Characteristic 0 Positive characteristic

Unlikely formal intersections

Piotr Kowalski

Instytut Matematyczny Uniwersytetu Wrocławskiego

June 14, 2012

Ax's theorem about formal intersections

Setting

Let us fix:

- G, an algebraic group over \mathbb{C} ;
- \mathcal{A} , a complex analytic subgroup of G;
- V, an irreducible algebraic subvariety of G containing 1;
- \mathcal{W} , an analytic subvariety of \mathcal{A} and V.

Ax's Theorem (Amer. J. Math, 1972)

If \mathcal{W} is Zariski dense in V, then there is \mathcal{B} , a complex analytic subgroup of G containing V and \mathcal{A} such that

 $\dim(\mathcal{B}) \leqslant \dim(\mathcal{A}) + \dim(V) - \dim(\mathcal{W}).$

The only reason for unlikely intersections

• Assume that the intersection $\mathcal W$ is unlikely, i.e. for some d > 0 we have

 $\dim(\mathcal{W}) = \dim(\mathcal{A}) + \dim(V) - \dim(G) + d.$

- Ax's theorem: there is \mathcal{B} as above of codimension at least d.
- \bullet Inside ${\cal B}$ the intersection is not unlikely anymore.
- Ax's theorem looks similar to CIT. A differential version of Ax's theorem (closely related to this one) implies weak CIT.

Question

Is there a direct proof of

```
Ax's theorem \Rightarrow weak CIT
```

not going through a (logical) compactness argument?

Formal version

Setting (*C* a field of characteristic 0)

- Let G be an algebraic group over C;
- Let \mathcal{A} be a formal subgroup of \widehat{G} ;
- Let V be an irreducible algebraic subvariety of G containing 1;
- Let $\mathcal W$ be a formal subvariety of $\mathcal A$ and $\widehat{\mathcal V}$.

Ax's Theorem, formal version

If \mathcal{W} is Zariski dense in V, then there is \mathcal{B} , a formal subgroup of \widehat{G} containing \widehat{V} and \mathcal{A} such that

$$\mathsf{dim}(\mathcal{B}) \leqslant \mathsf{dim}(\mathcal{A}) + \mathsf{dim}(V) - \mathsf{dim}(\mathcal{W}).$$

Question

Is the above theorem true for C of positive characteristic?

"Formal intersection Ax" implies "Ax-Schanuel"

- Let x be an *n*-tuple of formal power series in several variables over C without constant terms, linearly independent over Q;
- Let $G = \mathbb{G}_{\mathrm{a}}^n \times \mathbb{G}_{\mathrm{m}}^n$;
- Let V be the algebraic locus of $(x, \exp(x))$ over C;
- Let \mathcal{A} be the graph of exp : $\widehat{\mathbb{G}_{a}}^{n} \to \widehat{\mathbb{G}_{m}}^{n}$;
- Let \mathcal{W} be the formal locus of $(x, \exp(x))$ over C.

Formal group $\mathcal B$ given by Ax's theorem coincides with $\widehat{\mathcal G}$ here, so

 $2n \leq \dim(\mathcal{A}) + \dim(V) - \dim(\mathcal{W}) = n + \operatorname{trdeg}_{\mathcal{C}}(x, \exp(x)) - \operatorname{rk}(J_x),$

$$\operatorname{trdeg}_{\mathcal{C}}(x, \exp(x)) \ge n + \operatorname{rk}(J_x).$$

The same proof works for A semi-abelian.

"Ax-Lindemann-Weierstrass"

Let A be a semi-abelian variety of dimension n. Similarly as above, Ax's theorem easily implies the following.

Theorem

Assume that

- $Y \subseteq A$ is an algebraic subvariety;
- X ⊆ 𝔅ⁿ_a is a maximal algebraic subvariety such that exp(X) ⊆ Y;

•
$$Y' := \exp(X)^{\operatorname{Zar}}$$
.

Then Y' is an algebraic subgroup of A and X = Lie(Y').

Dense formal subvarieties (characteristic 0)

The above applications suggested me a more general statement which also looks better for positive characteristic generalizations.

Setting

- Let A be a commutative algebraic group over C;
- Let V be an algebraic variety over C and $v \in V(C)$;
- Let $\mathcal{F}: \widehat{\mathcal{V}} \to \widehat{\mathcal{A}}$ be a "special" formal map;
- Let \mathcal{W} be a formal subvariety of \widehat{V} such that $\mathcal{F}(\mathcal{W}) = 0$.

Theorem (easily following from Ax's proof)

If \mathcal{W} is Zariski dense in V, then there is \mathcal{A} , a formal subgroup of $\widehat{\mathcal{A}}$ such that $\mathcal{F}(\widehat{V}) \subseteq \mathcal{A}$ and

$$\dim(\mathcal{A}) \leqslant \dim(V) - \dim(\mathcal{W}).$$

Remarks

- A continuous map between Hausdorff spaces which is constant on a dense set is constant everywhere.
- The same principle applies to an algebraic map between algebraic varieties and the Zariski topology.
- In the Ax's theorem situation the categories are mixed: a formal map is constant on a Zariski dense set. The theorem says that the above principle can be saved at the cost of quotiening out by a subgroup of a controlled dimension.

Special formal maps

I call a formal map $\mathcal{F}: \widehat{V} \to \widehat{G}$ "special" if it has certain properties of formal homomorphisms (even when V is not a group!)

Definition

 \mathcal{F} is special if it takes invariant differential forms on G into algebraic differential forms on V.

Example

$$\exp^*\left(\frac{\mathrm{d}X}{X}\right) = \frac{\exp(X)\mathrm{d}X}{\exp(X)} = \mathrm{d}X.$$

Formalizations of algebraic maps are special. Formal homomorphisms are special.

Additive and multiplicative power series

Assume that char(C) = p > 0. There is no exponential map anymore. But there are other interesting formal homomorphisms.

Example

Additive power series.

$$\mathcal{F}:\widehat{\mathbb{G}_{\mathrm{a}}}\to\widehat{\mathbb{G}_{\mathrm{a}}},\ \mathcal{F}=\sum c_{i}X^{p^{i}}.$$

• Multiplicative power series. For $\gamma = \sum a_i p^i \in \mathbb{Z}_p$

$$\mathcal{F}:\widehat{\mathbb{G}_{\mathrm{m}}}\to\widehat{\mathbb{G}_{\mathrm{m}}},\ \mathcal{F}=X^{\gamma}.$$

 \mathcal{F} corresponds to $\prod (X^{p^i} + 1)^{a_i} - 1$.

• A formal isomorphism between \mathbb{G}_m and an ordinary elliptic curve (defined over C^{alg}).

- 4 同 2 4 日 2 4 日 2

Towards positive characteristic Ax

Setting

Let us fix:

- C, a perfect field of characteristic p > 0;
- A, a commutative algebraic group over C;
- V, an algebraic variety over C and $v \in V(C)$;
- $\mathcal{F}: \widehat{V} \to \widehat{A}$, a formal map;
- \mathcal{W} , a formal subvariety of $\widehat{\mathcal{V}}$ such that $\mathcal{F}(\mathcal{W}) = 0$.

I will describe a positive characteristic variant of Ax's theorem. Unfortunately, I have to put extra assumptions on the formal map \mathcal{F} and the algebraic group A.

Limit maps

Definition (positive characteristic)

I call a formal map $\mathcal{F}: \widehat{V} \to \widehat{A}$ an *A*-limit if there is a sequence of rational maps $(f_m: V \to A)_m$ such that $f_m(v) = 0$ and \mathcal{F} is the limit of $(f_m)_m$ in a certain strong sense, i.e.

$$f_{m+1} - f_m \in A((\mathcal{O}_{V,v})^{p^{m+1}}).$$

Example

- For $\mathcal{F} = \sum c_i X^{p^i}$, \mathcal{F} is the limit of $(\sum^m c_i X^{p^i})_m$.
- For $\mathcal{F} = X^{\gamma}$, \mathcal{F} is the limit of $(X^{\sum^{m} a_{i}p^{i}})_{m}$, where

$$\gamma = \sum a_i p^i \in \mathbb{Z}_p.$$

Questions about limit maps

- Any A-limit map $\mathcal{F}: \widehat{V} \to \widehat{A}$ is special (in the proper sense involving higher differential forms).
- 2 The converse is true for A affine.
- More generally, the converse is true for A such that

$$\ker(H^1(K^p,A)\to H^1(K,A))=0,$$

where $C \subseteq K$ is a finitely generated field extension.

- Is the above map on cohomology always injective?
- Sormal homomorphisms are special. Are they A-limits?

Integrable groups

Definition

Let D be a 1-dimensional algebraic group. I call D integrable if for any $c \in C$ there is an algebraic endomorphism $\varphi : D \to D$ such that φ^* (the map induced on differential forms) is the multiplication by c.

Example

The following algebraic groups are integrable:

- Any 1-dimensional D over \mathbb{F}_p .
- \mathbb{G}_a over any C.

Main Theorem

Setting

Let us fix:

- *D*, an integrable algebraic group;
- $A := D^n;$
- V, an algebraic variety over C and $v \in V(C)$;
- $\mathcal{F}: \widehat{V} \to \widehat{A}$, an A-limit map;
- \mathcal{W} , a formal subvariety of \widehat{V} such that $\mathcal{F}(\mathcal{W}) = 0$.

Theorem (K.)

If \mathcal{W} is Zariski dense in V, then there is \mathcal{A} , a formal subgroup of \widehat{A} such that $\mathcal{F}(\widehat{V}) \subseteq \mathcal{A}$ and

$$\dim(\mathcal{A}) \leqslant \dim(V) - \dim(\mathcal{W}).$$

- For $D = \mathbb{G}_a$ or $D = \mathbb{G}_m$, we can replace "A-limit" with "special".
- In the characteristic 0 case any commutative algebraic group is isomorphic to Cⁿ_a as a formal group, so our theorem may be thought of as a generalization of Ax's theorem to the arbitrary characteristic case. However it is not satisfactory, since it does not fully answer the original question.

Application I: Additive transcendence

We assume that:

- F is an additive power series over \mathbb{F}_p which is transcendental over the ring of additive polynomials.
- x_1, \ldots, x_n are power series over \mathbb{F}_p without a constant term.

Theorem (K.)

If x_1, \ldots, x_n are linearly independent over the ring of additive polynomials, then

$$\operatorname{trdeg}_{\mathbb{F}_p}(x_1, F(x_1), \ldots, x_n, F(x_n)) \ge n+1.$$

Application II: Multiplicative transcendence

We assume that:

- $\gamma \in \mathbb{Z}_p$ is transcendental over \mathbb{Q} .
- F is the multiplicative power series corresponding to γ .
- x_1, \ldots, x_n are power series over \mathbb{F}_p with constant term 1.

Theorem (K.)

If x_1, \ldots, x_n are multiplicatively independent, then

$$\operatorname{trdeg}_{\mathbb{F}_p}(x_1, F(x_1), \ldots, x_n, F(x_n)) \ge n+1.$$

Application III: Ax-Lindemann-Weierstrass for p > 0

Let us fix

- *D*, an integrable algebraic group;
- γ , a formal endomorphism of D which is not algebraic;
- Y, an algebraic subvariety of D^n containing 0;

Theorem (K. proof to be checked)

If X is an algebraic subvariety containing 0 and maximal such $\gamma(\widehat{X}) \subseteq \widehat{Y}$ and $Y' := \exp(X)^{\operatorname{Zar}}$, then both X and Y' are algebraic subgroups of D^n .