. The category 9. and the category Rel are not concrete (in any obvious
way).

(2) Assume C is a subcategory of D and F : C → D is the inclusion functor.
Then F is a faithful functor and F is faithfully full if and only if C is a full
subcategory of D.

(3) The functor F : Top→ Toph is full but not faithful.
(4) The functor hK : AfVarK → (AlgK)op (of the ring of regular functions)

is faithfully full.
(5) The forgetful functors An→ Diff → Top→ Set (and the other ones of a

similar type) are faithful, but not full.

LECTURE 2

Morphisms of functors
Example
Let ∗ : VectK → Vectop

K be the dual space functor:

V ∗ = hK(V ) = HomVectK (V,K).

For each V , we have a “natural” map:

V 3 v 7→ fv ∈ V ∗∗, fv(g) = g(v).

This map is “natural”, because it does not depend on V , i.e. it is a map between
functors:

id : VectK → VectK , ∗∗ : VectK → VectK .

Definition
Let F,G : C → D be functors. Then ψ is a morphism or a natural map (or a natural
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transformation) between F and G (notation ψ : F → G), if

ψ = (ψX : F (X)→ G(X))X∈C

such that for all f ∈ HomC(X,Y ) the following diagram commutes

F (X)
F (f)−−−−→ F (Y )

ψX

y yψY

G(X) −−−−→
G(f)

G(Y ) ,

i.e. ψY F (f) = G(f)ψX .

Example 1

id : VectK → VectK , ∗∗ : VectK → VectK .

ϕ : id→ ∗∗, ϕV (v)(v∗) = v∗(v).

Take any linear map A : V → W . We need to show that the following diagram
commutes:

V
A−−−−→ W

ϕV

y yϕW

V ∗∗ −−−−→
A∗∗

W ∗∗ .

First, we will understand A∗ and A∗∗. For w∗ ∈W ∗, v∗∗ ∈ V ∗∗:
A∗(w∗) = w∗ ◦A, A∗∗(v∗∗) = v∗∗ ◦A∗.

Take any v ∈ V and w∗ ∈W ∗.
A∗∗(ϕV (v))(w∗) = ϕV (v)◦A∗(w∗) = ϕV (v)(A∗(w∗)) = ϕV (v)(w∗◦A) = w∗◦A(v) = w∗(A(v)).

ϕW (A(v))(w∗) = w∗(A(v)).

Hence
A∗∗(ϕV (v)) = ϕW (A(v)) and A∗∗ ◦ ϕV = ϕW ◦A.

Example 2
Let T : Diff → Diff be the functor of the tangent bundle. Then we have a natural
map (projection):

π : T → id, πX : T (X)→ X, πX(x, v) = x

for (x, v) ∈ T (X). From differential geometry we know that for each smooth func-
tion f : X → Y the following diagram commutes:

T (X)
T (f)−−−−→ T (Y )

πX

y yπY

X −−−−→
f

Y .

Example 3 (a non-natural map)
Take a vector space V and its basis B. Let (·, ·)B be the scalar product on V coming
from the basis B. We define:

φV,B : V → V ∗, φV,B(v)(w) = (v, w)B .
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This map is not natural mostly because it is between the covariant functor (id) and
the contravariant functor (∗). Besides, it depends on a choice of basis of V , so it
does depend on V .

Definition
For categories C,D, we denote:

• by Func(C,D) the class of all functors from C to D,
• for F,G ∈ Func(C,D), by Hom(F,G) the class of all natural transformations

between F and G.
• if C is small, then always Hom(F,G) is a set and Func(C,D) denotes the

category of all natural transformations between F and G.

The main examples are categories of (pre)sheaves and the categories of the form
Func(C,Set).

Theorem Let C be a category. Then:

(1) Yoneda Lemma
For each functor T : C → Set and A ∈ C, the map

Hom(hA, T ) 3 φ 7→ φA(idA) ∈ T (A)

is a bijection.
(2) If C is small, then there is a faithfully full contravariant functor

h : Cop → Func(C,Set), h(A) = hA.

Proof

(1) We will define an inverse function to the following function:

Hom(hA, T ) 3 φ 7→ φA(idA) ∈ T (A).

Let a ∈ T (A). For any X ∈ C and f : A→ X, we define:

ā : hA → T, āX : Hom(A,X)→ T (X), āX(f) = T (f)(a).

We need to check that ā is a morphism of functors, i.e. whether for all
g : X → Y the following diagram commutes:

HomC(A,X)
hA(g)−−−−→ HomC(A, Y )

āX

y yāY
T (X)

T (g)−−−−→ T (Y ) .

Take any f ∈ HomC(A,X).

T (g)(āX(f)) = T (g)(T (f)(a)) = T (gf)(a) = āY (gf) = āY (hA(g)(f)).

We check whether the maps between Hom(ha, T ) and T (A) are mutually
inversive.
Take φ : hA → T . We need to show that φA(idA) = φ.
Take any f : A→ X. We have:

φA(idA)X(f) = T (f)(φA(idA)).
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But φ is a morphism of functors, hence the following diagram commutes:

HomC(A,A)
hA(f)−−−−→ HomC(A,X)

φA

y yφX

T (A)
T (F )−−−−→ T (X) .

Thus:

T (f)(φA(idA) = φX(hA(f)(idA)) = φX(f ◦ idA) = φX(f).

therefore φA(idA) = φ.
For all a ∈ T (A),

āA(idA) = T (idA)(a) = idT (A)(a) = a.

(2) For g ∈ HomC(A,B), we define:

h(g) : hB → hA, h(g)X = hX(g) for all X ∈ C.

We need to check whether for each f ∈ HomC(X,Y ) the following diagram
commutes, which amounts to the associativity of the composition map:

HomC(B,X)
hB(f)−−−−→ HomC(B, Y )

(h(g)X=)hX(g)

y yhY (g)(=h(g)Y )

HomC(A,X)
hA(f)−−−−→ HomC(A, Y ) .

From Yoneda Lemma (for T = hB), we have the following bijection:

Hom(B,A) = hB(A)↔ Hom(hA, hB).

It is enough to show that it corresponds to the function on morphisms
which is induced by the functor h. Take g ∈ hB(A) and f : A→ X.

ḡX(f) = hB(f)(g) = fg = hX(g)(f), therefore ḡX = hX(g) = h(g)X .

Hence ḡ = h(g). �

Using the above contravariant functor, we often (contravariantly) embed a given
small category C into the category of functors Func(C,Set), where we can perform
some operations which may be impossible to perform in C.

LECTURE 3

Fact
A morphism of functors f : F → G is an isomorphism if and only if for all objects
X from the domain of F (and G), fX : F (X)→ G(X) is an isomorphism.
Proof
⇒ Let g : G→ F be a morphism of functors such that gf = idF , fg = idG. Then
for all X, gXfX = idF (X), fXgX = idG(X).

⇐ For all X, it is enough to take gX = f−1
X . �

Example

Let VectfK be the category of finite dimensional vector spaces and V ∈ VectfK .
Then ϕ : id→ ∗∗ is an isomorphism, because:
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• For each v ∈ V \{0}, there is v∗ ∈ V ∗ such that v∗(v) 6= 0, so ϕV (v)(v∗) 6= 0.
Hence ker(ϕV ) = {0} and ϕV is “1-1”.
• Since dim(V ) = dim(V ∗∗) <∞ (V is non-naturally isomorphic to V ∗ and
V ∗∗!), we get that ϕV is an isomorphism.

Useless definition
Isomorphism between categories C and D is a functor F : C → D such that there is
a functor G : D → C, such that GF = idC and FG = idD.

Useful definition

• A functor F : C → D is an equivalence (of categories C and D), if there is
a functor G : D → C such that GF ∼= idC and FG ∼= idD.
• Such a functor G as above is called a quasi-inverse to F .
• Categories C and D are equivalent, if there is an equivalence F : C → D.

Example

The functor ∗ : (VectfK)op → VectfK is an equivalence, since ∗∗ ∼= id.

Exercise
Func(Cop,D) ∼= Func(C,Dop).

Theorem
A functor F : C → D is an equivalence of categories if and only if F is faithfully
full and for all Y ∈ D, there is X ∈ C, such that Y ∼= F (X).
Proof
⇒ Let G be a quasi-inverse to F and l : GF ∼= id. For each X,Y ∈ C and each
morphism GF (X)→ GF (Y ), using l−1

X and lY we get a morphism X → Y . Then
the compositions (last arrow is as described above):

HomC(X,Y )→ HomD(F (X), F (Y ))→ HomC(GF (X), GF (Y ))→ HomC(X,Y )

HomC(X,Y )→ HomD(G(X), G(Y ))→ HomC(FG(X), FG(Y ))→ HomC(X,Y )

are identities, so F and G are faithful.
Take any f : F (X)→ F (Y ) and let

g := lYG(f)l−1
X : X → Y.

Then we have

lYGF (g)l−1
X = g = lYG(f)l−1

X .

hence GF (g) = G(f), and since G is faithful, we get f = F (g), so F is full.
For all Y ∈ D, F (G(Y )) ∼= Y , so we can take X = G(Y ).

⇐ For each Y ∈ D, we choose αY : F (X) ∼= Y such that for Y = F (X), we have
αY = idY ). For f : Y → Y ′, we define:

G : D → C, G(Y ) = X, G(f) = F−1(α−1
Y ′ fαY ).

We check that G is a functor. It is clear that F−1 preserves the compositions as
well. So for f : Y → Y ′, g : Y ′ → Y ′′, we have:

G(gf) = F−1(α−1
Y ′′gfαY ) = F−1(α−1

Y ′′gαY ′α
−1
Y ′ fαY = F−1(−1

Y ′′gαY ′)F
−1(α−1

Y ′ fαY ) = G(g)G(f).

From our construction we get GF = idC .
Let

α : FG→ idD, αY : FG(Y ) ∼= Y.
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We know that for all f : Y → Y ′, G(f) = F−1(αY fα
−1
Y ′ ). Hence

FG(f) = αY fα
−1
Y ′ ,

and the following diagram commutes:

Y
f−−−−→ Y ′

αY

y yαY ′

FG(Y )
FG(f)−−−−→ FG(Y ′) .

Thus α is a morphism of functors. α is an isomorphism, since it is an isomorphism
on objects. �

Remark
We do not have a “natural” (quasi-)inverse functor, but from the last theorem we
know that there is a quasi-inverse functor given by Axiom of (Global) Choice. So
it is a bit surprising example of a “non-natural” (the common sense meaning of the
word) functor.

Example
The functor of regular functions V 7→ K[V ] has a quasi-inverse.

Representable functors

Definition
A functor F : C → Set is representable by A ∈ C, if F is isomorphic to the functor
hA, that is for all B ∈ C there is a natural bijection

F (B)←→ Hom(A,B).

Remark
By Yoneda Lemma, if F is representable by A and F is representable by A′, then
A ∼= A′. Let Repr(C,D) denote the subclass of Func(C,D) consisting of repre-
sentable functors.
By Yoneda Lemma again, Repr(C,D) is a category and the functors

C 3 X 7→ hX ∈ Repr(Cop,D)

Cop 3 X 7→ hX ∈ Repr(C,D)

are equivalences of categories.
Let ı be a quasi-inverse functor to the first of them, so for any representable functor
F : C → Set, there is an isomorphism of functors F ∼= hι(F ).

Example (the first definition of product: representability)
Let X,Y ∈ C. If there is an object representing the functor:

FX,Y : Cop → Set, FX,Y (A) = Hom(A,X)×Hom(A, Y ),

then we call this object a product (in the category C) of X and Y and denote it by
X ×Y . By Yoneda Lemma, a product of X and Y is unique up to an isomorphism
(if it exists). We say that category has products, if for each pair of objects, their
product exists.
Notice that

C × C 3 (X,Y ) 7→ FX,Y ∈ Func(C,Set)
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is a functor. Hence, if C has products, then

C × C 3 (X,Y ) 7→ X × Y ∈ C
is a functor, as the composition of the upper functor with the quasi-inverse ı from
the last remark. We will similarly argue that other natural constructions which are
functorially representable are in fact functors.

Remark
The set Hom(A,X) can be understood as the set of “A-points” of X, which is
sometimes denoted by X(A). Yoneda Lemma tells us that to know the object X,
it is enough to look at the all possible sets X(A).

Example
The name “A-points” and the intuitions behind this name come from algebraic
geometry. Let V ∈ AfVarK , R ∈ AlgK and V (R) be the set of R-rational points
of V (the solutions over R of the polynomial system of equations defining V ). Then
we have a natural bijection:

HomAlgK
(K[V ], R)←→ V (R).

Fact (the second definition of product: a universal property)
An object Z is a product of objects X and Y if and only if the following holds:

• there are morphisms πX : Z → X, πY : Z → Y ,
• such that for each morphisms fX : Z ′ → X, fY : Z ′ → Y ,
• there is a unique morphism f : Z ′ → Z,
• such that fX = fπX , fY = fπY .

Proof
=⇒
For each A ∈ C we have a natural equivalence

Hom(A,Z)←→ Hom(A,X)×Hom(A, Y ).

Plugging A = Z, we get (πX , πY ) corresponding to idZ .
Plugging A = Z ′, we get f corresponding to (fX , fY ).
Exercise: complete the proof.
⇐=
Let F denote the functor FX,Y , hence F (A) = Hom(A,X) × Hom(A, Y ). Yoneda
Lemma implies that the morphisms between hZ and F corresponds to F (Z). The
element (πX , πY ) ∈ F (Z) corresponds to a functor isomorphism: exercise. �

We will usually introduce different natural constructions using a universal property
(as in the second definition) rather than a representable functor (as in the first
definition). However, thanks to the functorial representability, we will always know
that our construction gives a functor (and it is the right one!).

Definition
The notion of coproduct is a notion which is dual to the notion of a product (we
reverse all the arrows in the second definition of product). A coproduct of X,Y is
denoted by X

∐
Y .

We have natural morphisms

∆ : X → X ×X (diagonal)
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∇ : X
∐

X → X (codiagonal).

For f : X → Y, g : X → Z, the composition

(f × g) ◦∆ : X → Y × Z
is denoted by (f, g).

Yoneda Lemma also gives a functorial isomorphism

(X × Y )× Z ∼= X × (Y × Z),

so we can skip the parenthesis and write X × Y × Z (similarly for
∐

).

Example

(1) Set, Top, Diff , AfVarK .
Product is the Cartesian product, coproduct is the disjoint sum.
Hence generally, coproduct represents the functor:

Cop 3 A 7→ Hom(A,X) ·∪Hom(A, Y ) ∈ Set.

(2) AlgR. Product is the Cartesian product, coproduct is the tensor product.
(3) Grp. Product is the Cartesian product, coproduct is the free product.
(4) ModR. Both product and coproduct are Cartesian product.
(5) Top(X). Product is the intersection, coproduct is the union.
(6) In the category of fields there are no products and no coproducts.
(7) In the category CG there are no products and no coproducts.

Definition
Assume that there are products in the categories C and D. A functor F : C → D
preserves products, if the following functors are isomorphic:

(X,Y ) 7→ F (X)× F (Y ), (X,Y ) 7→ F (X × Y ).

Fact
Representable functors preserve products and terminal objects.
Proof
Directly from the first definition of a product and from the definition of a terminal
object. �

LECTURE 4

Adjoint functors

We start with an example. Let R be a ring, X be a set and R[X] be the ring
of polynomials, where the variables come from the set X. We obtain the following
functor

F : Set→ AlgR, F (X) = R[X].

Let G : AlgR → Set be the forgetful functor. For each R-algebra S and each set
X, we have a bijection:

HomAlgR
(R[X], S)←→ HomSet(X,S), φ 7→ φ|X ,

which is natural with respect to S and X (since the restriction of functions com-
mutes with the composition of functions). Hence the following functors are isomor-
phic:

Setop ×AlgR 3 (X,S) 7→ HomAlgR
(F (X), S) ∈ Set;
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Setop ×AlgR 3 (X,S) 7→ HomSet(X,G(S)) ∈ Set.

Definition
Let F : C → D and G : D → C be functors. F is left-adjoint to G (or G is
right-adjoint to F ), if the following functors are isomorphic

Cop ×D 3 (X,Y ) 7→ HomD(F (X), Y ) ∈ Set;

Cop ×D 3 (X,Y ) 7→ HomC(X,G(Y )) ∈ Set.

Examples (left-adjoint to a forgetful functor G)

(1) G : Grp→ Set, F (X) = FX – free group functor.
(2) G : Ab→ Grp, F (H) = Hab = H/[H,H] – abelianization functor.
(3) S is an R-algebra, G : ModS →ModR, F (M) = M ⊗R S – extension of

scalars functor.
(4) G : Field→ Domain, G(R) = R0 – fraction field.

Other examples

(1) For (X,x) ∈ Top∗ let

Ω(X,x) = HomTop∗((S
1, ∗), (X,x))

(loops at x) with compact-open topology.

Σ(X,x) = X × [0, 1]/(X × {0, 1} ∪ {x} × [0, 1])

(distinguished point for Ω(X,x) is the constant loop and for Σ(X,x), it is
(x, 0)).
Σ is left-adjoint to Ω, where Σ and Ω are functors from Toph∗ to Toph∗.

(2) For a commutative ring R and an R-module M , the functor

ModR 3 N 7→M ⊗R N ∈ModR

is left-adjoint (Problem 2.4) to

ModR 3 N 7→ HomModR
(M,N) ∈ModR.

Theorem
Let F : C → D be a functor. Assume that for all Y ∈ D, there is XY ∈ C
representing the functor hY F , i.e. the functor

C 3 X 7→ HomD(F (X), Y ) ∈ Set.

Then there is a unique functor G : D → C such that:

• For all Y ∈ D, G(Y ) = XY

• G is right-adjoint to F .

Going to the opposite category, we get the dual theorem where we start from G
and obtain a left-adjoint functor F . (We skip the proof.)

Example
Let K be a field. We consider

G : AlgK → AlgK , G(R) = R[x]/(x2)

(the functor of dual numbers).
For each K-algebra R, we fix a K-algebra isomorphism R ∼= K[X]/I, for a set of
variables X and an ideal I. Let δ : R[X] → R[X,X ′] (X ′ := {x′ : x ∈ X}) be a
derivation such that δ(K) = 0 and for all x ∈ X, δ(x) = x′. We define

R′ = K[X,X ′]/(I, δ(I)).
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Then R′ represents the functor

AlgK 3 S 7→ HomAlgK
(S,G(R)) ∈ Set.

Hence (by the last theorem), the assignment R 7→ R′ extends uniquely to a functor
F , which is left-adjoint to G.
For K algebraically closed and V an affine algebraic variety over K, if we set
R = K[V ] (the ring of regular functions), then we get F (R) ∼= K[TV ], where TV
is the tangent bundle. Hence F corresponds to the functor of the tangent bundle.

LECTURE 5

Limits

Let (I,≤) be a poset (partially ordered set) and C a category. For each i ∈ I,
we have Xi ∈ C and for each i ≤ j from I, we have fij : Xi → Xj such that for all
i ≤ j ≤ k, we have

fjkfij = fik, fii = idXi
.

We will write (Xi, fjk)i∈I,j<k or (Xi)i∈I or (fjk)j<k.

Remark
Having such a choice as above is equivalent to having a functor

F : (I,≤)→ C,

where (I,≤) is regarded as a category.

Definition of limit
Inverse limit of a functor F : (I,≤) → C (or projective limit or just limit) is an
object X ∈ C together with a collection of morphisms (fi : X → Xi)i∈I such that
the following holds.

(1) For each i, j ∈ I, we have fijfi = fj .
(2) For any other collection (f ′i : X ′ → Xi)i∈I satisfying condition (1), there is

a unique morphism f : X ′ → X such that for each i ∈ I, we have fif = f ′i .

The limit object X is denoted by lim←−F or just limF .

In the above definition, the category coming from (I,≤) can be replaced with
an arbitrary category I (understood as an index category).

As usual, one can also give an equivalent definition of the inverse limit using rep-
resentable functors.

Examples (Let C be a category)

(1) Product
X × Y = lim←−(X,Y ), i.e. I = {0, 1} with the discrete order and F (0) =

X,F (1) = Y .
If I is a discrete poset and for i ∈ I, F (i) = Xi, then we have∏

i∈I
Xi := lim←−F.
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(2) Fiber product (pull-back)
For f : X → Z, g : Y → Z, we define the pull-back f and g as

X ×Z Y := lim←−(f : X → Z, g : Y → Z).

Our poset is I = {0, 1, 2} with the ordering 0 ≤ 1, 1 ≤ 2 and F (0) =
X,F (1) = Y, F (2) = Z,F (0 ≤ 2) = 0, F (1 ≤ 2) = f .
In other words, the morphism X ×Z Y → X,Y are universal among those
for which the following diagram is commutative

X ×Z Y −−−−→ Xy yf
Y

g−−−−→ Z .

W Set:

X ×Z Y = {(x, y) ∈ X × Y |f(x) = g(y)}

(3) Kernel
Assume that the category C has a zero object 0 (i.e. 0 is an initial object
and a terminal object at the same time). Then for each X,Y ∈ C there is
the zero morphism 0 : X → Y .
For each morphism f : X → Y , ker(f) is a morphism k : K → X which is
universal with respect to morphisms s : Z → X such that fs = 0.
Equivalently:

ker(f) = lim←−(f : X → Y, 0 : 0→ Y ) = X ×Y 0.

(a) In the category of groups ker(f : G→ H) is the inclusion of f−1(e) in
G.

(b) In Set∗, 0 = ∗ and ker(f : X → Y ) is the inclusion of f−1(∗) in X.
(4) If (I,≤) has a least element i0 (more generally, if the index category has

an initial object), then lim←−F = F (i0).

Definition of colimit
Direct limit of a functor F : (I,≤) → C (inductive limit or colimit) is an object
X ∈ C together with a collection o morphisms (fi : Xi → X)i∈I such that

• for each i, j ∈ I, fjfij = fi.
• For any other collection (f ′i : X ′ → Xi)i∈I satisfying condition (1), there is

a unique morphism f : X → X ′ such that for each i ∈ I, ffi = f ′i .

A colimit X is denoted by lim−→F or colimF .

Examples (C is a category)

(1) Coproduct
X

∐
Y = lim−→(X,Y ) and for any discrete poset I,∐

i∈I
Xi := lim−→F.

W kategorii grup ∐
i∈I

Gi =
⊕
i∈I

Gi.
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(2) Fibered coproduct (push-out)
For f : Z → X, g : Z → Y , we define a push-out f and g as

X
∐
Z

Y := lim−→(f : Z → X, g : Z → Y ).

In other words, the morphism X,Y → X ×Z Y are universal among those
for which the following diagram is commutative

Z
f−−−−→ X

g

y y
Y −−−−→ X

∐
Z Y .

In Sets,

X
∐
Z

Y = (X
∐

Y )//f(z) ∼ g(z).

In AlgK ,

S1

∐
R

S2 = S1 ⊗R S2.

(3) Cokernel
Assume that C has a zero object 0. For each morphism f : X → Y , coker(f)
is a morphism k : Y → C which is universal w.r.t. morphisms s : Y → Z
such that sf = 0.
Equivalently

coker(f) = lim−→(f : X → Y, 0 : X → 0) = Y
∐
X

0.

(a) In ModR, coker(f : M → N) = N → N/f(M).
(b) In Set∗, coker(f : X → Y ) = Y → Y/f(X) (where f(X) is contracted

to the distinguished point).
(4) If (I,≤) has a greatest element i∞ (more generally the index category has

a terminal object), then lim−→F = F (i∞).

Definition
Assume that a poset (I,≤) is directed, i.e. for each i, j ∈ I there is k ∈ I such that
i, j ≤ k. Then a functor F : (I,≤)→ C is called direct system and F : (I,≤)→ Cop

is called inverse system.
lim←−F is called inverse limit and lim−→F is called direct limit.

Remark (exercise)
Let (I,≤) be a directed poset, i ∈ I and Ii = {j ∈ I|j ≥ i}. Then for each inverse
system (Xi)i∈I , we have

lim←−(Xj)j∈I = lim←−(Xj)j∈Ii .

Similarly for the direct limit.

Examples

(1) In ModR direct limit of (Mi)i∈I , is (exercise)

lim−→(Mi)i∈I =
⊕
i∈I

Mi/〈(wjfij − wi)(Mi)|∀i ≤ j〉,
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where wi : Mi →
⊕

i∈IMi is the embedding into the direct sum.
Inverse limit (Mi)i∈I is (exercise)

lim←−(Mi)i∈I = {(ai)i∈I ∈
∏
i∈I

Mi|(∀i ≤ j)fij(aj) = ai}.

The above construction of inverse limit works also in the categories of
groups, rings and topological spaces.

(2) take a ring R and an ideal I ⊂ R. We obtain an inverse system (R/In)n∈N.
Its limit lim←−(R//In) is called completion of R with respect to I. E.g, we

get the ring of p-adic integers:

Zp := lim←−(Z/pnZ)n∈N.

(3) Let us take the following directed poset (N, |) (the relation of divisibility).
Our direct system consists of finite fields of characteristic p, (Fpn)n∈N where
the maps are field extensions. Then we have:

lim−→(Fpn)n∈N = Fp,

the algebraic closure of Fp.
Much more generally: each structure is the direct limit of its finitely gen-
erated substructures.

(4) A profinite group is the inverse limit of finite groups in the category of
topological groups.

Definition
Functor G : C → D preserves inverse limits, if
for any F : (I,≤)→ C, if X = lim←−F , then G(X) = lim←−(G ◦ F ).

There is an analogous (obvious) notion of a functor which preserves direct limits.

Theorem
If F is a left-adjoint functor to a functor G, then F preserves direct limits and G
preserves inverse limits.

Examples

(1) G – forgetful functor, F – left-adjoint to G
(a) G : Grp→ Set, F : Set→ Grp – free group functor.

G preserves inverse limits e.g. products:

G(H1 ×H2) = G(H1)×G(H2).

G does not preserve direct limits, e.g. coproducts:

G(H1 ∗H2) � G(H1) ∪G(H2).

F preserves direct limits, e.g. coproducts:

FX∪Y ∼= FX ∗ FY .
But G does not preserve inverse limits, e.g. products:

FX×Y � FX ⊕ FY .
(b) G : Ab→ Grp, F : Grp→ Ab – Abelianization functor.

G preserve products and does not preserve coproducts:

H1 ∗H2 � H1 ⊕H2.



18

F preserves coprodukts

(H1 ∗H2)ab ∼= Hab
1 ⊕Hab

2 ,

and, just by chance, also products

(H1 ⊕H2)ab ∼= Hab
1 ⊕Hab

2 .

However, F does not preserve kernels (which are also inverse limits).
Take e.g.

Z/3Z f−−−−→ S3
g−−−−→ Z/2Z,

where f = ker(g), g = coker(f). After applying F , we get

Z/3Z fab

−−−−→ Z/2Z gab=id−−−−→ Z/2Z .
But fab = 0 : Z/3Z→ Z/2Z is not the kernel of idZ/2Z .
In particular, F does not take monomorphisms to monomorphisms: f
goes to 0.
F preserves cokernels: idZ/2Z = coker(0 : Z/3Z→ Z/2Z).
Preserving cokernels implies the following:

H1 6 H2 =⇒ (H1/H2)ab ∼= Hab
1 /Hab

2 .

(2) For an R-module M , the functor

· ⊗RM : ModR →ModR

is left-adjoint to hM (understood as a functor into ModR).
In particular, the functor · ⊗R M preserves cokernels, so also preserves
epimorphisms, i.e.

N � N ′ =⇒ N ⊗RM � N ′ ⊗RM.

The functor · ⊗RM does not preserve monomorphisms – e.g. Z ↪→ Q, but

Z⊗Z Z/2Z→ Q⊗Z Z/2Z
is not a monomorphism, since

Z⊗Z Z/2Z ∼= Z/2Z i Q⊗Z Z/2Z = 0.

Theorem
Let C be a category and A ∈ C. Then the representable functor

hA : C → Set

preserves (inverse) limits. Hence (applying the above to the category Cop), hA takes
direct limits to inverse limits.
Proof
Let

(X, fi) = lim←−(Xi, fjk).

We want to show that (in the category Set)

(Hom(A,X), hA(fi)) = lim←−(Hom(A,Xi), hA(fjk)).

Let us take (Y, gi) which is a possible “candidate” for lim←−(Hom(A,Xi), hA(fjk)),

i.e. gi : Y → Hom(A,Xi) and these maps commute with all the maps hA(fjk).
For any y ∈ Y , we have

fjk ◦ gj(y) = hA(fjk)(gj(y)) = gk(y).



19

Hence (A, gi(y)) is a “candidate” for lim←−(Xi, fjk). Since

(X, fi) = lim←−(Xi, fjk),

the morphism g(y) : A → X is a unique morphism A → X commuting with all
the gi(y). Hence g : Y → Hom(A,X) is a unique map commuting with all the
hA(gi). �

LECTURE 5

We want to generalize the notions of monomorphism and epimorphism to an arbi-
trary category.

Definition
A morphism f : X → Y is a monomorphism, if for all g, h : Z → X, fg = fh
implies g = h. A morphism f is an epimorphism, if for all g, h : Y → Z, gf = hf
implies g = h.
A monomorphism is denoted by X ↪→ Y and an epimorphism is denoted by X � Y .

Examples

(1) Any isomorphism is a monomorphism and an epimorphism, but the oppo-
site implication does not hold.

(2) Monomorphism in Set are one-to-one functions. Epimorphisms in Set
are onto functions. Similarly in Top or ModR. But there are bijective
continuous functions which are not homeomorphisms (e.g. [0, 2π) → S1),
so indeed we do not have the opposite implication as mentioned above.

(3) Monomorphism in Haus (topological Hausdorff spaces) are continuous one-
to-one functions. However, epimorphisms in Haus are the dominant func-
tions, i.e. continuous functions f : X → Y such that f(X) is dense in Y .
Similarly in the category VarK (we need Zariski dense here).

Remark
In terms of representable functors the above definitions can be phrased as follows.

(1) The morphism f : X → Y is a monomorphism if and only if for all Z ∈ C
the map

hZ(f) : Hom(Z,X)→ Hom(Z, Y )

is one-to-one.
(2) The morphism f : X → Y is an epimorphism if and only if for all Z ∈ C

the map
hZ(f) : Hom(Y, Z)→ Hom(X,Z)

is one-to-one.

So, both the notions are defined in terms of one-to-one functions of sets (of mor-
phisms). They can not be phrased in terms of onto functions of sets (of morphisms).

Abelian categories

We will restrict now our attention to some special kind of categories in which
one can do homological algebra.
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Definition (Ab-categories and additive categories)
Let C be a category.

A1 (The definition of Ab-category)
For all X,Y ∈ C, the set Hom(X,Y ) has a structure of an Abelian group such that
the composition of morphisms is distributive with respect to this Abelian group
operation.

A2 There is 0 ∈ C, the zero object (terminal and initial).

Remark
In any category C satisfying A2 and for any X,Y ∈ C, we have a unique zero
morphism 0XY : X → Y . If C satisfies also A1, then it easily follows (using dis-
tributivity) that 0XY is the neutral element in the group Hom(X,Y ).

A3 (we assume A1 and A2)
For all X1, X2 ∈ C there is Y ∈ C together with the following morphisms:

i1 : X1 → Y, i2 : X2 → Y, b1 : Y → X1, b2 : Y → X2

such that

b1i1 = idX1 , b2i2 = idX2 , i1b1 + i2b2 = idY , b1i2 = b2i1 = 0.

The object Y is called direct sum (or biproduct) of X1 and X2 and denoted X1⊕X2.
The category C is additive, if it satisfies A1, A2 i A3.

Fact
A direct sum in an additive category is both product and coproduct.
Proof
We will show that X1 ⊕ X2 together with b1 and b2 is a product of X1 and X2.
The argument for coproduct is similar using the morphisms i1 and i2 (actually, it
is exactly a dual argument).
Take f : Z → X1, g : Z → X2. We will show that φ := i1f + i2g is a unique
morphism φ : Z → X1 ⊕X2 such that the appropriate diagrams commute.
Commuting:

b1φ = b1i1f + b1i2g = idX1
f + 0g = f.

Similarly we get that b2φ = g.
Uniqueness: Assume that we have a morphism φ : Z → X1 ⊕X2 such that b1φ =
f, b2φ = g. Then we have

i1b1φ = i1f, i2b2φ = i2g,

i1f + i2g = (i1b1 + i2b2)φ = idY φ = φ. �

Definition (of Abelian categories)
A4 For any morphism f : X → Y there is a sequence of morphisms (canonical
decomposition of f):

K
k−−−−→ X

i−−−−→ I
j−−−−→ Y

c−−−−→ C

such that

(1) ji = f .
(2) ker(f) = (K, k), coker(f) = (c, C).
(3) ker(c) = (I, j), coker(k) = (i, I) (I is called the image of f).
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A category is Abelian, if it is additive and if it satisfies A4.

Remark
In particular, if C is an Abelian category, then C is additive, and kernels and cok-
ernels exist in C.
On the other hand, in any additive category (assuming that C has a zero object
would be enough) with kernels and cokernels, for any f : X → Y we have:

K
k−−−−→ X

i−−−−→ I, I ′
j−−−−→ Y

c−−−−→ C,

where k = ker(f), i = coker(k), c = coker(f), j = ker(c).
I ′ is called the image of f and I is called the coimage of f .
Then we have a unique (in a proper sense) morphism l : I → I ′ such that
ker(l) = coker(l) = 0. A category is Abelian if and only if l is an isomorphism
(in particular image is isomorphic with coimage). Hence A4 corresponds to the
(first) Isomorphism Theorem (e.g. for groups: G/ ker(f) ∼= im(f)).

Examples

(1) ModR is an Abelian category.
(2) Commutative algebraic groups: additive category, not an Abelian category.

Consider the Frobenius homomorphism

Fr : (K,+)→ (K,+),

where Fr(a) = ap and K is a field of characteristic p > 0.
Then Fr is a monomorphism and an epimorphism, but not an isomorphism.
It is not possible in an Abelian category (we will see it soon).
In a bigger category of group schemes Fr is not a monomorphism, since
ker(Fr) is not the zero object bur corresponds to the ring (actually a Hopf
algebra) K[X]/(Xp).
Over a field of characteristic 0, the category of commutative algebraic
groups is an Abelian category.

(3) For any small category C and an Abelian categoryA, the category Func(C,A)
is an Abelian category. It follows directly, e.g.

(G⊕ F )(X) := G(X)⊕ F (X).

In particular, the category of presheaves of Abelian groups over a space X,
denoted PshX , is an Abelian category.

(4) However, we are mostly interested in the category of sheaves: ShX .
Clearly, ShX is an additive category. However, the cokernel (in the category
of presheaves) of a morphism of sheaves need not be a sheaf. Let OC be
the sheaf of holomorphic functions into C (with addition of functions) and
O∗C be the sheaf of holomorphic functions into C \ {0} (with multiplication
of functions). Consider the morphism

exp : OC → O∗C.
Let F be the cokernel of exp in the category of presheaves (i.e. for each
open V , F(V ) = O∗C(V )/ exp(OC(V ))) and take U = C \ {0}.
Then s := [idU ] ∈ F(U) \ {0} (since there is no global logarithm!), but for
a covering U by disks (or any open simple-connected sets) U =

⋃
Ui, we

have s|Ui
= 0 (since there is a logarithm on a disk). Hence F is not a sheaf.

However the category ShX still is Abelian, which we will see below.
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Theorem
There is a left-adjoint functor to the forgetful functor

ShX → PshX ,

called the sheafification functor

+ : PshX → ShX .

For a morphism of sheaves f : F → G, we have

kerShX
(f) = kerPshX

(f), cokerShX
(f) = cokerPshX

(f)+

and ShX is an Abelian category.
Proof
We will not show the existence of +, the idea is to construct F+ using functions
into the groups of germs of F .

For any morphism of sheaves f : F → G, the kernel of f in the category of
presheaves K is a sheaf, since for any open covering U =

⋃
i Ui and an appropriate

collection si ∈ K(Ui), the collection (si) extends uniquely to s ∈ F(U) (since F is
a sheaf) and f(s)|Ui

= f(si) = 0, hence f(s) = 0 (since G is a sheaf) and s ∈ K(U).
Then K is also the kernel of f in the category of sheaves.
Let H be the cokernel of f in the category of presheaves. We will show that H+

is the cokernel of f in the category of sheaves. Take any morphism of sheaves
g : G → S such that gf = 0. Then g factors through a unique l : H → S which
(using the adjointness) factors through a unique k : H+ → S. Hence H+ is the
cokernel of f in the category of sheaves.
We will show now that the category ShX is Abelian. Let

K k−−−−→ F i−−−−→ I j−−−−→ G c−−−−→ K′

be the canonical decomposition of f in the (Abelian) category of presheaves. Then
the sequence

K k−−−−→ F i+−−−−→ I+ j+−−−−→ G c+−−−−→ K′+

is a canonical decomposition of f in the category of sheaves (since the sheafification
functor preserves kernels and cokernels). �

In Abelian categories monomorphisms and epimorphisms have a nice characteri-
zation.

Fact
Let A be an Abelian category and f : X → Y be a morphism. Then we have:

(1) f is a monomorphism if and only if ker(f) = 0;
(2) f is an epimorphism if and only if coker(f) = 0;
(3) f is an isomorphism if and only if ker(f) = coker(f) = 0.

In particular, f is an isomorphism if and only if f is both an epimorphism and a
monomorphism.
Proof

(1) ⇒ Let k : K → X be the kernel of f . Then fk = 0. But also f0 = 0, hence
k = 0, since f is a monomorphism. Using the universal property of kernel,
we get idK = 0, hence (easy) K = 0.
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⇐ Assume that fg = fh. Then f(g− h) = 0. Hence g− h factors through
the kernel, that is g − h = 0, since ker(f) = 0.

(2) Similarly as for monomorphisms.
(3) ⇒ Follows from 1. and 2.
⇐ We look at the canonical decomposition of f from the property A4

0
0−−−−→ X

i−−−−→ I
j−−−−→ Y

0−−−−→ 0,

However, we have coker(0→ X) = idX and ker(Y → 0) = idY . Hence I ∼=
X, J ∼= Y and f is an isomorphism as the composition of two isomorphisms.

�

Remark/Notation
For a monomorphism, the object coker(X ↪→ Y ) can be understood as quotient
object, and denoted by Y/X.

Let us notice one more good property of Abelian categories.

Fact
In an Abelian category any kernel is a monomorphism and any cokernel is an epi-
morphism. In particular, the decomposition of a morphism f : X → Y from A4
of the form f = ij is a decomposition into the epimorphism j composed with the
monomorphism i.
Proof (in the case of kernel)
It is enough to notice that ker(ker f) = 0 (it holds in any category with a zero
object) and use the fact that in an Abelian category, a morphism t is a monomor-
phism if and only if ker(t) = 0. �

LECTURE 7

Definition (complex and cohomology)

(1) Complex (of cochains), in an Abelian category A, is any infinite sequence
of objects and morphisms (called boundary operators)

X∗ : . . .
dn−1

−−−−→ Xn dn−−−−→ Xn+1 dn+1

−−−−→ . . .

such that for all n, we have dn+1dn = 0.
In the category ModR, the condition dn+1dn = 0 is equivalent to im(dn) ⊆
ker(dn+1). There is a similar interpretation in any Abelian category: dn+1dn =
0 iff dn factors through αn : Xn → ker(dn+1) iff Xn → im(dn) factors
through a monomorphism im(dn)→ ker(dn+1).

(2) For a complexX∗, we defineHn(X∗) (n-th cohomology ofX∗) as coker(αn−1).
Equivalently

Hn(X∗) = coker(im(dn−1) ↪→ ker(dn)),

so Hn(X∗) can be understood as ker(dn)
im(dn−1) .

(3) Complex X∗ is acyclic at object Xn, if Hn(X∗) = 0. A complex acyclic at
each object is called an exact sequence. An exact sequence of the form

0→ A→ B → C → 0

is called a short exact sequence.
Example
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For direct sum A⊕B,

0 −−−−→ A
i1−−−−→ A⊕B b2−−−−→ B −−−−→ 0,

is a short exact sequence.
(4) We obtain the category of complexes (of cochains) Com(A) (morphisms

should preserve the derivations).
After defining kernels/cokernels/direct sums “object by object”, we get that
Com(A) is an Abelian category.

Definition
Let F : A → B be a functor between Abelian categories.

(1) F is additive, if it induces homomorphisms on the Abelian groups of mor-
phisms.
An additive functor takes complexes to complexes.

(2) An additive functor is exact, if it takes exact sequences to exact sequences.
(3) An additive functor F is right-exact, if it takes an exact sequence 0→ A→

B → C → 0, to a complex 0 → F (A) → F (B) → F (C) → 0, which is
acyclic in F (B) and F (C).

(4) An additive functor F is left-exact, if it takes an exact sequence 0→ A→
B → C → 0, to a complex 0 → F (A) → F (B) → F (C) → 0, which is
acyclic in F (B) and F (A).

Fact

A sequence 0 −−−−→ X
f−−−−→ Y

g−−−−→ Z −−−−→ 0 is

(1) acyclic in X and Y iff f = ker(g).
(2) acyclic in Y and Z iff g = coker(f).

Fact
Let F : A → B be an additive functor between Abelian categories. We list below
some properties F may enjoy (or not).

(1) F is right-adjoint (resp. left-adjoint).
(2) F preserves inverse limits (resp. direct limits).
(3) F preserves kernels (resp. cokernels).
(4) F is left-exact (resp. right-exact).
(5) F preserves monomorphisms (resp. epimorphism).

Then we have: (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5).
Proof
Collecting the things we know ((3)⇒ (4) follows from the previous fact). �

Motivating remark
We want to know F (C). If F is exact and there is a short exact sequence

0→ A→ C → B → 0,

then by knowing F (A) and F (B), we know something about F (C).
If F is not exact, then, thanks to homological algebra, we will measure “how far”
is F (C) from F (A) and F (B).

Examples
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(1) Representable functors hA are left-exact.
(Co)representable functors hA are also left-exact as functors from Cop to
Ab, i.e. an exact sequence

0← X ← Y ← Z ← 0

goes to an exact sequence outside of Hom(Z,A),

0→ Hom(X,A)→ Hom(Y,A)→ Hom(Z,A)→ 0.

(2) The functor
· ⊗RM : ModR →ModR

is right-exact (as left-adjoint to hM ).
(3) The functor

Γ : ShX → Ab, Γ(F) = F(X)

is right-adjoint to the constant sheaf functor

Ab 3 A 7→ AX ∈ ShX .

Hence it is left-exact (another reason is that it preserves kernels, since
kernels in the category of sheaves are the same as kernels in the category
of presheaves).
The following sequence of sheaves

0 −−−−→ ZC∗
·2πi−−−−→ OC∗

exp−−−−→ O∗C∗ −−−−→ 0

is exact, since:
(a) Clearly, we have

ZC∗ ↪→ OC∗ .

(b) For each function g : U → C and a connected U , if exp(g) = 1, then
g(U) ⊂ 2πiZ. But g(U) is also connected, so g is the constant function
2πni for some n ∈ Z. Hence im(·2πni) = ker(exp).

(c) We also know that for a simply-connected U , the map

exp |U : OC∗(U)→ O∗C∗(U)

is an epimorphism.
However the sequence of global sections

0 −−−−→ Z −−−−→ OC∗(C∗)
exp−−−−→ O∗C∗(C∗) −−−−→ 0,

is not exact at O∗C∗(C∗), since for idC∗ there is no global logarithm.

Fact
We say that a short exact sequence splits, if it is isomorphic to the short exact
sequence coming from a direct sum. The following conditions are equivalent.

(1) A short exact sequence

0 −−−−→ A
f−−−−→ C

g−−−−→ B −−−−→ 0,

splits.
(2) There is a morphism g′ : B → C such that gg′ = idC .
(3) There is a morphism f ′ : A→ B such that f ′f = idA.

Definition

(1) An object A is projective, if the functor hA is exact.
(2) An object A is injective, if the functor hA is exact.

Fact (categorical definition of projective and injective objects)
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(1) An object Y is projective if and only if for all morphisms

f : X � X ′, g : Y → X ′

there is a morphism h : Y → X such that fh = g.
(2) An object Y is injective if and only if for all morphisms

f : X ′ ↪→ X, g : X ′ → Y

there is a morphism h : X → Y such that hf = g.

Examples

(1) A free module is projective. More precisely, a module is projective if and
only if it is a direct summand of a free module.

(2) An Abelian group is injective if and only if it is divisible. Hence e.g. Q is
an injective Z-module.

Fact
Assume that 0→ A→ B → C → 0 is an exact sequence. If C is projective or A is
injective, then this sequence splits.

Derived functors

We fix an Abelian category A.
A complex of cycles is a complex of the form

X∗ : . . .
dn+1−−−−→ Xn

dn−−−−→ Xn−1
dn−1−−−−→ Xn−2

dn−2−−−−→ . . . .

For each complex of cycles X∗, we define Hn(X∗), the n-th homology of X∗, similarly
as for complexes of cochains.
The following arrow X∗ →M means that we have a complex of cycles of the form

. . .
d2−−−−→ X1

d1−−−−→ X0
d0−−−−→ M −−−−→ 0,

and M → X∗ means that we have aa complex of cocycles of the form

0 −−−−→ M
d0−−−−→ X0 d1−−−−→ X1 d2−−−−→ . . . .

Hilbert’s Syzygy Theorem
In astronomy, a syzygy (from the Ancient Greek suzugos meaning, “yoked to-

gether”) is a straight-line configuration of three celestial bodies in a gravitational
system. The word is often used in reference to the Sun, Earth and either the Moon
or a planet, where the latter is in conjunction or opposition. Solar and lunar eclipses
occur at times of syzygy. The term is often applied when the Sun and Moon are in
conjunction (new moon) or opposition (full moon).

Here, in our homological algebra context, for any finitely generated (by n0 ele-
ments) R-module M , we create an exact sequence consisting of free modules. We
assume that R is a Noetherian ring. We find first an epimorphism d0 : F0 → M ,
(where F0 = Rn0) which kernel, that is R-dependencies (“syzygies”) between gen-
erators of M , has finitely many generators, as a submodule of a finitely generated
module over a Noetherian ring, say n1 generators.

We take now an epimorphism d1 : F1 → ker(d0) (where F1 = Rn1), so ker(d1)
corresponds to R-dependencies (“syzygies”) between generators of ker(d0) (so R-
dependencies between R-dependencies), and so on...
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Hilbert’s syzygy theorem says that there are choices of generators for which this
sequence becomes 0 after r + 1 steps, that is we obtain an acyclic complex of the
form

0→ Fr → Fr−1 → · · · → F0 →M → 0,

where Fi are free (in particular projective). This complex can be understood as
“full information” about M .

Definition
Projective resolution of X is an acyclic complex (of chains) of the form P∗ → X,
where for all i, the object Pi is projective.
Injective resolution of X is an acyclic complex (of cochains) of the form X → I∗,
where for all i, the object Ii in injective.

Definition
An Abelian category A is said to have enough projectives, if for each object X ∈ A
there is a projective object P ∈ A and an epimorphism P � X.
An Abelian category A is said to have enough injectives, if for each object X ∈ A
there is an injective object I ∈ A and a monomorphism X ↪→ I.

Fact
If A has enough projectives (resp. injectives), then each object has a projective
(resp. injective) resolution.

Definition (derived functors)
Let F : A → B be an additive functor between Abelian categories (B is often the
category of R-modules for some ring R).
LnF : A → B, the n-th left derived functor of F , is defined as follows

LnF (X) := Hn(F (P∗ → 0)),

where P∗ → X is a projective resolution of X.
We define in an analogous way the n-th right derived functor of F as

RnF (X) := Hn(F (0→ I∗)),

for an injective resolution X → I∗.

Theorem 1 (existence and uniqueness of LnF,R
nF )

If A has enough projectives (resp. injectives) and F : A → B is an additive functor,
then the functor LnF : A → B (resp. RnF : A → B) exists and does not depend
on a choice of resolution.

In Theorems 2. and 3. below we assume that there are enough projectives or injec-
tives (depending on the context) in the category A and F : A → B is an additive
functor between Abelian categories.

Theorem 2 (derived functors and exactness)
L0F = F if and only if F is right-exact.
R0F = F if and only if F is left-exact.
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Theorem 3 (axioms of homology theory)
If F is right-exact, then for each short exact sequence

0 −−−−→ A
f−−−−→ C

g−−−−→ B −−−−→ 0,

there is a long exact sequence

. . .
L2F (g)−−−−−→ L2F (B)

δ2−−−−→ L1F (A)
L1F (f)−−−−−→ L1F (C)

L1F (g)−−−−−→ L1F (B)

L1F (B)
δ1−−−−→ F (A)

F (f)−−−−→ F (C)
F (g)−−−−→ F (B) −−−−→ 0,

where morphisms δn are functorial.
A sequence of functors and natural morphisms (LnF, δn) satisfying the above and
vanishing on projective objects is unique up to an isomorphism.
An analogous theorem holds for right-exact functors F and the corresponding right-
derived functors RnF .

Theorem 4
The category ModR has enough projectives and injectives.
The category ShX has enough injectives.

Definitions

(1) A,B ∈ A, A is an Abelian categories.

Extn(A,B) := RnhB(A) (∼= RnhA(B)).

Interpretation of Ext1(A,B) as the group of extensions.
(2) A,B ∈ModR

Torn(A,B) := Ln(A⊗R ·)(B) (∼= Ln(· ⊗R B)(A)).

(3) Cohomology of sheaves F ∈ ShX

Hn(X,F) := RnΓ(F),

where Γ is the functor of global sections.
Singular cohomology of topological spaces as a special case.
Cohomology of sheaves in algebraic geometry.

(4) Cohomology of groups: Let G be a group acting (by automorphisms) on an
Abelian group A. Then A is a ZG-module. Let Z be the trivial ZG-module
(G acts by identity).
We define the n-th cohomology of G with coefficients from A and the n-th
homology of G with coefficients from A as

Hn(G,A) := ExtnZG(Z, A), Hn(G,A) := TorZGn (Z, A).

Interpretation of H0, H0, H
1, H1, H

2.


