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Peterzil’s question

Question (Kobi Peterzil, Norwich Conference 2005)

Let M be a strongly minimal structure definable in an o-minimal
structure. Assume M is not locally modular. Is an algebraically
closed field interpretable in M ?
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Definability and Interpretability

Let M = (M, fi ,Rj) and N = (N, . . . ) be structures.

Definition

M is definable in N if M, fi ’s and Rj ’s are definable in N.

M is inter-definable with N if M is definable in N and N is
definable in M.

We get interpretable or bi-interpretable, if we replace
“definable” with “definable as the quotient by a definable
equivalence relation”.

If M is definable in N and M = N, then M is a reduct of N

or N is an expansion of M.
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Strongly minimal structures

Definition

A structure M is strongly minimal if any b-definable set Xb ⊆ M is
either finite or cofinite uniformly in b.

Example

(C,+, ·) is strongly minimal (as any algebraically closed field).
(C,+, ·) is definable in (R,+, ·) which is o-minimal.

If (K ,+, ·) is a field, then the vector space (K ,+, ·λ)λ∈K is
strongly minimal and it is a reduct of (K ,+, ·).
A set with no structure is strongly minimal.
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Locally modular structures

Definition

For us a locally-modular structure is a strongly minimal structure
which is inter-definable with a vector space or has no structure.

Two equivalent “formal” definitions of local-modularity

No 2-dimensional family of plane curves through a point.

Any two algebraically closed sets are independent over their
intersection.
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Zilber’s conjecture

Zilber’s dichotomy conjecture

A strongly minimal set is either locally-modular or interprets a field.

Theorem (Hrushovski)

There is a strongly minimal set which is not locally-modular
and does not interpret even a group.

There is a strongly minimal group which is not locally
modular and does not interpret a field.
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Positive results

Zilber’s conjecture holds in:

Zariski Geometries (Hrushovski-Zilber).

Differentially closed fields (Hrushovski-Sokolovic).

Separably closed fields (Hrushovski).

Algebraically closed fields with a generic automorphism
(Chatzidakis-Hrushovski-Peterzil).

Applications

Zilber’s Dichotomy for the structures above yields diophantine
consequences – Mordell-Lang, Manin-Mumford.
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Zilber’s conjecture and Peterzil’s Question

Informal Zilber’s conjecture

Zilber’s Dichotomy holds in structures with “geometric flavor”.

Informal statement

O-minimal structures and their reducts have geometric flavor.

Reformulation of Peterzil’s question

Does Zilber’s Dichotomy hold in reducts of o-minimal structures?
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Reducts of an o-minimal field

Let R be an o-minimal expansion of (R,+, ·).

An accessible version of Peterzil’s question

Let M be a strongly minimal expansion of (C,+). Assume M is
definable in R. Does M satisfy Zilber’s Dichotomy?

This version reduces to:

A reformulation

Assume X ⊂ C2 is definable in R and CX := (C,+,X ) is strongly
minimal and not locally modular. Does CX interpret a field?

We give the positive answer when X is the graph of a function.
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Our theorem

Theorem (Hasson, K.)

Assume f : C→ C is definable in R and Cf := (C,+, f ) is
strongly minimal and not locally-modular. Then, there is
A ∈ GL2(R) such that CAfA−1 is bi-interpretable with (C,+, ·).

Although our assumptions are much stronger than Kobi’s, the
conclusions are also stronger, since:

We identify a definable field – complex field twisted by A.

There is nothing more than the field structure on Cf .

AfA−1 is rational on a cofinite set.
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The idea of the proof

1 Using topological arguments show that f extends to a
continuous ramified covering of the Riemann sphere.

2 Prove that for some special a ∈ C

det f ′(a) = 0 ⇒ f ′(a) = 0

(a weak version of Cauchy-Riemann).

3 Using the theory of Lie groups, find an open U ⊆ C such that
f |U is holomorphic.

4 Using the Chain Rule and the Argument Principle for f |U , find
a field configuration in Cf .
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A question of Kobi Peterzil
Proof of our theorem

Other cases

Topology
Differential Geometry
Lie groups
Analytic Geometry and Algebraic Geometry

Frontier of a strongly minimal set is finite

The first step (based on a paper of Peterzil-Starchenko) is:

Fact

Let X ⊂ C2 be Cf -definable and strongly minimal.
Then cl(X ) \ X, called the frontier of X , is finite.

A few words about the proof.

Peterzil-Starchenko look how complex lines intersect with X . We
do not have enough lines, so we use the sets

lba = graph(f (x + a) + b).

The main problem is to show that enough of these lba meet X
transversally, and in particular that enough of the curves lba are
smooth at all the intersection points with X .
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Without loss f : S2 → S2 is continuous and open

Let S2 = C ∪ {∞} denote the Riemann sphere.
Using finiteness of the frontier (mostly with graph(f )), we show
that f has all the topological properties of rational functions:

Fact

f is continuous outside a finite set F .

Resetting, if needed, the values of f on F (to possibly
∞ ∈ S2), we can assume that f : C→ S2 is continuous.

f is open.

f is proper, i.e. continuously extends to f : S2 → S2.
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f : S2 → S2 is a ramified covering

We use the following topological theorem:

Theorem

If f is as in our case, then f is a ramified covering, i.e. it is locally
topologically equivalent to z 7→ zk on |z | 6 1 (k may vary).

Definition

1 If k > 1 at c , then c is a branch point of degree k (of f ), e.g.
0 is a branch point of degree 3 of g(z) = z3 + 7.

2 If c is a branch point, then f (c) is a ramification point.
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Jacobian matrix of f

Remark

Since f is definable in an o-minimal structure, f is C 1 on a
codimension 1 subset of C.

Definition

Let f ′(c) denote the Jacobian matrix of f at c (if defined). It is an
element of M2(R).

Our aim

We want to show that f is holomorphic on some open U ⊆ C, i.e.
for each c ∈ U, f ′(c) ∈ M1(C) (M1(C) ↪→ M2(R)).
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Jacobian matrix vanishes at branch points

Fact (weak Cauchy-Riemann)

If f is C 1 at c and c is a branch point, then f ′(c) = 0.

Idea of the proof.

Let f = (f1, f2). We can assume f (c) = 0. It is enough to show
that for almost all directions α ∈ S1,

∂fi
∂α

(c) = 0, i = 1, 2.

Since f is equivalent locally at c to z 7→ zk and k > 1,
f −1([−1, 1]) \ {c} has 2k connected components Xj .
Since f2(Xj) = 0, it is enough (for f2) to take α 6= αj , where

αjR = Tc(Xj), j = 1, 2, . . . , 2k.
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There is a branch point

Fact

1 We can assume f is not 1-to-1.

2 There is a branch point of f .

Proof.

1 If f is 1-1 (e.g. when f (x) = 1/x), we replace f with
f (x + 1)− f (x).

2 Hurwitz formula (an Euler characteristic argument).
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Proof of our theorem
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There is a C 1 branch point

Fact

There is a Cf -definable g : S2 → S2 having a C 1 branch point.

Idea of the proof.

By the theory of local degrees (winding numbers), we can
control the way branch points move in families.

If all branch points of fa(x) := f (x + a)− f (x) are not smooth
for all a then for some a0 one of the branch points of fa0 has
lower degree. Now use induction.

We assume f already has a C 1 branch point.
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A question of Kobi Peterzil
Proof of our theorem

Other cases

Topology
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Multiplication of Jacobian matrices

Our aim again

We want to show that for some open U ⊆ C, we have:

f ′(U) ⊆ GL1(C).

So, f ′(U) is a subset of a 2-dim. Lie subgroup of GL2(R).

In particular, for any U1, . . . ,Un ⊆ U, we should have

dim(f ′(U1) · . . . · f ′(Un)) 6 2.

We show this assertion first.
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Proof of our theorem

Other cases
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Some control on dimension

Fact

There are U1, . . . ,Un ⊆ C open such that f is C 1 on each Ui and
f ′(U1) · . . . · f ′(Un) ⊆ f ′(C), so dim(f ′(U1) · . . . · f ′(Un)) 6 2.

Proof.

Consider f b
a (x) = f (a + f (x))− f (x + b). Then, for small enough

|a|, |b|, f b
a has a C 1 branch point cb

a . Hence (f b
a )′(cb

a ) = 0, so:

f ′(a + f (cb
a )) · f ′(cb

a ) = f ′(cb
a + b).

Take U1 = locus(a + f (cb
a )),U2 := locus(cb

a ) (for generic a, b).
It works for n = 2. For n > 2, we take a more complicated f b

a .
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Proof of our theorem

Other cases

Topology
Differential Geometry
Lie groups
Analytic Geometry and Algebraic Geometry

There is a local Lie subgroup of GL2(R) around

Definition

For a Lie group G , A ⊂ G is a local Lie subgroup, if there is a
relatively open B ⊂ A such that 1 ∈ B, B = B−1 and B · B ⊆ A.

Taking n = 9 in the last fact we obtain:

Fact

There is an open U ⊆ C such that f ′(U) is a subset of a local Lie
subgroup A ⊂ GL2(R) and dim A 6 2.
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There is a virtual Lie subgroup of GL2(R) around

Definition

For a Lie group G , a virtual Lie subgroup of G is a smooth
injective homomorphism of Lie groups φ : H → G .

Virtual Lie subgroups of G correspond exactly to Lie subalgebras of
Lie(G ) and the following is well-known:

Theorem

If A is a local Lie subgroup of G, then there is a virtual Lie
subgroup φ : H → G such that dim H = dim A and φ(H) ∩ A is
open in A.
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A virtual Lie subgroup need not be Lie

The image of a virtual Lie subgroup need not be a Lie subgroup as
the “non-commutative torus” example shows.

Example

Let a be an irrational number, T = S1 × S1 a 2-dimensional torus
and take:

R 3 r 7→ φ(r) = (r , ar) +Z2 ∈ R2/Z2 = T

Then φ(R) is dense in T , so it is not a Lie subgroup.
The quotient T/φ(R) is called a non-commutative torus.
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There is still a Lie subgroup of GL2(R) around

But in our case we still obtain:

Fact

There is a solvable Lie subgroup H̄ < GL2(R) containing f ′(U).

Proof.

We have f : H → GL2(R) and dim H 6 2, hence H is solvable.

Therefore f (H) is solvable.

Therefore H̄ := cl(f (H)) is solvable.

GL2(R) is not solvable, so H̄ is proper.
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That Lie subgroup is GL1(C)

Fact

f ′(U) is contained in a conjugate of GL1(C).

Proof.

f ′(U) is contained in a solvable Lie subgroup H̄.

By classification of such, H̄ (possibly after conjugation) is a
subgroup of the triangular group or GL1(C).

Triangular group contradicts strong minimality of Cf (one
partial derivative of f1 vanishes on U).

Remark

This how we find the matrix A from the statement of our theorem.
It is the conjugation matrix above.
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f is holomorphic on an open set

We forgot about the conjugate and assume that f ′(U) ⊆ GL1(C).

Fact

There is an open U ⊆ C such that f is holomorphic on U.

Proof.

The fact that for a ∈ U, f ′(a) ∈ GL1(C) means exactly that f
satisfies Cauchy-Riemann at a, so f is holomorphic at a.

Remark

If U is dense in C, we can easily show that f is rational and we are
done. But we do not know it at this stage.
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Group configuration

Fact

There is a field interpretable in Cf .

Proof.

Take U such that f is holomorphic on U.

Then, for c ∈ U, f ′(c) = 0 implies c is a branch point.

This allows us to pull-back by f ′|U the group configuration of
Ga(C) n Gm(C) acting on Ga(C) to get a Cf -interpretable
field.
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Conclusion of the proof – identifying the field

Conclusion of the proof.

Let K be a field interpretable in Cf . By a result of
Peterzil-Starchenko and Hrushovski’s internality theory, K is
bi-interpretable with Cf .

Hence, (C,+) is a 1-dimensional K-algebraic group.

Since (C,+) is torsion-free, it is Cf -definably isomorphic to
Ga(K).

Using the above isomorphism, we get a Cf -definable
operation ? : C2 → C such that (C,+, ?) is a field.

Then, it is easy to find A ∈ GL2(R) such that

A : (C,+, ?) ∼= (C,+, ·), A ◦ f ◦ A−1 ∈ C(x).
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Other ambient structures
Other cases of Kobi’s question

Arbitrary real closed field

Let R be an o-minimal expansion of an arbitrary real closed field.

Remark

The proof of our theorem generalizes from C to any K = R[i ].

About the proof

The theory of winding numbers, differentiable/analityc
manifolds etc. was developed in this context by Berarducci,
Otero, Peterzil, Pillay, Starchenko and others.

The only place in the proof where we left the o-minimal
context was when a virtual Lie group showed up. But another
argument using Lie algebras holds in this context too.
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Other cases of Kobi’s question

Weakening conditions on R

Remark

Not much of o-minimality was used in the proof.

Question

Can we assume that R is e.g. just weakly o-minimal?

Can we assume that f is just continuous or smooth (so, no
ambient o-minimal structure R at all)?

Can pathological Hrushovski examples be constructed in nice
geometric context as above?
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Other cases of Kobi’s question

Any expansion of (C, +)

Question

Can we replace (C,+, f ) with any strongly minimal expansion of
(C,+) definable in R?

Remark

We know it is enough to consider CX = (C,+,X ) with a relation
(so “multi-function”) X replacing f . We do not know if our proof
still works. It should be still possible to prove the finiteness of
frontier of strongly minimal CX -definable subsets of C2.
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Other ambient structures
Other cases of Kobi’s question

Can we always produce a function?

Open Question

Let (A,+) be a strongly minimal group which is not locally
modular. Is there a definable function f : A → A such that
(A,+, f ) is not locally-modular?

Remarks

Positive answer to the above question extends our theorem to
any strongly minimal expansion of (C,+).

The answer is positive if A has elimination of imaginaries, i.e.
“definable”=“interpretable”.

Can elimination of imaginaries for R be used?
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Other algebraic groups

Remark

Most likely our argument still works when we replace (C,+) with
another one-dimensional algebraic group, i.e. the multiplicative
group or an elliptic curve.
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