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Abstract. We study model theory of actions of finite groups on substructures

of a stable structure. We give an abstract description of existentially closed

actions as above in terms of invariants and PAC structures. We show that if
the corresponding PAC property is first order, then the theory of such actions

has a model companion. Then, we analyze some particular theories of interest

(mostly various theories of fields of positive characteristic) and show that in
all the cases considered the PAC property is first order.

1. Introduction

In this paper, we consider the notion of a pseudo algebraically closed (PAC)
substructure of a stable structure. This notion originates from the theory of pseudo
algebraically closed fields, which were first considered by Ax in 1960’s while he
worked on pseudofinite fields ([2]). Studying PAC structures beyond the case of
fields was initiated by Hrushovski ([26]) in the strongly minimal context. Pillay
and Polkowska considered the PAC property in the stable case ([41]), there are
slight differences with the approach we take here. PAC structures also appeared in
Afshordel’s thesis ([1]). Recently, PAC structures were analized by the first author
([21], [22]) and also by Dobrowolski, the first author, and Lee ([15]).

Here, we are working with a (complete) stable theory T which admits quantifier
elimination and then focus on its universal part T∀. In other words, a typical
situation looks as follows. We have a universal theory T∀ with a stable model
completion T , so T has quantifier elimination and T axiomatizes existentially closed
models of T∀. Then, intuitively, the class of PAC structures in T lies in between
the class of existentially closed structures (models of T ) and the class of all the
structures considered (models of T∀). There are several possible definitions of the
notion of PAC, we adopt here the definition from [21] (expressed in terms involving
stationary types), which is a slight modification of the definition from [41], and
which is equivalent to Afshordel’s definition from [1] in the case of stable theories.
To define the notion of a PAC structure, one needs to use an appropriate notion
of irreducibility. In the classical case of PAC fields, a topological notion is used
coming from the Zariski topology. Hrushovski used in [26] “Morley irreducibility”,
that is he considered definable sets of Morely degree one. Pillay and Polkowska
used [41] stationary types and we proceed similarly here (however, we avoid any
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Tübitak 1001 grant no. 119F397.
2020 Mathematics Subject Classification Primary 03C60, 03C45 Secondary 12H10.
Key words and phrases. Finite group action, Model companion, PAC structure.

1



2 D. M. HOFFMANN AND P. KOWALSKI

saturation requirements as given in [41]). We say that a structure F |= T∀ is PAC
in T (see Definition 2.3) if all stationary types (in the sense of the theory T ) over
F are finitely satisfiable in F . Let us point out that in the case of the theory
of algebraically closed fields, all the irreducibility notions mentioned above are
essentially the same. However, this is not the case for other theories of interest as
the theory of differentially closed fields of characteristic 0 or the theory of compact
complex manifolds (see Section 4.1.2). Nevertheless, we show in Section 4.1 that
all these irreducibility notions lead to the same notion of a PAC structure.

For an extension F ⊆ K of models of T∀, we obtain relative notions of K-strongly
PAC and algebraically K-strongly PAC (see Definition 2.4). They are meaningful
and can be though of as measuring the distance between being PAC and being a
model of T (K-strongly PAC) or between being definably closed and algebraically
closed (algebraically K-strongly PAC), see Remark 2.5.

Our main motivation for considering PAC structures comes from model theory
of group actions. In the set-up above, we consider actions of a fixed group G on
models of T∀ by automorphisms. Clearly, such actions are first-order expressible
in an appropriate language and we aim to describe existentially closed actions and
check whether a model companion of the theory of such actions exists. The result
below may be considered as an abstract generalization of our theorem about finite
group actions on fields (see [24, Theorem 3.29]) and as a continuation of studies
from [21].

Theorem 3.13. Let G be a finite group and T be a stable theory coding finite
sets, which has quantifier elimination and eliminates strong types (that is: types
over algebraically closed sets are stationary). Assume that G acts faithfully on
K = dcl(K) |= T∀. Then, the following are equivalent.

(1) The action of G on K is existentially closed.
(2) The structure of invariants KG is K-strongly PAC.
(3) The structure of invariants KG is PAC and algebraically K-strongly PAC.

The above theorem gives a description of existentially closed finite group actions,
but it is not clear whether this description is first-order, so this theorem does not
settle the question of the existence of a model companion of the theory of finite
actions. We can show the following implication.

Theorem 3.23. Let G be a finite group and T be as in the statement of Theorem
3.13. If the class of T -PAC structures is elementary, then the model companion of
the theory of G-actions on models of T∀ exists.

After the abstract description of existentially closed actions (Theorem 3.13) and
giving a criterion for existence of a model companion of the theory of finite actions
(Theorem 3.23), we focus on particular examples of theories. We discuss the fol-
lowing three stable theories of fields of positive characteristic (p is a prime and e is
a positive integer):

(1) The theory SCFp,e of separably closed fields of characteristic p and insep-
arability degree e.

(2) The theory SCFp,∞ of separably closed fields of characteristic p and infinite
inseparability degree.

(3) The theory DCFp of differentially closed fields of characteristic p.

In the most interesting cases of the theories SCFp,∞ and DCFp, we do not have
elimination of imaginaries, however we still have its weaker versions (coding finite



PAC STRUCTURES AS INVARIANTS OF FINITE GROUP ACTIONS 3

sets and eliminating strong types), which are enough for the set-up from Theorems
3.13 and 3.23. For these theories, we describe PAC structures in a first-order
way using a result of Tamagawa (see Theorem 4.21) about positive characteristic
PAC fields. We finish with some general questions regarding the PAC property
and existence of a model companion of the theory of finite actions. It should be
mentioned that after replacing a finite group G with the infinite cyclic group (Z,+),
then the model theory of actions of (Z,+) has been thoroughly studied (see e.g.
[13] and [11]). We compare these two situation in Section 4.4.

This paper is organized as follows. In Section 2, we introduce several versions of
the notion of a PAC structure and show the basic results about them. In Section
3, we put the group action to the picture and prove the main two abstract results
stated above (Theorems 3.13 and 3.23). In Section 4, we consider some particular
theories (mostly theories of fields of positive characteristic) and give a first order
characterization of PAC structures with respect to these theories.

2. Preliminaries

2.1. Set-up. Let T be a complete first order theory with a monster model C |= T
(i.e. a strongly κ̄-homogeneuos and κ̄-saturated model of T for a very big cardinal
κ̄). Throughout the paper, acl and dcl mean the algebraic closure and the definable
closure in C. Usually, x stands for a (finite) tuple of variables. Moreover, for the
rest of this paper, let G be a group such that |G| < κ̄.

Bearing in mind any future applications, we try in this paper to formulate each
result with a minimal list of assumptions. Therefore, we organize our general
model-theoretic assumptions in the following list (we are aware that there are some
overlaps, but we preferred more transparent exposition):

(QE) T has quantifier elimination.
(FS) T codes finite tuples (i.e. eliminates finite imaginaries).

(FS+) T has (FS) and for every k < ω, for every variable x corresponding to a
real sort and the 0-definable equivalence relation E on Skx given by

E(x̄, x̄′) ⇐⇒ {x1, . . . , xk} = {x′1, . . . , x′k},
there exists a 0-definable in L function f : Skx → Sw such that E is a
fibration of f .

(ST+) T is stable and types over algebraically closed sets are stationary (elimina-
tion of strong types).

Convention: if a statement starts with any combination of the above properties,
it means that we assume the properties given in this particular combination. For
example, the following remark assumes property (FS):

Remark 2.1. (FS) The condition (FS+) is equivalent to:

• on each sort there is at least one 0-definable element, and
• there is a sort with at least two 0-definable elements.

Proof. Similarly as in the proof of Lemma 8.4.7 from [49], but, here, we allow many
sorted structures. �

Remark 2.2. Let us discuss what one can do to meet the above requirements
if starting from arbitrary stable L0-theory T0. As we would like to work under
assumptions of quantifier elimination and elimination of imaginaries, we pass to the
language L := (Leq

0 )m and L-theory T := (T eq
0 )m (we add imaginary sorts and then
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do the Morleysation). This new theory T is stable, has quantifier elimination and
elimination of imaginaries. On top of that, every 0-definable equivalence relation
E on Cn is the fibration of the canonical projection πE : Cn → Cn /E which is
build-in in the language (Leq

0 )m, thus a 0-definable function. Strong types in any
stable theory are stationary, and b |̂

A
A for any b and A. Therefore T enjoys all

the properties: (QE), (FS), (FS+) and (ST+).

2.2. Notion of PAC structure and auxiliary facts. In this subsection, we
recall several definitions and useful facts from [21] and [22]. We also provide a few
new notions closely related to the old definitions. The reader may also consult [41]
and [43] for more on PAC structures in general model theoretic framework. Also [1]
provides a nice of exposition of the notion of a PAC structure and related topics. A
well-written survey on different variants of the notion of elimination of imaginaries
and related concepts from the Galois theory is [10].

Definition 2.3. (Let T be stable.) A substructure F of C is pseudo-algebraically
closed (PAC ) if every stationary type over F (in the sense of the L(F )-theory of
C) is finitely satisfiable in F .

The above definition appears in [21] (see also Definition 5.29 in [1]). In subsection
3.1 of [21], there is a discussion on possible choices of the definition of a PAC
substructure and a comparison of Definition 2.3 to definitions of PAC structures
given in [26] and in [41]. In short, Definition 2.3 coincides with the definition of a
PAC substructure in the strongly minimal context of [26] and relaxes the saturation
assumption from the definition of a PAC substructure from [41]. Note that every
PAC substructure is automatically definably closed. Thus PAC substructures for
T = ACF coincide with perfect pseudo-algebraically closed fields (as defined in
e.g. [18]).

Definition 2.4. Let F = dcl(F ) ⊆ K ⊆ C.

(1) We say that F is K-strongly PAC if each type p(x) ∈ S(F ), which has a
unique non-forking extension over K, is finitely satisfiable in F .

(2) We say that F is algebraically K-strongly PAC if each algebraic type p(x) ∈
S(F ), which has a unique non-forking extension overK, is finitely satisfiable
(thus realized) in F .

Note that being K-strongly PAC for F ⊆ K implies being algebraically K-
strongly PAC for F . Moreover, being K-strongly PAC for F implies being a PAC
substructure for F .

Remark 2.5. It should help to understand the relative notions of (algebraically)
K-strongly PAC by considering the ultimate cases of K = F and K |= T . It is
quite easy to see the following.

(1) A structure F is F -strongly PAC if and only if F |= T .
(2) (T is stable) A structure F is K-strongly PAC for K |= T if and only if F

is PAC.
(3) A structure F is algebraically F -strongly PAC if and only if F = acl(F ).
(4) A structure F is algebraically K-strongly PAC for K |= T if and only if

F = dcl(F ).

Definition 2.6. (1) Let F ⊆ K be small subsets of C. We say that F ⊆ K is
primary if

dcl(K) ∩ acl(F ) = dcl(F ).
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(2) Let F ⊆ K be small subsets of C. We say that F ⊆ K is regular if F ⊆ K
is primary and F = dcl(F ).

(3) Let F be a small definably closed substructure of C. We say that F is
regularly closed if for every small substructure F ′ of C, which is a regular
extension of F , it follows F �1 F

′ (i.e. F is existentially closed in F ′).

The above notion of a primary extension was previously (e.g. [21], [22]) called
“regular”. It corresponds to regular extensions in T =ACF provided the smaller
field is perfect (equivalently, definably closed). Here, we decided to follow closer
the terminology from the theory of fields and distinguish between “primary” and
“regular” extensions. We plan to refine even more the notion of the model-theoretic
“regular” extension after studying a possible notion of the model-theoretic separable
extension in the future.

Now, we will sharpen facts from earlier articles which lead to the main results
in this manuscript. The majority of [21] was written under the assumption of (full)
elimination of imaginaries, elimination of quantifiers and stability. This is fine if we
are interested in an abstract approach to the subject. However, as we are interested
in applications of our results to particular theories, which do not enjoy elimination
of imaginaries (see Section 4), we need to relax this assumption. Moreover, the
assumption on stability was not crucial in several useful facts from [21], making
them applicable in a broader context. Therefore we take the opportunity to provide
the following results with minimal assumptions. The proofs of the following facts
remain almost the same as the proofs of their counterparts from [21]. Recall that
“regular” extensions from [21] are now “primary” extensions.

All the proper subsets, substructures and tuples of the monster model C are,
if not stated otherwise, small in comparison to the saturation of C. Here, upper
case letters, like E or A, are denoting proper subsets, and lower case letters, like a,
stand for tuples.

Fact 2.7 (Fact 3.32 in [21]). (FS) If E ⊆ A is primary then for every a ∈ acl(E)
there exists a unique extension of tp(a/E) over A.

Fact 2.8 (Fact 3.33 in [21]). (FS) If E ⊆ A is primary , f1, f2 ∈ Aut(C) and
f1|E = f2|E, then there exists h ∈ Aut(C) such that h|A = f1|A and h|acl(E) =
f2|acl(E).

Fact 2.9 (Corollary 3.34 in [21]). (FS) If E ⊆ A is primary and A0 ⊆ A then
tp(A0/E) has a unique extension over acl(E).

The following definition is taken from page 21. of [1].

Definition 2.10. We say that a type p(x) ∈ S(A) is acl-stationary if it has a
unique extension over acl(A).

Lemma 2.11. (FS) Consider p ∈ S(E). The following are equivalent:

(1) p is acl-stationary,
(2) E ⊆ dcl(Ea) is primary for some a |= p,
(3) E ⊆ dcl(Ea) is primary for every a |= p.

Proof. The proof is similar to the proof of Lemma 3.35 in [21], but a few steps
require sharper reasoning, thus we include it here.

The equivalence (2) ⇐⇒ (3) follows by definition. First, we argue for (1)⇒(2):
assume (1) and suppose that (2) does not hold. As p is acl-stationary, there exists
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a unique extension p|acl(E) of p over E. Let a |= p|acl(E), then a |= p and E ⊆ Ea
is not primary. Take

c ∈ dcl(Ea) ∩ acl(E) \ dcl(E).

Since c 6∈ dcl(E), there exists f ∈ Aut(C /E) such that f(c) 6= c. We see that
f(a) |= p|acl(E), so there exists h ∈ Aut(C / acl(E)) such that h(a) = f(a). Note

that h−1f ∈ Aut(C /Ea) and, because c ∈ dcl(Ea) and c ∈ acl(E),

c = h−1f(c) = f(c) 6= c,

so a contradiction. The implication (2)⇒(1) is contained in Fact 2.9. �

Fact 2.12 (Lemma 3.35 in [21]). (FS, ST+) Consider p ∈ S(E). The following
are equivalent:

(1) p is stationary,
(2) p is acl-stationary,
(3) E ⊆ Ea is primary for some a |= p,
(4) E ⊆ Ea is primary for every a |= p.

Fact 2.13 (Corollary 3.36 in [21]). (QE, FS, ST+) For any small substructure N
there exists a non-algebraic stationary type over N in any finitely many variables.

Fact 2.14 (Corollary 3.38 in [21]). (FS, ST+) Assume that A,B ⊆ C, E ⊆ A is
primary, f1, f2 ∈ Aut(C) and f1|E = f2|E. If A |̂

E
B and f1(A) |̂

f1(E)
f2(B)

then there exists h ∈ Aut(C) such that h|A = f1|A and h|B = f2|B.

Fact 2.15 (Lemma 3.39 in [21]). (FS, ST+) If E ⊆ A∩B, E ⊆ A is primary and
B |̂

E
A then B ⊆ BA is primary.

Fact 2.16 (Corollary 3.40 in [21]). (FS, ST+) If E ⊆ A and E ⊆ B are primary,
and B |̂

E
A then also E ⊆ BA is primary.

Remark 2.17. (1) (FS, ST+) F ⊆ K is primary if and only if for every tuple
b from dcl(K), the type tp(b/F ) is stationary (Fact 2.12).

(2) (QE, FS, ST+) Using the item (1), a substructure F is PAC if and only if
it is definably closed and regularly closed.

Definition 2.18. (1) Assume that F ⊆ K are substructures of C. We say
that K is normal over F (or we say that F ⊆ K is a normal extension) if
σ(K) ⊆ K for every σ ∈ Aut(C /K). (Note that if K is small and F ⊆ K
is normal, then it must be K ⊆ acl(F ).)

(2) Assume that F ⊆ K ⊆ acl(F ) are small substructures of C such that
F = dcl(F ), K = dcl(K) and K is normal over F . In this situation we say
that F ⊆ K is a Galois extension.

Definition 2.19. Assume that F ⊆ K is an extension of substructures in C. We
define the Galois group of the extension F ⊆ K as

G(K/F ) := Aut(K/F ) = {f |K | f ∈ Aut(C /F ), f(K) = K}.

Moreover B is any subset of C, then the extension dcl(B) ⊆ acl(B) is Galois and we
speak about the absolute Galois group of B which is the following profinite group:

G(B) := G(acl(B)/ dcl(B)).
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Note that the above definition of G(K/F ) is often expressed in terms of the
automorphisms of K as an L-structure on its own, but as we will work under the
assumption of the quantifier elimination, both variants of the definition coincide
and it just the matter of taste.

The following useful fact is standard and its proof is straightforward.

Lemma 2.20. Assume that F ⊆ K is a Galois extension and p(x) ∈ S(F ). Then
the Galois group G(K/F ) acts transitively on the set of extensions of p over K.

The following definition and example are taken from [15] and [41]. A more
detailed discussion of examples of PAC structures and the property from Definition
2.21 will be given in Section 4.

Definition 2.21. (Let T be stable.) We say that PAC is a first order property in
T (= Th(C)) if there exists a set Σ of L-sentences such that for any P ⊆ C

P |= Σ ⇐⇒ P is PAC.

Example 2.22. (1) PAC is a first order property in ACFp for p = 0 and for p
being a prime number, see Proposition 11.3.2 in [18].

(2) The axioms given in Proposition 5.6 from [41] show that PAC is a first order
property (in the above sense) in DCF0 which is formulated in a different
way than the condition “PAC is a first order property” appearing in [41].

3. Finite group actions

The main goal of this section is to describe existentially closed substructures
with a finite group action in first order terms. The general strategy is as follows.
First, characterize their structure by the structure of the invariants of the group
action, then answer which properties of the invariants correspond to the existential
closedeness of the whole substructure with group action. Finally, express these
properties as first order statements.

3.1. Basic facts. We introduce the language LG being the language L extended
by a unary function symbol σg for each g ∈ G, i.e. LG = L ∪ {σg | g ∈ G}. Often,
“σg” will denote also the interpretation of the symbol σg in a given LG-structure.
Moreover, we set σ̄ := (σg)g∈G. We consider the collection of sentences in the
language LG, say AG, which precisely expresses the following

• σg is an automorphism of the L-structure for every g ∈ G,
• σg ◦ σh = σg·h for all g, h ∈ G.

In other words, if K is an L-structure, and there exists an LG-structure (K, σ̄)
living on K, we have that (K, σ̄) |= AG if and only if for each g ∈ G we have that
σg ∈ Aut(K) and the map

G 3 g 7→ σg ∈ Aut(K)

is a group homomorphism.

Definition 3.1. (1) Let (K, σ̄) be an LG-structure. We say that σ̄ is a G-
action on K if (K, σ̄) |= AG.

(2) If T ′ is an L-theory, then by (T ′)G we denote the set of consequences of
T ′ ∪ AG.
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(3) If (K, σ̄) |= (T∀)G, where K is of cardinality smaller than the saturation of
C, then we call it a substructure with G-action. Note that, without loss of
generality, K ⊆ C, thus the name “substructure”.

(4) We say that a substructure with G-action (K, σ̄) is existentially closed if
(K, σ̄) is an existentially closed model of the theory (T∀)G.

(5) If the existentially closed models of the theory (T∀)G form an elementary
class, we denote the theory of this class by G− T .

Definition 3.2. Assume that (K, σ̄) is a substructure with G-action. Then we
denote

KG := {a ∈ K | (∀g ∈ G) (σg(a) = a) }
and call it the substructure of invariants.

Remark 3.3. (QE) Let (K, σ̄) be a substructure with G-action. If (K, σ̄) is ex-
istentially closed then K = dcl(K). If K = dcl(K) then KG = dcl(KG). For the
standard proofs, the reader may consult Remark 3.24 and Remark 3.26 in [21].

Lemma 3.4. (QE) Let (K, σ̄) be a substructure with G-action and let p(x) ∈ S(K)
be a G-invariant type (i.e. σg(p) = p for every g ∈ G). Then for any a |= p the set
dcl(K, a) might be equipped with a G-action extending (K, σ̄) and acting trivially
on a.

Proof. Let a |= p and let k̄ be some enumeration of K. Then k̄a ≡ σg(k̄)a for
any g ∈ G. This implies that, for each g ∈ G, there exists σ′g ∈ Aut(C) such that
σ′g|K = σg and σ′g(a) = a. Naturally, (K, (σg)g∈G) ⊆ (dcl(K, a), (σ′g)g∈G). �

Fact 3.5 (Lemma 2.10 from [22]). (QE, FS) If G is finite and (K, σ̄) is a substruc-
ture with G-action such that dcl(K) = K and the action of G on K is faithful (i.e.
if g 6= h then there is a ∈ K such that σg(a) 6= σh(a)), then

• K ⊆ acl(KG),
• KG ⊆ K is a Galois extension,
• G(K/KG) ∼= G.

Proof. By Lemma 2.10 from [22], Fact 3.7 and Proposition 4.7 from [10]. Being
more precise, we obtain the two first bullets as in Lemma 3.23 from [21] and then
we repeat the proof of Lemma 2.10(4) from [21] using a variant of the finite Galois
correspondence stated in Proposition 4.7 in [10]. �

Lemma 3.6. (QE, FS, ST+) If (K, σ̄) is an existentially closed substructure with
G-action, then the group action if faithful.

Proof. Consider any enumeration of G, say (gi)i∈I where (I,<) is a linear order.
Let p(x) ∈ S(KG) be a non-algebraic stationary type (existing by Fact 2.13), and
let b̄ = (bi)i∈I |= p⊗I |KG be such that K |̂

KG b̄. Let F denote dcl(KG, b̄), and let

F ′ denote dcl(K, b̄).
As the type p⊗I |K is also stationary, the extension KG ⊆ F is regular. For each

g ∈ G, let θg be a bijection of I such that g · gi = gθg(i) holds for each i ∈ I. As the

set {bi | i ∈ I} is KG-indiscernible, for each g ∈ G there exists τg ∈ Aut(C /KG)
such that τg(bi) = bθg(i).

Now, Corollary 3.38 from [21], allows us to simultaneously extend each σg (over
K) and τg (over F ) to an automorphism σ′g ∈ Aut(C), for each g ∈ G. We
have that (K, (σg)g∈G) ⊆ (F ′, (σ′g)g∈G), thus (K, (σg)g∈G) is existentially closed
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in (F ′, (σ′g)g∈G). If g 6= h, then σ′g(b) 6= σ′h(b) for some b ∈ F ′, and so there will be
a ∈ K such that σg(a) 6= σh(a). �

Lemma 3.7. (QE) If G is finitely generated and (K, σ̄) is an existentially closed
substructure with G-action, then KG is K-strongly PAC.

Proof. Consider p(x) ∈ S(KG) which has a unique non-forking extension over K,
say p̃(x) ∈ S(K). As p(x) is invariant under action of automorphisms σg|KG ,
where g ∈ G, we have that p̃(x) is invariant under action of automorphisms σg,
where g ∈ G (otherwise, we would get distinct non-forking extensions of p over K).

Let b |= p̃, by Lemma 3.4 there exists an extension of substructures with G-
action,

(K, (σg)g∈G) ⊆ (K ′, (σ′g)g∈G)

such that b ∈ (K ′)G. By our assumption, we have that (K, (σg)g∈G) is existentially
closed in (K ′, (σ′g)g∈G).

Now, let ϕ(a, x) ∈ p(x). As T has quantifier elimination, we may assume that
ϕ(y, x) is quantifier free, what we do. Of course |= ϕ(a, b) and so

(K ′, (σ′g)g∈G) |= (∃x) (ϕ(a, x) ∧
∧
g∈X

σg(x) = x),

where X denotes the finite set of generators of G. Hence

(K, (σg)g∈G) |= (∃x) (ϕ(a, x) ∧
∧
g∈X

σg(x) = x)

and for some b0 ∈ KG we have that |= ϕ(a, b0). �

Therefore we see that an existentially closed substructure with G-action has a
quite tame substructure of invariants. The next subsection is dedicated to the
converse of this implication, so we would like to show that “if the substructure
of invariants is tame then the whole substructure with G-action is existentially
closed”.

Remark 3.8. In Proposition 3.56 from [21], it was shown that if (K, σ̄) is an ex-
istentially closed substructure with G-action, then K is PAC. However, the afore-
mentioned proposition assumes quantifier elimination, elimination of imaginaries
and stability (but G there can be arbitrary).

3.2. Invariants of existentially closed actions.

Lemma 3.9. (QE, FS) Assume that G is finite, (K, (σg)g∈G) ⊆ (K ′, (σ′g)g∈G) is
an extension of substructures with G-action, the group action of G on K is faithful
and dcl(K) = K. If KG is algebraically K-strongly PAC, then KG ⊆ (K ′)G is
regular.

Proof. If dcl(K) = K then also dcl(KG) = KG. Moreover, KG ⊆ (K ′)G is regular
if and only if KG ⊆ dcl((K ′)G) is regular and there is a unique way of extending G-
action from K ′ over dcl(K ′). Therefore, without loss of generality, we assume that
K ′ = dcl(K ′) and so dcl((K ′)G) = (K ′)G. We need to show that (K ′)G∩acl(KG) =
KG.

Let a ∈ (K ′)G ∩ acl(KG) \ KG. Because for every g ∈ G, we have that
σg
(

tp(a/K)
)

= tp
(
σg(a)/K

)
and a ∈ (K ′)G, we see that tp(a/K) is a G-invariant
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type. By Fact 3.5 and Lemma 2.20, we see that tp(a/K) is a unique extension of
tp(a/KG) over K.

As a ∈ acl(KG) and acl(KG) |̂
KG K (e.g. Remark 5.3 in [9]), tp(a/KG) ⊆

tp(a/K) is a non-forking extension. Because KG is algebraically K-strongly PAC,
tp(a/KG) is finitely satisfiable in KG. As a ∈ acl(KG), this means that it must be
a ∈ KG. �

Definition 3.10. Assume that C ⊆ K ⊆ C and that G is finite. We call the pair
(C,K) G-closed if C ⊆ K is a Galois extension, G(K/C) ∼= G and there is no
K ′ ⊆ acl(K), K ( K ′, such that the action of G(K/C) extends over K ′.

Lemma 3.11. (QE, FS) Assume that G is finite, (K, σ̄) is a substructure with
G-action such that action of G on K is faithful and dcl(K) = K. Then (KG,K)
is G-closed if and only if KG is algebraically K-strongly PAC.

Proof. By Fact 3.5, K ⊆ acl(KG), KG ⊆ K is Galois and G(K/KG) ∼= G.
Assume that (KG,K) is G-closed and let p(x) ∈ S(KG) be algebraic with a

unique extension p̃(x) over K (being a non-forking extension follows naturally from
acl(KG) |̂

KG K, e.g. Remark 5.3 in [9]). We have that p̃ is G-invariant and so, by

Lemma 3.4, if b |= p̃ then there exists an extension of substructures with a G-action,

(K, (σg)g∈G) ⊆ (K ′, (σ′g)g∈G)

such that K ′ = dcl(K, b) and b ∈ (K ′)G. As K ′ = dcl(K, b) ⊆ acl(KG) = acl(K),
it must be that K = K ′, so b ∈ K and finally b ∈ KG.

Now, we show the right-to-left implication. Assume that K ′ ⊆ acl(K) and there
is an extension of substructures with G-action:

(K, (σg)g∈G) ⊆ (K ′, (σ′g)g∈G).

By Lemma 3.9, KG ⊆ (K ′)G is regular. As (K ′)G ⊆ K ′ ⊆ acl(K) = acl(KG) it
must be (K ′)G ⊆ dcl(KG) = KG, so KG = (K ′)G. By the proof of Proposition 4.1
from [15] and the Galois correspondence for finite extensions (e.g. Theorem 12 in
[32]), there exists a finite tuple b from K such that K = dcl(KG, b). Moreover, by
the same proof of Proposition 4.1 from [15], we also have that K ′ = dcl((K ′)G, b).
Because KG = (K ′)G, we have that K = dcl(KG, b) = dcl((K ′)G, b) = K ′. �

The following remark is not important for the main results of this paper and its
purpose is mainly to generalize Theorem 3.25 from [24]. As we use in its proof the
Elementary Equivalence for PAC structures ([15]), we need to add more assump-
tions.

Remark 3.12. Let T be stable with elimination of quantifiers and elimination of
imaginaries. Assume that PAC is a first order property. Suppose that (C,K) ⊆
(C ′,K ′) is an extension of G-closed substructures such that C and C ′ are PAC.
Then C � C ′.

Proof. It is enough to reproduce the proof of Theorem 3.25 from [24], but in this
more general context. By the proof of Theorem 3.22 from [24] or more similar
Lemma 3.54 from [21], we have that C and C ′ are bounded PAC structures. Thus,
by Corollary 3.11 from [15], it is enough to show that the restriction map r :
G(C ′) → G(C) is an isomorphism. After combining Lemma 3.11 and Lemma 3.9,
we obtain that C ⊆ C ′ is regular, so r is an epimorphism.
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By Theorem 4.4 from [22], G(C) is projective, which means that there exists
embedding h as in the following diagram

G(C)
= //

h ##

G(C)

G(C ′)

r

OO

But then G0 := h[G(C)] 6 G(C ′) is a closed subgroup such that r|G0 : G0 → G(C)
is an isomorphism.

Because K ⊆ acl(C) and K ′ ⊆ acl(C ′), the restriction maps G(C) → G and
G(C ′)→ G lead to the following commutative diagram

G(C ′)

""

r // G(C)

||
G

and so G0N = G(C ′) for N := ker
(
G(C ′) → G

)
. By Lemma 3.31 from [21], this

implies that G0 = G(C ′) as expected. �

Theorem 3.13. (QE, FS, ST+) Assume that G is finite, say |G| = l. Let (K, σ̄)
be a substructure with G-action such that G acts faithfully on K and dcl(K) = K.
The following are equivalent:

(1) (K, σ̄) is existentially closed,
(2) KG is K-strongly PAC,
(3) KG is PAC and algebraically K-strongly PAC,
(4) KG is PAC and (KG,K) is G-closed.

Proof. By Lemma 3.11, (3) ⇐⇒ (4). (1)⇒(2) follows by Lemma 3.7. The im-
plication (2)⇒(3) follows by definitions. To get the theorem, we will show that
(3)⇒(1).

Assume that dcl(K) = K, the group action is faithful and that KG is PAC and
algebraically K-strongly PAC. Using Fact 3.5, we obtain the following

• K ⊆ acl(KG),
• KG ⊆ K is a Galois extension,
• G(K/KG) ∼= G.

The proof of Proposition 4.1 from [15] gives us existence of a finite tuple b̄ =
(b0, . . . , bl−1) from K such that K = dcl(KG, b̄).

Consider (K, (σg)g∈G) ⊆ (K ′, (σ′g)g∈G). Without loss of generality, we may
assume that (K ′, (σ′g)g∈G) is existentially closed, in particular dcl(K ′) = K ′. We
have that the group action ofG onK ′ is faithful, thus by Fact 3.5, we have thatK ′ ⊆
acl((K ′)G), (K ′)G ⊆ K ′ is Galois, and G(K ′/(K ′)G) ∼= G. Lemma 3.9 gives us that
KG ⊆ (K ′)G is regular, which means that the restriction map G(K ′/(K ′)G) →
G(K/KG) is onto, and so it is an isomorphism of finite groups. The last thing
implies

K ′ = dcl((K ′)G, b̄).

Let B̄ be some enumeration of {σg(bi) | g ∈ G, i < l}. We have that K ′ =
dcl((K ′)G, b̄) = dcl((K ′)G, B̄). Assume that

(K ′, (σ′g)g∈G) |= φ(a)
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for some tuple a from K ′ and some quantifier-free formula φ(x) ∈ LG(K). First,
we may present φ(a) as ϕ0(σ′g0(a), . . . , σ′gl−1

(a)), where ϕ0(x0, . . . , xl−1) ∈ L(K) is

quantifier-free. Second, sinceK = dcl(KG, B̄), we may present ϕ0(σ′g0(a), . . . , σ′gl−1
(a))

as ϕ(σ′g0(a), . . . , σ′gl−1
(a), B̄), where ϕ(x0, . . . , xl−1, ȳ) ∈ L(KG) is quantifier-free.

Let σ′g0 = idL, so σ′g0(a) = a. Because a ∈ K ′ = dcl((K ′)G, B̄), there exists a

finite tuple c̄ ⊆ (K ′)G and a quantifier-free formula ψ0(z̄, ȳ, x) ∈ L such that

• ψ0(c̄, B̄,C) = {a},
• |= (∀z̄, ȳ, x, x′)

(
ψ0(z̄, ȳ, x) ∧ ψ0(z̄, ȳ, x′) −→ x = x′

)
.

Because σgi permutes B̄, there exists a permutation si such that σgi(B̄) = si(B̄).
We define ψi(z̄, ȳ, x) as ψ0(z̄, si(ȳ), x). Note that ψi(c̄, B̄,C) = {σ′gi(a)} and

(K ′, (σ′g)g∈G) |=

(∀z̄, x, x′)
( ∧
g∈G

σg(z̄) = z̄ ∧ ψ0(z̄, B̄, x) ∧ ψi(z̄, B̄, x′) → σgi(x) = x′
)
.

To see the last line, let d̄ ⊆ (K ′)G, m,m′ ∈ K ′ be such that

|= ψ0(d̄, B̄,m) ∧ ψi(d̄, B̄,m′).

We do know that ψ0(d̄, B̄,C) = {m}, which after applying an extension σ̃gi ∈
Aut(C) of σ′gi changes it into ψ0(d̄, si(B̄),C) = {σ′gi(m)}. We have that

m′ ∈ ψi(d̄, B̄,C) = {σ′gi(m)}.

Since the whole formula is universal and has only parameters from K, it follows
that

(K, (σg)g∈G) |= (∀z̄, x, x′)
( ∧
g∈G

σg(z̄) = z̄ ∧ψ0(z̄, B̄, x)∧ψi(z̄, B̄, x′) → σgi(x) = x′
)
,

where i < l.
Consider p(z̄) := tp(c̄/KG). Because KG ⊆ (K ′)G is regular (thus also primary)

and c̄ ⊆ (K ′)G, Fact 2.12 implies that p(z̄) is stationary. As KG is PAC, the type
p(z̄) is finitely satisfiable in KG. The tuple B̄ ⊆ K is algebraic over KG, hence there
exists a quantifier-free θ(ȳ) ∈ L(KG) such that θ(ȳ) ` tp(B̄/KG). The following
formula

(∃ ȳ, x0, . . . , xl−1)
(∧
i<l

ψi(z̄, ȳ, xi) ∧ ϕ(x0, . . . , xl−1, ȳ) ∧ θ(ȳ)
)

belongs to p(z̄), thus there exists d̄ ⊆ KG such that

|= (∃ ȳ, x0, . . . , xl−1)
( ∧
l<e

ψi(d̄, ȳ, xi) ∧ ϕ(x0, . . . , xl−1, ȳ) ∧ θ(ȳ)
)
.

It means that there are B̄′ ⊆ C and a′0, . . . , a
′
l−1 ∈ C such that

|=
∧
i<l

ψi(d̄, B̄
′, a′i) ∧ ϕ(a′0, . . . , a

′
l−1, B̄

′) ∧ θ(B̄′).

Since |= θ(B̄) ∧ θ(B̄′), there exists f ∈ Aut(C /KG) such that f(B̄′) = B̄. By
applying f , we obtain

|=
∧
i<l

ψi(d̄, B̄, f(a′i)) ∧ ϕ(f(a′0), . . . , f(a′l−1), B̄).
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We have that ψ0(d̄, B̄,C) = {f(a′0)}. Since, for each i < l, the subset ψi(d̄, B̄,C) =
ψ0(d̄, si(B̄),C) is an automorphic image of ψ0(d̄, B̄,C), it must be that |ψi(d̄, B̄,C)| =
1 and so f(a′i) ∈ dcl(KG, B̄) = K for each i < l. Moreover, we have that
σgi(f(a′0)) = f(a′i) for each i < l. Therefore |= ϕ(f(a′0), . . . , f(a′l−1), B̄) leads
to

(K, (σg)g∈G) |= ϕ
(
σg0(f(a′0)), . . . , σgl−1

(f(a′0)), B̄
)
,

as expected. �

Corollary 3.14. (QE, FS, ST+) Let G be finite and let (K, σ̄) be a substructure
with G-action. Then (K, σ̄) is existentially closed if and only if

(1) dcl(K) = K,
(2) the group action of G on K is faithful and,
(3) KG is K-strongly PAC.

Proof. If the conditions (1), (2) and (3) hold then (K, σ̄) is existentially closed by
Theorem 3.13.

If (K, σ̄) is existentially closed, then Remark 3.3 gives us that dcl(K) = K,
Lemma 3.6 gives that the group action is faithful, and the fact that KG is K-
strongly PAC follows from Lemma 3.7. �

In a very similar way, we conclude the following.

Corollary 3.15. (QE, FS, ST+) Let G be finite and let (K, σ̄) be a substructure
with G-action. Then (K, σ̄) is existentially closed if and only if

(1) dcl(K) = K,
(2) the group action of G on K is faithful and,
(3) KG is PAC and algebraically K-strongly PAC.

3.3. Existence of model companion.

Remark 3.16. Assume that A ⊆ C is a Galois extension (e.g.: if QE, FS, G is
finite and G acts faithfully on K = dcl(K), we can take A = KG and C = K). Let
p(x) ∈ S(A). The following are equivalent:

(1) There exists unique extension of p over C.
(2) There exists a G(C/A)-invariant extension of p over C.

Proof. If there is only one extension of p(x) over C it is automatically G(C/A)-
invariant. Assume that p(x) has a G(C/A)-invariant extension over C, say p1(x) ∈
S(C) and led p2(x) ∈ S(C) be also an extension of p(x). As p1|A = p2|A, there
exists f ∈ Aut(C /A) such that f(p1) = p2. Since A ⊆ C is Galois, we know that
f |C = σ for some σ ∈ G(C/A). Then, p2 = f(p1) = f |C(p1) = σ(p1) = p1. �

Definition 3.17. Let π(x) be a partial type over A. We say that π is A-irreducible
if there exists p(x) ∈ S(A) such that π ` p.

Remark 3.18. Let ϕ(x) ∈ L(A) be a consistent formula. Then, ϕ(x) is A-
irreducible if and only if {ϕ(x)} is A-irreducible, which is equivalent to saying
that there are no formulae ϕ1(x), ϕ2(x) ∈ L(A) such that ϕ(C) ∩ ϕ1(C) 6= ∅,
ϕ(C) ∩ ϕ2(C) 6= ∅ and ϕ(C) ∩ ϕ1(C) ∩ ϕ2(C) = ∅. We use this characterization in
the crucial Remark 3.20.

Lemma 3.19. (QE, FS) Assume that G is finite and G acts faithfully on K =
dcl(K). The following are equivalent.
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(1) KG is algebraically K-strongly PAC.
(2) Each algebraic type p(x) ∈ S(KG), which has a G-invariant extension over

K, is satisfiable in KG.
(3) Each G-invariant algebraic type p̃(x) ∈ S(K) is satisfiable in K.
(4) For each θ(x) ∈ L(KG), if 0 < |θ(C)| < ω and θ(C) is K-irreducible then

θ(KG) 6= ∅.
Proof. The proof is easy, so we only sketch it. By Remark 3.16, we immediately
obtain (1)⇐⇒ (2). For the (2)⇐⇒ (3), it is enough to observe that a G-invariant
algebraic type is isolated by a L(KG)-formula, so its restriction to KG is also
algebraic. We argue similarly on (3) ⇐⇒ (4): a G-invariant algebraic type over
K is isolated by an L(KG)-formula, which is consistent, algebraic (i.e. has finitely
many realizations) and K-irreducible. �

Remark 3.20. (QE, FS+) In this remark, we investigate in what way being a
K-irreducible formula may be expressed as a first order statement. Assume that
K = dcl(K) and consider a quantifier-free formula ϕ(y, x) ∈ L and a tuple a ∈
Ky. Moreover assume that 0 < |ϕ(a,C)| = n < ω. Recall that we can use the
technical condition (FS+), listed at the very beginning of the paper. Let Sx be
the sort related to the variable x and let E(x̄, x̄′) be a ∅-definable equivalence
relation given by a formula expressing that “{x1, . . . , xn−1} = {x′1, . . . , x′n−1}”,
where x̄ = (x1, . . . , xn−1) and x̄′ = (x′1, . . . , x

′
n−1) are tuples of variables from Sx.

As we assume, E is the fibration of a 0-definable function f : (Sx)n−1 → Sw. Note
that the elements of the image of f correspond to nonempty subsets of Sx(C) of
the size at most n− 1.

One more thing before coming to the point. Assume that the element d belongs
to the sort Sw(C), then the formula

(∃x1, . . . , xn−1 ∈ Sx)
(
f(x1, . . . , xn−1) = d ∧

n−1∧
i=1

ϕ(a, xi)
)

is modulo T equivalent to a quantifier free formula, say ξϕ,n(a, d).
Now, ϕ(a, x) is K-irreducible if and only if there is no proper subset ∅ 6= X (

ϕ(a,C), such that X is K-definable. In other words, for each proper subset ∅ 6=
X ( ϕ(a,C), we have that the code pXq does not belong to dcl(K) = K. We can
express this last sentence, in the structure K, as follows

K |= ¬(∃w ∈ Sw) (ξϕ,n(a,w)).

We will use the above in the proof of Theorem 3.23.

Now, we want to show that being a definably closed (in L) subset of C is a first
order statement.

Remark 3.21. (QE) Consider any θ(y, x) ∈ L. The formula

θ(y, x) ∧ (∀x1, x2)
(
θ(y, x1) ∧ θ(y, x2) → x1 = x2

)
is equivalent modulo T to some quantifier-free ψθ(y, x) ∈ L. Moreover, also the
formula (∃x) (ψθ(y, x)) is equivalent modulo T to a quantifier-free formula ψ0

θ(y) ∈
L. Consider

Σ := {ψ0
θ(y) → (∃x) (ψθ(y, x)

)
| θ(y, x) ∈ L}.

Lemma 3.22. (QE, in the notation of Remark 3.21) For a substructure B ⊆ C,
B |= Σ if and only if dcl(B) = B.
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Proof. Assume that B |= Σ and let b ∈ dcl(B). There exists a formula θ(y, x) ∈ L
and a ∈ B such that θ(a,C) = {b}. Then |= ψθ(a, b) and |= ψ0

θ(a). As ψ0
θ is

quantifier-free, also B |= ψ0
θ(a), thus B |= (∃x) (ψθ(a, x)). It means that there

exists b′ ∈ B such that |= ψθ(a, b
′). We see that b′ = b and so b ∈ B.

Now, let B = dcl(B). Assume that B |= ψ0
θ(a) for some a ∈ B and θ(y, x) ∈ L.

We have |= ψ0
θ(a), so there exists some b ∈ C such that |= ψθ(a, b). This implies that

b ∈ dcl(a) ⊆ dcl(B) = B. Therefore there exists b ∈ B such that B |= ψθ(a, b). �

The following theorem is an answer towards Question 2.9 (also Question 5.1)
and Conjecture 5.2 from [21].

Theorem 3.23. (QE, FS+, ST+) Let G be finite. The model companion of the
theory of substructures with G-action exists provided PAC is a first order property.

Proof. By Corollary 3.15 and Lemma 3.19, we need to write down as first order
statements the following conditions:

(0) (K, (σg)g∈G) is a substructure with G-action,
(1) dcl(K) = K,
(2) the group action of G on K is faithful,
(3) KG is PAC,
(4) for each θ(x) ∈ L(KG), if 0 < |θ(C)| < ω and θ(C) is K-irreducible then

θ(KG) 6= ∅.
We are working in the language LG. The condition (0) is naturally a first order
statement, similarly the condition (2). Lemma 3.22 shows that also the condition
(1) is a first order statement. By the assumptions, condition (3) is a first order
statement. To finish the proof of the theorem, we need to show that the condition
(4) is also a first order statement.

There is no harm in assuming that the formula θ(x) is ϕ(a, x) for some tuple a
from KG and some quantifier-free formula ϕ(y, x) ∈ L. The condition (4) will be
expressed as an axiom scheme running over all quantifier-free formulae ϕ(y, x) ∈ L
and all 0 < n < ω.

Fix a quantifier-free formula ϕ(y, x) ∈ L and a natural number n > 0. There ex-
ists a quantifier-free L-formula ψϕ(y) equivalent modulo T to the formula (∃=n x) (ϕ(y, x)).
We are in situation of Remark 3.20, so we can involve the formula ξϕ,n(y, w). Our
axiom scheme may be written as:

(∀ y)
( ∧
g∈G

σg(y) = y ∧ ψϕ(y) ∧ ¬(∃w ∈ (Sx)n−1/E) (ξϕ,n(y, w))

→ (∃x)
( ∧
g∈G

σg(x) = x ∧ ϕ(y, x)
))
.

�

Question 3.24. (QE, FS+, ST+) Can we obtain a converse of Theorem 3.23?
More precisely, does the following equivalence hold: the model companion of the
theory of substructures with G-action exists for every finite group G if and only if
PAC is a first order property?

Remark 3.25. After writing the proofs of Theorems 3.13 and 3.23, we have noticed
(but we have not checked all the details) that this result holds in a much greater
generality, that is: if in the definition of PAC we replace “stationary” with “acl-
stationary” (a unique extension over algebraic closure of the parameters), then the
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assumptions of stability, coding finite sets, and eliminating strong types may be
skipped in Theorem 3.23. However, in this case it is unclear how useful such a
result would be in terms of axiomatizing existentially closed finite group actions in
this case, since there is no guarantee that faithful actions of a finite groups exist at
all in general (consider for example the theory of linear orders) and the faithfulness
in the stable was guaranteed by Lemma 3.6.

4. PAC structures in particular theories

In this section, we discuss the PAC property in some specific cases as well as
some general methods for understanding PAC structures with respect to a given
theory. As we are going to consider the notions of a regular extension and of a PAC
structure in different theories, we plan to write “T -regular” and “T -PAC” instead
of “regular in T” and “PAC in T” respectively.

We will often refer to several particular stable theories as: the theory of compact
complex manifolds CCM (for background, the reader is referred to [35]) and the
theories of differentially closed fields of characteristic 0 denoted DCF0 (see e.g.
[29]) and its positive characteristic version DCFp (see e.g. [50] and [51]), and the
theories of separably closed fields of positive characteristic SCFp,e and SCFp,∞ (see
e.g. [33]).

4.1. General methods. In this subsection, we focus on two general contexts in
which the PAC property is well understood. However, in both these cases showing
that PAC is a first-order property requires some extra work.

4.1.1. Totally transcendental theories. In this part, we assume that the theory T
is ω-stable. As before, let us fix for convenience a monster model C of T and an
arbitrary small substructure K ⊂ C. It is well-known that stationary types in ω-
stable theories are determined by the formulas of Morley degree one belonging to
them. In particular, we have the following result, which actually coincides with
Hrushovski’s definition of the PAC property in the strongly minimal case (see [26,
Definition 1.2] and [21, Proposition 3.10]).

Proposition 4.1. If T is a ω-stable theory, then K is T -PAC if and only if for
any formula ϕ ∈ L(K) of multiplicity (Morley degree) one, we have that ϕ(K) 6= ∅.

We recall that “DMP” stands for “Definable Multiplicity Property” and it says
that for any formula φ(x; a) ∈ L(K), there is a formula θ(y) ∈ tp(a) such that
whenever C |= θ(a′) then we have:

RM (φ(x; a′)) = RM (φ(x; a)) , degM (φ(x; a′)) = degM (φ(x; a))

(see e.g. [27, Definition 1.1]). Some ω-stable theories have DMP and some do not
(see Remark 4.3 below). We get the following obvious conclusion, which was also
stated in [1] under the assumption of finiteness of the Morley rank.

Proposition 4.2. If T is ω-stable with quantifier elimination and has DMP, then
being T -PAC is first-order.

Proof. Since T has DMP, for each φ(x; y) ∈ L, there is θφ(y) such that for all

c ∈ C|y|, we have:

C |= θφ(c) if and only if degM (φ(x; c)) = 1.
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Therefore, it is easy to write down a first-order axiom scheme expressing the T -PAC
property. �

Remark 4.3. We comment here on several particular ω-stable theories.

(1) Proposition 4.2 applies to the case of T = ACFp, that is to the classical
notion of PAC.

(2) It is known that Morley degree is not definable in the theory DCF0 (see
[16, Question 1.2] and [17]). However, DCF0-PAC is still first-order as it
was shown in [41].

(3) It is open whether the theory of compact complex manifolds has DMP,
however another approach towards the PAC property works here, which
will be discussed in the next part. Partial results towards DMP for the
theory CCM were obtained in [45].

4.1.2. Noetherian theories. In this part, we assume that models of T are naturally
equipped with an extra topological structure. This assumptions is modelled on the
case of T = ACFp and the Zariski topology. Such issues were thoroughly discussed
in [53]. We diverge here a bit from the set-up of [53] to cover the case of the theory
DCF0 as well.

We start from a purely topological context. Assume that S is a Noetherian
topological space and let B be the Boolean algebra of constructible sets in S. In
this part, “irreducible” always refers to the topological irreducibility with respect
to a given Noetherian topology. The following properties are folklore and they can
be easily checked.

• If V is a non-empty closed irreducible subset of S, then

pV := {C ∈ B | intV (C ∩ V ) 6= ∅}

is an ultrafilter on B.
• The map V 7→ pV is a bijection between the set of closed irreducible subsets

of S and the set of ultrafilters on B.

We specify now our model-theoretic context.

Definition 4.4. By a Noetherian theory, we mean a pair (T,
∑

), where T is a
complete L-theory and

∑
consists of L-formulas of the form ϕ(x; y), where the

variables x, y vary, such that for any M |= T and any A ⊆M , we have the following.

• A subset V ⊆M |x| is said to be A-closed if and only if there is a ⊂ A and
ϕ(x; y) ∈

∑
such that V = ϕ(M ; a).

• The family of A-closed sets constitutes the family of closed sets of a Noe-
therian topology, which we call the A-topology.

• Constructible sets with respect to the A-topology coincide with A-definable
subsets (in Cartesian powers of M).

Remark 4.5. (1) It should automatically follow (possibly after adding some
light assumptions such as the equality being in

∑
) that models of our

Noetherian theories are topological structures in the sense of [4, Definition
5.1] and [53, Section 2].

(2) The referee has pointed out to us that a very similar notion of a Noether-
ian theory was recently introduced by Martin-Pizarro and Ziegler (see [30,
Definition 2.18]).
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Example 4.6. We discuss several examples and non-examples of the above situa-
tion.

(1) The theory of algebraically closed fields (of a given characteristic) is Noe-
therian by considering the Zariski topology.

(2) The theory of compact complex manifolds (CCM) is also Noetherian, where
the (Zariski) Noetherian topology is given by closed analytic subsets (see
[53, Section 3.4.2]).

(3) In the case of differential fields, we have the Kolchin topology.
• The theory DCF0 is Noetherian by [29, Theorem 2.4].
• More generally, the theory DCF0,m is Noetherian by [31, Theorem

3.1.7].
• The theory DCFp is not an example, since there is no quantifier elim-

ination down to Kolchin constructible sets (see [50, Section 3]).
(4) The theory SCFp,e with the λ-topology is not an example, since the λ-

topology is not Noetherian (see [33, Section 4.6]).

For a fixed A |= T∀ and n > 0, it is clear that the map V 7→ pV is a bijection
between the set of appropriate A-closed A-irreducible sets and the Stone space
Sn(A) of n-types over A. In particular, any Noetherian theory is ω-stable. We still
need to have a connection between the topology and forking, which is given by the
following.

Proposition 4.7. Assume that A ⊆M |= T and pV ∈ Sn(M). Then, the type pV
does not fork over A if and only if V is definable over acl(A).

Proof. Since pV does not fork over A if and only if it does not fork over acl(A), we
can and will assume that A = acl(A).
(⇒) Let V = Vb and assume that Vb is not definable over A. Let us define

V0 :=
⋂

tp(c/A)=tp(b/A)

Vc.

Since Vb is not definable over A, we get that V0 ( V . By Noetherianity, V is
definable and closed. Since V0 is A-invariant, we get that V0 is A-definable. In
particular, the formula “x ∈ V \V0” belongs to pV . Since the formula “x ∈ V \V0”
forks over A (see e.g. the characterization of forking from [40, Lemma 2.16(c)]),
the type pV forks over A.
(⇐) We assume that V is A-definable. It is enough to show that for any proper
M -closed W = Wb ⊂ V , we have that the formula “x ∈ V \W ’ does not fork over
A. If this formula forks over A, then by (the logical) compactness, there is a finite
set of A-conjugates b = b1, . . . , bn such that:

(V \Wb1) ∩ . . . ∩ (V \Wbn) = ∅.

But then V = Wb1 ∪ . . . ∪Wbn and each Wbi is a proper M -closed subset of V ,
which contradicts the M -irreducibility of V . �

We obtain the expected description of stationary types.

Corollary 4.8. Let A |= T∀, and pW ∈ Sn(A). Then, pW is stationary if and
only if W is absolutely irreducible, that is for any M |= T containing A as a
substructure, W is irreducible in the M -topology.
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Proof. Let W = W1∪. . .∪Wn be the decomposition of W into the M -irreducible M -
closed components. By uniqueness, each Wi is defined over acl(A). By Proposition
4.7, each type pWi does not fork over A. Since for each i, we have clA(Wi) = W , we
get that each pWi

extends pW . It is easy to see now that Wi’s correspond exactly
to non-forking extensions of pW , which concludes the proof. �

Similarly as in the case of Proposition 4.1, we get the following result.

Proposition 4.9. For any K |= T∀, we have that K is T -PAC if and only if for any
absolutely irreducible K-closed set V and any non-empty relatively K-open U ⊆ V ,
we have that U(K) 6= ∅.

Remark 4.10. (1) In the cases of T = ACFp and T = DCF0,m, we can just
consider the condition “V (K) 6= ∅” in Proposition 4.9, since these topologies
have basis of open sets being definably isomorphic to affine closed sets. It
looks like there is no similar simplification for the theory CCM, since (at
least in the category of complex manifolds) being isomorphic to a compact
complex manifold would imply being closed.

(2) Proposition 4.9 together with Item (1) above directly generalizes the clas-
sical case of T = ACFp.

(3) For T = DCF0,m the description from Proposition 4.9 (together with Item
(1) above) coincides with the definition taken in [46, Section 5.16] (see also
[25, Remark 4.7(1)]).

(4) For T = CCM, we believe that this notion has not been considered before.

Similarly as in the previous part, we get the following result.

Proposition 4.11. Assume that T is a Noetherian theory. If the topological irre-
ducibility is definable in T , then T -PAC is first-order.

We would like to single out one important case below.

Corollary 4.12. CCM-PAC is first-order.

Proof. By Proposition 4.11, it is enough to show that the topological irreducibility
is definable in the theory CCM, which was shown in [44]. �

Remark 4.13. We would like to mention that Rahim Moosa pointed out to us
that an argument for the definability of the topological irreducibility in the case
of compact complex spaces can be also found in an earlier work of Campana. The
reader is advised to consult §.3.B of Premiere Partie of [8].

For the terminology used in the next theorem, we advise the reader to recall
Definition 3.1(5).

Theorem 4.14. If G is finite, then the theory G-CCM, exists and it is super-
simple with geometric elimination of imaginaries, codes finite sets and has “semi”
quantifier elimination (in the same way as the theory ACFA).

Proof. The existence of G-CCM follows by Theorem 3.23 and Corollary 4.12. The
properties of G-CCM, listed in the statement, follow by Corollary 4.28, Theorem
4.36, Lemma 4.37 and Remark 4.13 from [21] after noticing that CCM is superstable
with elimination of quantifiers and elimination of imaginaries. �
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Remark 4.15. All the properties stated in Theorem 4.14 hold also in the case of
the theory CCMA ([5]). One difference between G-CCM, for finite G, and CCMA
are the values of the SU-rank. As ACFA is stably embedded in CCMA, there is
a sort in CCMA on which the SU-rank is not finite. On the other hand, one can
show that the SU-rank of G-CCM is finite (sort-by-sort).

Remark 4.16. We finish this part with some comments on the theories of differ-
ential fields.

(1) Let us recall here that for the theory DCF0,m the definability of Kolchin
topological irreducibility is equivalent to the (generalized) Ritt problem (see
[17]). However, the PAC property for DCF0,m is still first-order, which was
shown in [46].

(2) It may be a good moment to point out that the methods of this paper
cover that DCF0-PAC is first-order, but fail to generalize it to the case of
DCF0,m for m > 1. In [46], the general case is shown in the following way.
• First the authors of [46] show that “differential largeness” is a first-

order property (see [46, Proposition 4.7]).
• Then they show that DCF0,m-PAC is equivalent with the classical field

PAC together with the “differential largeness” (see [46, Section 5.16]).
The above scheme of a proof looks like a possible another general approach
(at least for the theories of fields with operators). We will discuss it further
at the end of this paper (see Remark 4.45).

4.1.3. Equational theories. In [42], the notion of an equational theory is introduced.
Briefly, a theory T is equational if any formula is equivalent (modulo T ) to a Boolean
combination of instances of equations, where a formula ϕ(x, y) is an equation (mod-
ulo T ) if the family of definable sets given by finite intersections of its instances (in
any model of T ) has the DCC (Descending Chain Condition).

The set-up of equation theories generalizes, in some sense, the set-up of Noe-
therian theories from Section 4.1.2, since Noetherian theories are equational “in a
strong sense” that is the DCC condition holds not only in the case of instances of
one formula but for all closed sets with respect to the given Noetherian topology.
Not all the equational theories are Noetherian, since any Noetherian theory is ω-
stable and, for example, Th(Z,+) is equational and not ω-stable (see Remark at
the end of Section 2 in [42]).

There is a natural notion of irreducibility in the case of equational theories and it
is possible that for an equation theory T , if this notion of irreducibility is definable,
then T -PAC is first order.

4.2. Fields of positive characteristic. In this subsection, we focus on three
stable theories of fields of positive characteristic: SCFp,e (e finite), SCFp,∞, and
DCFp. There are several possible languages to consider for these fields of positive
characteristic and we will actually use three different options here.

4.2.1. Separably closed fields of finite imperfection degree. We consider the theory
SCFp,e (e finite) in the language Lλ,b, where b stands for an e-tuple of constant
symbols corresponding to a fixed p-basis and we also have symbols for unary λ-
functions defined with respect to b (see [12, Section 1.8]). Then, the theory SCFp,e
has quantifier elimination and elimination of imaginaries (cf. [12, Section 1.8]).
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Let us fix as usual a monster model C |= SCFp,e. We make the following identi-
fication b = bC. A subfield K ⊆ C is an Lλ,b-substructure of C if and only if b ⊂ K
and b is a p-basis of K (in such a case the field extension K ⊆ C is separable and
even étale). Each Lλ,b-substructure is definably closed and for Lλ,b-substructures,
the model-theoretic algebraic closure coincides with the field theoretic separable clo-
sure (see [14, Section 1.6]) and similarly with forking (see [14, Section 1.8]). Using
the above, we immediately get the following description of regular extensions.

Fact 4.17. Let K0 ⊆ K1 be an extension of Lλ,b-substructures of C. Then, the
extension K0 ⊆ K1 is SCFp,e-regular if and only if K0 ⊆ K1 is a regular extension
of pure fields.

We describe now PAC structures in the theory SCFp,e. This description appeared
in [1], but the proof is only sketched there.

Theorem 4.18. Let K be a Lλ,b-substructure of C. Then, K is SCFp,e-PAC if
and only if K is a PAC field.

Proof. In this proof, K is a SCFp,e-substructure of C.
(⇒) Let us assume that K is SCFp,e-PAC and let K ⊆ N be a regular field exten-
sion. Then, there is a field extension N ⊂ N ′ such that b is a p-basis of N ′ (we
recall that now b is a fixed p-basis of C). Therefore, we can assume that K ⊂ N ′

is an extension of Lλ,b-substructures of C. By Fact 4.17, K ⊆ N ′ is also a SCFp,e-
regular extension and K is Lλ,b-existentially closed in N ′. Therefore, K is also is
Lλ,b-existentially closed in N and K is existentially closed in N in the field sense,
hence K is a PAC field.

(⇐) Let us assume that K is a PAC field. Let b = (b1, . . . , be) be a p-basis of K,
which is also a p-basis of C. We will consider the unary λ-functions

λ1,e, . . . , λpe,e : C→ C

(see [12, Section 1.8]) with respect to this p-basis (they preserve K). We also
take a ∈ Cn such that p(x) := tp(a/K) is stationary and a quantifier-free Lλ,b(K)-
formula φ(x) ∈ p(x). We need to show that φ has a realization in K. We inductively
unravel all the terms appearing in the formula φ. For example, if we have:

φ(x) : λi,n
(
λj,m(x) + x2

)
+ x = 0,

then we set:

ā :=
(
a, λj,m(a), λi,n

(
λj,m(a) + a2

))
.

Then, for any

(b1, b2, b3) ∈ locusK(ā),

we obtain that:

b2 = λj,m(b1), b3 = λi,n
(
λj,m(b1) + b22

)
.

As usual when we deal with fields, we can assume that there are only equalities
in the formula φ (by replacing negations of equalities with equalities in “higher
dimensions”). Using the above procedure, we obtain a tuple ā = (a1, . . . , at) such
that a = a1 and if we define:

V := locusK(ā),

then for any b̄ ∈ V (C), we get that C |= φ(b̄). Since the type p is stationary, V is
absolutely irreducible. Therefore, we obtain b̄ ∈ V (K) such that C |= φ(b̄). �
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There are three possible languages such that the theory SCFp,e (e finite) con-
sidered in each of these languages has quantifier elimination: Lλ,b, Lλ, and the
Hasse-Schmidt language (see [52]). One could wonder whether such a choice of the
language affects the corresponding notion of a PAC-substructure. We address these
issues in general below.

Remark 4.19. Assume that T is a stable L-theory and T ′ is an L′-theory being
an extension by definitions of T . Consider a model M of T and its counterpart M ′

as an L′-structure (i.e. M equipped with the natural L′-structure), and a subset
K of M .

(1) If K is a PAC substructure in the sense of M , then K is an L′-substructure
of M ′ which is also a PAC substructure in the sense of M ′.

(2) If K is a PAC substructure in the sense of M ′, then K is a PAC substructure
in the sense of M .

For a finite group G, by Theorem 3.23 we get existence of the theory G−SCFp,e,
which is the model companion of the theory of actions of G on characteristic p fields
of inseparability degree e. This theory was already analyzed in [23] using different
methods.

4.2.2. Separably closed fields of infinite imperfection degree. . We consider the the-
ory SCFp,∞ in the language Lλ, where the λ-functions are multi-variable (see [14,
Section 1.4]), this definition is recalled below (we follow [12, Section 1.8] here). For

each e > 0, we fix an enumeration (mi,e)16i6pe of the monomials Xi1
1 . . . Xie

e where
0 6 i1, . . . , ie 6 p − 1, and define the functions λi,e : Ke ×K → K by considering
the following three cases. Let b1, . . . , be, c ∈ K and 1 6 i 6 pn.
Case 1 b1, . . . , be are p-dependent.
We set λi,e(b1, . . . , be; c) = 0.
Case 2 b1, . . . , be, c are p-independent.
We set λi,e(b1, . . . , be; c) = 0.
Case 3 b1, . . . , be are p-independent and b1, . . . , be, c are p-dependent.
We use the following defining formula:

c =

pe∑
j=1

λj,e(b1, . . . , be; c)
pmj,e(b1, . . . , be).

Then, the theory SCFp,∞ has quantifier elimination in the language Lλ, but it
does not have elimination of imaginaries (see [12, Section 1.8]). As for any theory
of fields, SCFp,∞ eliminates finite imaginaries. Each Lλ-substructure is definably
closed and for Lλ-substructures, the model-theoretic algebraic closure coincides
with the field theoretic separable closure (see [14, Section 1.6]) and similarly with
forking (see [14, Section 1.8]).

As in the previous part, we get the following description.

Fact 4.20. Let M |= SCFp,∞ and K0 ⊆ K1 be an extension of Lλ-substructures
of M . Then, K0 ⊆ K1 is SCFp,∞-regular if and only if K0 ⊆ K1 is a regular
extension of pure fields.

We also need the following result of Tamagawa, which we phrase in geometric
terms.
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Theorem 4.21 (Tamagawa, Proposition 11.4.1 in [18]). Let V be an absolutely
irreducible affine variety over a PAC field K of characteristic p > 0. Suppose
that f1, . . . , fm ∈ K[V ] are p-independent in K(V ) and m is not greater than the
imperfection degree of K. Then, there is a ∈ V (K) such that f1(a), . . . , fm(a) are
p-independent in K.

We need a slight enhancement of Tamagawa’s Theorem, which we state and show
below.

Corollary 4.22. Let V be an absolutely irreducible affine variety over a PAC field
K of characteristic p > 0 and infinite imperfection degree. Suppose that we have a
finite matrix (fi,j)i,j of elements of K(V ) whose rows are p-independent in K(V ).
Then, there is a ∈ V (K) such that each fi,j is defined at a and the rows of the
matrix (fi,j(a))i,j are p-independent in K.

Proof. We will often use the fact that the p-independence satisfies the Steinitz
Exchange Principle and yields a pregeometry (see [48, Remark C.1.1.3]), hence we

have the corresponding dimension notions, which we denote by dimK
p and dimK(V )

p .
We deal first with the case when fi,j ∈ K[V ]. For simplicity, let us assume that

there are only three rows in our matrix and that each row has the same length m.
Let us denote these rows by (fi)i, (gi)i, (hi)i. After permutation, there are k, l 6 m
such that:

(1) f1, . . . , fm, g1, . . . , gk, h1, . . . , hl are p-independent in K(V );

(2) f1, g1, . . . , fm, gm ∈ clK(V )
p (f1, . . . , fm, g1, . . . , gk);

(3) f1, g1, h1, . . . , fm, gm, hm ∈ clK(V )
p (f1, . . . , fm, g1, . . . , gk, h1, . . . , hl).

In particular, we obtain that:

(i) dimK(V )
p (f1, g1, h1, . . . , fm, gm, hm) = m+ k + l.

By Theorem 4.21 and Item (1) above, there is a ∈ V (K) such that

(ii) f1(a), . . . , fm(a), g1(a), . . . , gk(a), h1(a), . . . , hl(a) are p-independent in K.

Using (ii) and Item (3) above, we obtain that:

(iii) dimK
p (f1(a), g1(a), h1(a), . . . , fm(a), gm(a), hm(a)) = m+ k + l.

We will show that this choice of a works. We focus on the most complicated
case, that is we will prove that h1(a), . . . , hm(a) are p-independent in K (the
p-independence of g1(a), . . . , gm(a) is indeed easier by Item (2) above). Since
h1, . . . , hm are p-independent in K(V ), there are (after a permutation) v 6 m,w 6
k such that f1, . . . , fv, g1, . . . , gw, h1, . . . , hm are p-independent in K(V ) and

(iv) f1, g1, h1, . . . , fm, gm, hm ∈ clK(V )
p (f1, . . . , fv, g1, . . . , gw, h1, . . . , hm).

Using (i), (iii) and (iv), we obtain that:

v + w +m = dimK
p (f1(a), g1(a), h1(a), . . . , fm(a), gm(a), hm(a)).

If h1(a), . . . , hm(a) were p-dependent in K, we would obtain by (iv) that:

dimK
p (f1(a), g1(a), h1(a), . . . , fm(a), gm(a), hm(a)) < v + w +m,

a contradiction.
We consider now that case when fi,j ∈ K(V ). Let U ⊆ V be an open K-

subvariety which is K-isomorphic to an affine variety such that is contained in the
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intersection of all dom(fi,j). Then U is absolutely irreducible as well, and it is
enough to apply the previously shown case of fi,j ∈ K[V ]. �

Theorem 4.23. K be an Lλ-substructure of a monster model C |= SCF∞,e. Then,
K is SCFp,∞-PAC if and only if K is PAC and [K : Kp] =∞.

Proof. For the left-to-right implication, we take K which is SCFp,∞-PAC. By [14,
Section 1.7], the properties of the generic 1-type in the theory SCFp,∞ imply
that [K : Kp] = ∞. As in the previous part, we notice that extensions of Lλ-
substructures of models of SCFp,∞ are SCFp,∞-regular if and only if they are a
regular extension of pure fields. Now, the proof is identical to the proof of the
corresponding implication in Theorem 4.18.

For the right-to-left implication, assume that K is PAC and [K : Kp] = ∞.
Let us take a ∈ Cm such that p(x) := tp(b/K) is stationary and a quantifier-free
Lλ-formula φ(x) ∈ p(x) with parameters from K. We need to show that φ has a
realization in K.
Claim
There is b̄ = (b, b′) ∈ CN such that V := locusK(b̄) is absolutely irreducible, and
there is a finite matrix of rational functions (fi,j ∈ K(V ))i,j such that for each i,
fi,1, . . . , fi,mi

are p-independent in K(V ) and such that for all c̄ = (c, c′) ∈ V (C),
we have:
IF for each i, fi,1(c̄), . . . , fi,mi(c̄) are p-independent in C, THEN C |= φ(c).

Proof of Claim. By [12, Lemma 2.9], the formula φ(x) is equivalent in C to an
L(K)-formula of the form:

∃y α(x, y) ∧ β(x, y),

where α is quantifier-free in the language of fields and β is a finite conjunction of
universal formulas expressing that some subtuples of xy are p-independent. Since
φ(x) ∈ tp(b/K), there is b′ ⊂ C such that:

C |= α(b, b′) ∧ β(b, b′).

This is our choice of b′ as in the statement of this claim and the matrix of rational
functions is given just by the coordinate functions expressing that β is a “conjunc-
tion of universal formulas expressing that some subtuples of xy are p-independent”
(each row in this matrix corresponds to one formula from the finite conjunction
giving the formula β). �

By Corollary 4.22, there is ā = (a, a′) ∈ V (K) such that for each i, fi,1(ā), . . . , fi,mi(ā)
are p-independent in K. Since the field extension K ⊆ C is separable, each
fi,1(ā), . . . , fi,mi

(ā) is also p-independent in C. By Claim, we get that C |= φ(a),
which we needed to show. �

Theorem 4.24. If G is finite, then the model companion of the theory
(
(SCFp,∞)∀

)
G

,
denoted by G− SCFp,∞, exists.

Proof. We want to use Theorem 3.23, so we need that SCFp,∞ has QE, FS+, ST+
and that PAC is a first order property in SCFp,∞. After Theorem 4.23, the only
thing which needs to be checked is ST+, which might be a well-known fact, but as
we could not find a proof of it, we noticed that one can adapt the proof of Lemma
4.16 from [6]. �
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4.2.3. Differentially closed fields. We consider the theory DCFp in the language
Lλ0,D, where λ0 is the inverse of Frobenius on p-th powers and identically 0 else-
where. Then, DCFp has quantifier elimination [50, Theorem 11], but it does not
have elimination of imaginaries [34, Remark 4.3]. It was shown in [47] that the
theory DCFp is stable.

Remark 4.25. The above “λ0-notation” was introduced by the second author in
[28] and perhaps it was not a very good choice, since:

• it does not follow the original “r-notation” of Wood (see [51, Section 2]);
• λ∅ is defined as the identity function in [33, Section 4].

However, for the empty tuple b̄ the most natural interpretation of λ0(=λ0,0) is the
one given above. Since this λ0-notation was already used in several other papers,
we stick with it in this paper as well.

We think that the result below is a folklore, but we could not find a reference,
so we give a proof instead.

Fact 4.26. Let (C, D) |= DCFp be a monster model and K be an Lλ0,D-substructure
of (C, D). Then we have the following.

(1) The model-theoretic algebraic closure of K coincides with its field theoretic
separable closure.

(2) K = dcl(K).

Proof. Since K is an Lλ0,D-substructure of (C, D) |= DCFp, the field extension
K ⊆ C is separable (see e.g. the beginning of the proof of [6, Proposition 4.10],
where this separability appears in a much more general context). Therefore, K
is a also a Lλ,D-substructure of (C, D), where Lλ,D is the language with function
symbols for all λ-functions.

For Item (1), we note that the separable closure of K is still a Lλ,D-substructure
of (C, D). By (a more general) [6, Lemma 4.14], we get our description of the
model-theoretic algebraic closure.

For Item (2), if a ∈ dcl(K), then by Item (1), we get that a is separably algebraic
over K. Since D on K extends uniquely to Ksep, by quantifier elimination of DCFp
in Lλ0,D (or Lλ,D), we get that the type tpDCFp(a/K) is isolated by fa: the minimal
polynomial of a over K. Since a ∈ dcl(K), we get that deg(fa) = 1, so a ∈ K,
which we needed to show. �

Again, we need the following description of regular extensions with respect to
the theory we consider. It follows immediately from Fact 4.26.

Fact 4.27. Let (C, D) |= DCFp be a monster model and (K0, D) ⊆ (K1, D) be an
extension of Lλ0,D-substructures of C. Then, K0 ⊆ K1 is DCFp-regular if and only
if K0 ⊆ K1 is a regular extension of pure fields.

We specify now an Lλ0,D-theory of some differential fields in positive character-
istic. We need the following working definition first.

Definition 4.28. Let K be a field of characteristic p > 0. A tuple (V ; f1, . . . , fn) is
admissible, if V is a K-irreducible affine K-variety and f1, . . . , fn ∈ K(V ) \K(V )p.

We note the following obvious property.

Remark 4.29. Let K ⊆ M be a field extension. For any f ∈ K(V ) and any
a ∈ V (M) generic of V over K, we have that f ∈ K(V )p if and only if f(a) ∈ K(a)p.
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Lemma 4.30. Assume that K is PAC of infinite imperfection degree (actually,
non-perfect would be enough). Then, the above notion of an admissible tuple is
first-order in parameters of this tuple.

Proof. Let us take f ∈ K(V ). By Corollary 4.22, we obtain that f ∈ K(V )p if and
only if f(V (K)) ⊆ Kp. Since the second condition is clearly first-order, the result
follows. �

The next question is not related to our results and we find it a bit amusing. The
answer may be simple, but we were unable to find it.

Question 4.31. Is the property “f ∈ K(V )p” first-order in parameters of f and
V for an algebraically closed K (that is: modulo the theory ACFp)?

To state our axioms for PAC-DCFp differential fields, we need to recall some
notions. We decided to work here with the case of differential fields for the clarity
of presentation, however, as we will see in Section 4.3, these results hold in a much
greater generality. Still, our references here come from this more general context,
since we do not know any source where they are stated exactly for the differential
case.

Let (K,D) be a differential field (for a while the characteristic of K does not
matter) and V be a K-variety. Then, τD(V ) denotes the prolongation of V with
respect to D, which in this case can be described as a torsor of the tangent bundle
of V (see [38, Definition 1.4] and [36, Definition 4.1]). We have a natural map (see
e.g. [6, Remark 2.13]):

DV : V (K) −→ τD(V )(K).

Let K ⊆ Ω be a field extension and a, a′ ⊂ Ω be such that:

V = locusK(a), W = locusK(a, a′).

For reader’s convenience, we recall now two results from [6] which we will use.

Lemma 4.32 (Lemma 3.5 in [6]). The following are equivalent.

(1) There is a derivation D′ : K[a] ⊆ K[a, a′] extending D such that D′(a) = a′.
(2) W ⊆ τD(V ).

Assume that V,W are K-varieties as in the statement of Lemma 4.32, that is:
W ⊆ τD(V ). Let ι : W → τD(V ) denote the inclusion morphism and

α := πVD ◦ ι : W → V.

Consider the following (not necessarily commutative!) diagram:

τD(W )

πW
D

ww

τD(α)

((
W

ι // τD(V ).

Using this diagram, we define the following K-subvariety of τD(W ):

E := Equalizer
(
τD(α), ι ◦ πWD

)
=
{
a ∈ τD(W ) | τD(α)(a) = ι ◦ πWD (a)

}
.

The following result is crucial.
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Theorem 4.33 (Proposition 3.6 in [6] specialized to the case of derivations). The
following are equivalent.

(1) The morphism πE : E →W is dominant.
(2) There is a derivation on K(a,D(a)) extending D : K[a]→ K[a,D(a)].

We state our axioms below.

Axioms for D − PAC
Let (K,D) be a differential field of characteristic p > 0 and for each pair of affine
K-varieties (V,W ) and each tuple f1, . . . , fn ∈ K(V ) such that

• W is absolutely irreducible,
• W ⊆ τD(V ),
• the projection π : W → V is dominant,
• E projects dominantly on W ,
• the tuple (W ; f1 ◦ π, . . . , fn ◦ π) is admissible;

there is x ∈ V (K) such that f1(x), . . . , fk(x) are not p-th powers in K and DV (x) ∈
W (K).

By standard arguments (see e.g. [24, Remark 2.7(1)]) and Lemma 4.30, the above
axiom scheme is first-order. An essential argument using Theorem 4.33 in the proof
of the result below follows the ideas of the proof of [41, Proposition 5.6].

Theorem 4.34. Let (K,D) be a differential field of characteristic p > 0 considered
as an Lλ0,D-structure. Then, (K,D) is DCFp-PAC if and only if (K,D) is D-PAC
(as defined above).

Proof. For the left-to-right implication, we assume that (K,D) is DCFp-PAC and
((V ; f1, . . . , fn),W ) is as in the assumptions of the axioms of D-PAC. By Lemma
4.32, there is a derivation D′ : K(V ) → K(W ) of the inclusion K(V ) ⊆ K(W )
(given by the dominant morphism π : W → V ). By Theorem 4.33, D′ extends to a
derivation D′′ : K(W ) → K(W ). Since W is absolutely irreducible, the extension
K ⊆ K(W ) is regular and (K,D) ⊆ (K(W ), D′′) is also a differential field extension.
By Fact 4.27, (K,D) ⊆ (K(W ), D′′) is a DCFp-regular extension. Since (K,D)
is DCFp-PAC, we get that (K,D) is existentially closed in (K(W ), D′′) (in the
language Lλ0,D).

Let us choose:

a = idK[V ] ∈ V (K(V )) ⊆ V (K(W )).

Then, as usual, we have D′′V (a) ∈ W (K(W )). Since a is a generic point of V over
K, by Remark 4.29, we get that f1(a), . . . , fk(a) are not p-th powers in K(W ).
Since (K,D) is existentially closed in (K(W ), D′′) (in the language Lλ0,D), there is
α ∈ V (K) such that f1(α), . . . , fk(α) are not p-th powers in K and DV (α) ∈W (K).

For the right-to-left implication, we assume that (K,D) is D-PAC. Let us take
a ∈ Mn such that p(x) := tp(a/K) is stationary and a quantifier-free Lλ0,D(K)-
formula φ(x) ∈ p(x). We need to show that φ has a realization in K. As usual,
we can assume that φ does not contain negations of equalities. We will “correct”
now the formula φ(x) (at the cost of adding extra variables, some fixed terms, and
a new tuple of elements of M including a) into a new formula ϕ(x̄) ∈ LD over K
such that x̄ = (x1, . . . , xl) and x1 = x.
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We illustrate this “correction” using an example first. Assume that the formula
φ(x) has the following form:

D [λ0 (D (λ0(x)) +D(x))] + x = 0.

We consider two cases, where each of them has two subcases. For the new variables,
we will use y, z rather than x2, x3.
Case I: λ0(a) = 0.
Subcase I.1: λ0(D(a)) = 0 (so: a = 0).
The “correction” is ϕ(x) : x = 0 and there are no extra variables and no fixed terms.
Subcase I.2: λ0(D(a)) 6= 0.
The “correction” is

ϕ(x, y) : yp = D(x) ∧D(y) + x = 0,

the fixed term is t1(x̄) = x, and ā = (a,D(a)1/p).
Case II: λ0(a) 6= 0 (so: D(a) = 0).
Subcase II.1: λ0 (D (λ0(a))) = 0.
It cannot happen, since then a = 0 and λ0(a) 6= 0.
Subcase II.2: λ0 (D (λ0(a))) 6= 0.
The “correction” is

ϕ(x, y, z) : yp = x ∧ zp = D(y) +D(x) ∧D(z) + x = 0,

there are no fixed terms, and

ā =

(
a, a1/p,

(
D
(
a1/p

))1/p)
.

The general procedure can be explained using induction on the complexity of Lλ0,D-
terms over K. We obtain a quantifier-free LD formula ϕ(x̄) over K, LD-terms
t1(x̄), . . . , tk(x̄) over K such that:

(∗) if (K,D) |= ϕ(ᾱ) and t1(ᾱ) /∈ Kp, . . . , tk(ᾱ) /∈ Kp, then K |= φ(α),

and ā such that (M,D) |= ϕ(ā) and t1(ā) /∈Mp, . . . , tk(ā) /∈Mp.
Let us take now a quantifier-free L formula ψ(x̃) over K such that:

ϕ(x̄) : ψ (x̄, D(x̄), . . . , Dm(x̄))

for some m ∈ N. Let us define:

ã := (ā, D(ā), . . . , Dm(ā)) , V := locusK (ã) , W := locusK (ã, D(ã)) .

Let π : W → V denote the dominant projection on the “ã-coordinates”. There are
rational function symbols f1(x̃), . . . , fk(x̃) over K such that for each i, we have:

ti(x̄) = fi (x̄, D(x̄), . . . , Dm(x̄)) .

Therefore, we obtain that for each i:

fi (ã) = ti (ā) /∈Mp ⊇ K (ã, D(ã))
p

= K(W )p,

so (W ; f1 ◦ π, . . . , fn ◦ π) is an admissible tuple.
Let us take α̃ ∈ V (K) such that f1(α̃), . . . , fk(α̃) are not p-th powers in K and

DV (x) ∈W (K). By the construction we get that:

α̃ = (ᾱ,D(ᾱ), . . . , Dm(ᾱ)) .

Therefore, we obtain (K,D) |= ϕ(ᾱ) and t1(ᾱ), . . . , tk(ᾱ) are not p-th powers in K.
By (∗) above, we obtain that K |= φ(α). �
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Remark 4.35. It was shown in [19] that the “equalizer condition” on the dominant
map E → W can be replaced with the easier condition of separability of the map
W → V and then we still get geometric axioms of DCFp (it also applies to the case
of derivations of the Frobenius map). However, we do not know whether such a
replacement would also work for the PAC-axioms, since we will not have Theorem
4.33 after such a replacement.

Theorem 4.36. If G is finite, then the model companion of
(
(DCFp)∀

)
G

, denoted
by G−DCFp, exists.

Proof. Once again, we would like to use Theorem 3.23. We have that DCFp satisfies
FS+ and it will be shown in a greater generality (see again Section 4.3) that types
over algebraically closed sets are stationary (so ST+ follows). Theorem 4.34 assures
us that the PAC property is first order in DCFp. �

We would like to include here the following general result which will be immedi-
ately useful.

Remark 4.37. Let T be a L-theory with quantifier elimination and G be an
arbitrary group.

(1) If the theory G−T exists, then the theory G− (T eq)m exists as well, where
the superscript “m” denotes the Morleyization.

(2) If G is finite, T is stable, and the theory G − T exists, then the theory
G− (T eq)m is simple.

Proof. The proof of Item (1) is straightforward and we leave it to the reader. Item
(2) follows from [21, Cor 4.28]. �

Using Remark 4.37, we obtain the following.

Corollary 4.38. Let G be a finite group and p be a prime number.

(1) The theory G − SCFp,∞ is strictly simple, that is simple, not stable, and
not supersimple.

(2) The theory G−DCFp is strictly simple as well.

4.3. Fields with operators. In this subsection, we briefly explain how to gener-
alize Theorem 4.34 beyond the case of differential fields. We recall below some of
the set-up from [6].

Let k be a field and B be a finite local k-algebra of dimension e. Assume that
we have a k-algebra map πB : B → k. Let {b0, . . . , be−1} be a fixed k-basis of B
such that b0 = 1 and πB(bi) = 0 for i > 0. For convenience, we also set d := e− 1.

Definition 4.39. Assume that R and T are k-algebras and let ∂ = (∂0, . . . , ∂d)
where ∂0, . . . , ∂d : R→ T are k-algebra homomorphisms.

(1) If R = T and ∂0 = id, then we say that ∂ is a B-operator on R if the
corresponding map

R 3 r 7→ ∂0(r)⊗ b0 + . . .+ ∂d(r)⊗ bd ∈ R⊗k B

is a k-algebra homomorphism. We will also denote the map above by the
same symbol ∂.

(2) More generally, if the corresponding map

R 3 r 7→ ∂0(r)⊗ b0 + . . .+ ∂d(r)⊗ bd ∈ T ⊗k B
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is a k-algebra homomorphism, then we say that ∂ is a B-operator from R
to T . Note that if ∂ is a B-operator from R to T , then ∂0 : R → T is a
k-algebra homomorphism.

Assume that (K, ∂) is a field with a B-operator and V is an affine K-variety.
The notion of a prolongation τ∂(V ) was defined in this generality (see [37]) Under
the additional assumption of FrB(ker(πB)) = 0 (see [6, Remark 3.3]), we get the
versions of Lemma 4.32 and Theorem 4.33 (actually, the references from Section
4.2.3 are coming exactly from the B-operator context). We get the corresponding
Axioms for ∂-PAC (with the identical formulation) and a generalization of Theorem
4.34. The proof of this generalization is conceptually the same, but would be more
cumbersome to write comparing to the proof of Theorem 4.34. Therefore we decided
to include the general case of B-operators as this comment only.

Remark 4.40. The argument above works in the even more general case of B-
operators (replacing B-operators from Definition 4.39) as considered in [20]. The
main example of a B-operator which is not a B-operator is a derivation of the
Frobenius map.

Remark 4.41. Using Theorem 3.23, we obtain that for a finite group G, the theory
of G-actions on fields with B-operators (and also on fields with B-operators) has
a model companion. It may be shown more directly and without going through
λ-functions. The axiomatization is as follows.

Axioms for G-B-DCF
The structure (K, ∂, σ) is a G-B-field such that for each pair (V,W ) of KG-varieties,
IF

• the action of G on K is faithful,
• V and W are K-irreducible,
• W ⊆ τ∂(V ),
• W projects generically on V ,
• E projects generically on W ;

THEN there is x ∈ V (KG) such that ∂V (x) ∈W (KG).

4.4. Other examples and questions. We discuss now some other examples and
ask some questions. In [41], an example of a stable theory T is given such that the
class of T -PAC structures is not elementary. However, the theory T in this example
does not have quantifier elimination, so from our perspective it is not a good theory
to test whether the PAC property is first-order.

More precisely, in [41, Example 5.1] the theory of an equivalence relation with
exactly one finite class of n elements for each n > 0 appears. This theory is
(implicitly) considered in the natural language with one unary relation symbol.
Then, this theory is not even model complete, since finite classes in a model may
become infinite in its extension. Similarly, one can see that this theory is not
inductive. Therefore, to have any hopes for quantifier elimination, one needs to
add to the language the unary predicates (Rn)n>0 naming all finite equivalence
classes (see also [41, Example 5.2], where each element of each finite equivalence
class is named). Using Robinson’s Test, it is not difficult to check that with such a
choice of the language this theory becomes model complete and also substructure
complete, so it has quantifier elimination. Then, taking algebraic closure is the
same as adding “missing points” in all named finite classes. Therefore, if M ⊆M ′
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and M ′ is a subset of a model, then acl(M) ∩M ′ = M if and only if for all n,
we have Rn(M) = Rn(M ′). Thus, M is PAC if and only if M = dcl(M) and M
is infinite, so PAC is a first-order property in this case (note that definably closed
substructures are such ones that each finite class does not have “co-size one”).

As a conclusion, we do not know any stable theory T with quantifier elimination
such that the class of T -PAC structures is not elementary. We formulate the relevant
question below.

Question 4.42. Assume that T is stable and has quantifier elimination. Is the
class of T -PAC structures elementary?

Positive answer to the question above implies (using Theorem 3.23) that for a
finite group G and for T as above eliminating strong types and coding finite sets,
the theory of actions of G on models of T∀ has a model companion.

Remark 4.43. This is related to a general conjecture of the first author, see [21,
Conjecture 5.2]:
“Assume that T0 is theory with a model companion and G is a finite group. Does
the theory of G-actions on models of T0 have a model companion?”
This conjecture was meanwhile refuted in [7, Remark 3.9(2)], where T0 is the theory
of difference fields. In this example, the model companion of T0 (the theory ACFA)
is neither stable nor it has quantifier elimination.

To pursue the answer for the above question one can start with somehow stronger
assumption:

Question 4.44. Assume that T has nfcp (no finite cover property) and has quan-
tifier elimination. Is the class of T -PAC structures elementary?

The above assumption on not having the finite cover property is related to the
PAC property a little bit in Remark 3.6 in [41], but the main point here is that
it was shown in general that a stronger variant of the notion of nfcp (i.e. T does
not admit obstructions) implies the model companion of the theory of models of T
with a group action of Z exists ([3]).

Let T be a stable theory with quantifier elimination. If we replace a finite group
G with the cyclic infinite group Z, then the model theory of actions of Z on models
of T (we do not have distinguish between T∀ and T in this case) has been thoroughly
studied (see e.g. [13] and [11]). An analogue of our Question 3.24 was asked in
before Lemma 4.2 in [41], that is it is asked there whether the existence of the
theory TA (which is called Z− T in this paper) implies that T -PAC is first order.
The main result of this paper, Theorem 3.23, gives the opposite implication in the
case of finite groups. Such an implication is not true in the case of the actions of
Z (see [41, Example 5.2]).

Remark 4.45. To keep this paper reasonably sized, we have not checked all the
known stable theories. However, there is one theory which we would not mind to
analyze but the methods of this paper do not suffice to do that. This is the theory
DCFp,m for m > 1, that is the theory of differentially closed fields of characteristic
p > 0 with m commuting derivations, see [39] where the theory of differentially
closed fields with m commuting derivations is considered in arbitrary characteristic
(it is called m-DCF in [39]). Similarly as in the case of DCF0,m for m > 1, we
can not repeat our argument from the proof of Theorem 4.34, since we do not have
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a version of Theorem 4.33 in the case of several commuting derivations. It looks
natural here to apply the approach of [46] described briefly in Remark 4.16(3) that
is:

• develop the appropriate notion of largeness for differential fields of positive
characteristic;
• show that the above notion is first-order;
• show that DCFp,m-PAC is the same as the largeness above together with

the PAC in the sense of fields.

We plan to pick it up in a further research.
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