
1. Monday

We start with two algebraic results whose easiest and most natural proofs have model-
theoretic content.

1.1. Ax’s Theorem. A polynomial f ∈ C[X] defines the polynomial function f : C → C

denoted by the same symbol. If f /∈ C, then f has a zero. Let z ∈ C. Replacing f with
f − z, we see that z is in the image of f , so f is onto. In particular we have:

if f is 1-1, then f is onto.

Ax proved a theorem generalizing the above fact to several variables. Let us take f1, . . . , fn ∈
C[X1, . . . , Xn] and define

F : Cn → Cn, F (z1, . . . , zn) := (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn)).

Theorem 1.1 (Ax). If F is 1-1, then F is onto.

We will say that a field K satisfies Ax’s theorem if Theorem 1.1 holds for K in place of C.
(Note that e.g. Q does not satisfy Ax’s theorem, since the polynomial function X3 is 1-1,
but it is not onto.)

Step 1
Any finite field satisfies Ax’s theorem.

Proof of Step 1. For self-functions on finite sets, 1-1 is equivalent to onto. □

Step 2
Let p be a prime number and Falg

p the algebraic closure of Fp. Then Falg
p satisfies Ax’s

theorem.

Proof of Step 2. Let f1, . . . , fn ∈ Falg
p [X1, . . . , Xn]. Since Falg

p is the union of its finite sub-
fields, there is m ∈ N such that for each k ∈ N we have f1, . . . , fn ∈ Fpkm [X1, . . . , Xn].
Therefore, by Step 1, for k,m as above F (Fn

pkm
) = Fn

pkm
. Since we can also represent Falg

p as
the following union

Falg
p =

⋃
k∈N

Fpkm ,

F (Falg
p ) = Falg

p , so Falg
p satisfies Ax’s theorem. □

Step 3
C satisfies Ax’s theorem.

Proof of Step 3. For any d, n ∈ N there is a sentence ϕd,n in the language of rings (formal
definitions later) expressing Ax’s theorem for polynomials in n variables of degree at most d.
It is enough now to use the following model-theoretic theorem (to be proved later). □

Theorem 1.2. For any sentence ϕ in the language of rings, ϕ is true in C if and only if ϕ
is true in Falg

p for infinitely many prime numbers p.

1.2. Nullstellensatz. Let f ∈ C[X]\{0}. Then f ∈ C if and only if (f) = C[X]. Therefore
we have:

if (f) ̸= C[X], then f has a zero.

Hilbert’s Nullstellensatz generalizes the above fact to several variables.

Theorem 1.3 (Hilbert’s Nullstellensatz). Let f1, . . . , fm ∈ C[X1, . . . , Xn]. If (f1, . . . , fm) ̸=
C[X1, . . . , Xn], then there is z̄ ∈ Cn such that

f1(z̄) = 0, . . . , fm(z̄) = 0.
1
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Proof. Let I := (f1, . . . , fm). Since I ̸= C[X1, . . . , Xn], I extends to a maximal ideal m. Let
K := C[X1, . . . , Xn]/m. Let Φ : C→ Kalg denote the following composition:

C
⊆ // C[X1, . . . , Xn] // C[X1, . . . , Xn]/m = K

⊆ // Kalg.

Then Φ is a non-zero homomorphism of fields, so it is an embedding. Hence we can identify C
with a subfield of Kalg. Let as consider a sentence ϕ in the language of rings with parameters
from C saying that

∃x1, . . . , xn f1(x1, . . . , xn) = 0 ∧ . . . ∧ fm(x1, . . . , xn) = 0.

Then ϕ holds in Kalg, since we can take Xi + m for xi (Exercise 1). Nullstellensatz follows
now from another model-theoretic theorem. □

Theorem 1.4. Any extension of algebraically closed fields F ⊆ M is elementary, i.e. for
any sentence ϕ in the language of rings with parameters from F , ϕ holds in F if and only if
ϕ holds in M .

1.3. Basic definitions: the case of fields. We start with a concrete example. The notion
of language of rings appeared above. It is

Lr = {+, ·,−, 0, 1},
where + and · are binary function symbols, − is a unary function symbols and 0, 1 are constant
symbols.
An Lr-formula is a formula “obtained in a meaningful way” using:

• variables xi, yi for i ∈ N (occasionally other symbols may appear);
• constant symbols 0, 1;
• binary function symbols +, ·, a unary function symbol −, and the equality symbol =;
• parentheses ), ( and logical connectives ∧,∨,¬;
• quantifiers ∀,∃.

The formal definition of a formula is inductive (induction on the “complexity of a formula”)
and a bit cumbersome, so we skip it. Note that using the logical connectives ∧,∨,¬ we can
also define other logical connectives as →,↔ in the standard way.

Examples of Lr-formulas

ϕ1 : ∃x x · x = −1 “a square root of −1 exists”

ϕ2 : ∀x ∃y x = y · y “all square roots exist”

ϕ3 : ∀x ∃y x = (y · y) · y “cube roots exist”

ϕ : ∃y x = y · y.
We will write the formula ϕd,n which appeared in the proof of Ax’s theorem. For simplicity
we take d = 1, n = 2 and skip some of the brackets below:

∀a0, a1, a2, b0, b1, b2 (∀x1, y1, x2, y2 (a0 + a1 · x1 + a2 · y1 = a0 + a1 · x2 + a2 · y2
∧ b0 + b1 · x1 + b2 · y1 = b0 + b1 · x2 + b2 · y2) → (x1 = x2 ∧ y1 = y2))

→
(∀z, v ∃x, y a0 + a1 · x+ a2 · y = z ∧ b0 + b1 · x+ b2 · y = v).

In the formula ϕ above the variable x is free (i.e. not quantified) and in the formulas
ϕ1, ϕ2, ϕ3, ϕd,n there are no free variables. It is better to denote the formula ϕ above by ϕ(x)
pointing out the free variable x. If a formula has no free variables it is called a sentence. Any
set of sentences is called a theory.

Examples of Lr-theories
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• the theory of rings;
• the theory of fields;
• the theory of domains of characteristic 5;
• the theory of algebraically closed fields (infinitely many sentences required!).

Exercise 2: Write (the sentences in) the last two theories.

An Lr-structure is a set M together with two binary functions one unary function and two
specified elements:

+M , ·M :M ×M →M ; −M :M →M ; 0M , 1M ∈M.

If ϕ is an Lr-sentence, then we can check whether ϕ holds (or is satisfied) in

M := (M,+M , ·M ,−M , 0M , 1M)

or not. If T is an Lr-theory and each sentence of T holds in an Lr-structure M, then we say
that M is a model of T .

Examples

• If T is the theory of rings, then an Lr-structure M is a model of T if and only if M is
a ring. Similarly for the other theories in the example above. (This looks tautological
and reminds Tarski’s example: “The sentence ‘Snow is white’ is true if and only if
snow is white”.)

• The sentence ϕ1 does not hold in R.
• The sentence ϕ3 holds in R.

Again it is cumbersome to write the formal definition of the satisfaction of an Lr-sentence
in an Lr-structure (Tarski’s definition of truth) but it conforms to common sense as in the
examples above.

Notation
If ϕ is an Lr-sentence, T is an Lr-theory and M is an Lr-structure, then we write M |= ϕ if
ϕ holds in M and M |= T if M is a model of T .

1.4. Basic definitions: the general case. A language L consists of:

• a set of function symbols F and positive integers nf (called the arity of f) for any
f ∈ F ;

• a set of relation symbols R and positive integers nR (called the arity of R) for any
R ∈ R;

• a set of constant symbols C.
Examples

• language of rings above Lr (two function symbols of arity 2, one function symbol of
arity 1 and two constants),

• language of orderings Lo = {<} (one relation symbol of arity 2),
• language of ordered rings Lor = {+,−, ·, <, 0, 1} (two function symbols of arity 2, one
function symbol of arity 1 and two constant symbols)

Let us fix a language L = (F ,R, C). As in Section 1.3, we can produce L-formulas, L-
sentences and L-theories from L.
By the cardinality of L, denoted |L|, we mean |F|+ |R|+ |C|. We notice an easy result.

Lemma 1.5. The set of L-formulas has cardinality |L|+ ℵ0.

If we have an L-formula ϕ(x1, . . . , xn) (as in Section 1.3, x1, . . . , xn are all the free variables
in ϕ) and c1, . . . , cn ∈ C, then we can define an L-sentence ϕ(c1, . . . , cn) plugging for each free
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variable xi the constant symbol ci.
For any set A, we have the new language LA = (F ,R, CA), where

CA = C ∪ {ca|a ∈ A}.
The LA-formulas are usually called L-formulas with parameters from A.

An L-structure is a set M together with:

• a function fM :Mnf →M for each f ∈ F ;
• a subset RM ⊆MnR for each R ∈ R;
• an element cM ∈M for each c ∈ C.

We denote
M := (M, fM , RM , cM)f∈F ,R∈R,c∈C

and call M the universe of the L-structure M, and fM , RM , cM the interpretations of the
language symbols f,R, c in the structure M.
As in Section 1.3, if we have an L-sentence ϕ (resp. an L-theory T ), we can check whether
ϕ holds in an L-structure M (resp. whether M is a model of T ).

Examples

• (Q, <) is an Lo-structure. It satisfies for example the following Lo-sentence (density):

∀x, y ∃z x < y → (x < z ∧ z < y).

• (R,+,−, ·, <, 0, 1) is an Lor-structure. It satisfies for example the following sentence
(squares are non-negative)

∀x, y x = y · y → (x > 0 ∨ x = 0).

If M is an L-structure and A ⊆M , then M is also naturally an LA-structure. We define:

Th(M) := {ϕ | ϕ is an L-sentence and M |= ϕ},
ThA(M) := {ϕ | ϕ is an LA-sentence and M |= ϕ}.

Definition 1.6. We say that two L-structuresM andN are elementarily equivalent (denoted
M ≡ N), if Th(M) = Th(N).

2. Tuesday

We will prove today the Compactness Theorem, which is the starting point of any model-
theoretic considerations. Let us fix a language L = (F ,R, C), an L-theory T and an L-
sentence ϕ.

Theorem 2.1 (Compactness Theorem). Let κ := ℵ0 + |L|. If each finite subset of T has
a model, then T has a model of cardinality at most κ.

Before the proof we need several definitions:

• ϕ is a logical consequence of T , denoted T |= ϕ, if for any L-structure M, M |= T
implies M |= ϕ.

• T is maximal if for any L-sentence α either α ∈ T or ¬α ∈ T .
• T is finitely satisfiable if each finite subset of T has a model.
• T has the witness property if whenever α(x) is an L-formula with one free variable,
then there is c ∈ C such that

[(∃x α(x)) → α(c)] ∈ T.

Note that for any L-structure M, the theory Th(M) is maximal.

Lemma 2.2. Let T be finitely satisfiable and maximal. If ∆ ⊆ T is finite and ∆ |= ϕ, then
ϕ ∈ T .
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Proof. Assume not, i.e. ϕ /∈ T . Since T is maximal, ¬ϕ ∈ T . For any L-structure M, if
M |= ∆ then M |= ϕ (since ∆ |= ϕ). Hence ∆∪{¬ϕ} is a finite subset of T without a model,
which contradicts the finite satisfability of T . □

Lemma 2.3. If T is finitely satisfiable, maximal, and has the witness property, then T has
a model of cardinality at most |C|.

Proof. For c1, c2 ∈ C let us define:

c1 ∼ c2 iff the formula c1 = c2 belongs to T .

Claim 1
The relation ∼ is an equivalence relation on C.

Proof of Claim 1. Let c1, c2, c3 ∈ C and assume that c1 ∼ c2, c2 ∼ c3. Then the sentences
c1 = c2 and c2 = c3 belong to T , which we write for example “[c1 = c2] ∈ T”. Clearly we
have:

{[c1 = c2], [c2 = c3]} |= [c1 = c3].

By 2.2, the sentence c1 = c3 belongs to T . Hence c1 ∼ c3.
Similarly we show that c1 ∼ c1, and that c1 ∼ c2 implies c2 ∼ c1. □

Let M := C/ ∼. Clearly |M | ⩽ |C|. We need to define the interpretations of the elements of
F ,R and C in the set M to obtain the structure M with universe M .
For c ∈ C, we define cM := c/ ∼.
Let R ∈ R, n := nR and c1, d1, . . . , cn, dn ∈ C.
Claim 2
If c1 ∼ d1, . . . , cn ∼ dn, then R(c1, . . . , cn) ∈ T iff R(d1, . . . , dn) ∈ T .

Proof of Claim 2. It is enough to show one implication. Assume that R(c1, . . . , cn) belongs
to T . The sentences c1 = d1, . . . , cn = dn also belong to T . Clearly:

{R(c1, . . . , cn), [c1 = d1], . . . , [cn = dn]} |= R(d1, . . . , dn).

By 2.2, the sentence R(d1, . . . , dn) belongs to T . □

By Claim 2, we can define

(c1/ ∼, . . . , cn/ ∼) ∈ RM iff R(c1, . . . , cn) ∈ T.

Let f ∈ F , n := nf and c1, . . . , cn ∈ C. Since T has the witness property, there is c ∈ C such
that

[(∃x f(c1, . . . , cn) = x) → f(c1, . . . , cn) = c] ∈ T.

Claim 3
The sentence f(c1, . . . , cn) = c belongs to T

Proof of Claim 3. Suppose not and we will reach a contradiction. Since T is maximal and
[f(c1, . . . , cn) = c] /∈ T , then ¬[f(c1, . . . , cn) = c] ∈ T . Since

[(∃x f(c1, . . . , cn) = x) → f(c1, . . . , cn) = c] ∈ T

and T is finitely satisfiable, there is an L-structure M such that:

M |= {¬[f(c1, . . . , cn) = c], [(∃x f(c1, . . . , cn) = x) → f(c1, . . . , cn) = c]}.
But it means that

fM
(
cM1 , . . . , c

M
n

)
̸= cM and fM

(
cM1 , . . . , c

M
n

)
= cM ,

which is a contradiction. □
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Using 2.2 one proves (similarly as in Claims 1 and 2) that for any d, d1, . . . , dn ∈ C if
c1 ∼ d1, . . . , cn ∼ dn and sentences f(c1, . . . , cn) = c, f(d1, . . . , dn) = d belong to T , then
c ∼ d. Hence, we define for c, c1, . . . , cn ∈ C the following

fM(c1/ ∼, . . . , cn/ ∼) = c/ ∼ iff [f(c1, . . . , cn) = c] ∈ T.

By Claim 3, for any c1, . . . , cn ∈ C, there is c ∈ C such that [f(c1, . . . , cn) = c] ∈ T . Therefore,
the function fM is well-defined.

We have defined an L-structure M. Let ψ(x1, . . . , xn) be an L-formula. Using 2.2 again,
it can be shown by induction on the complexity of the formula ψ(x1, . . . , xn) that for any
c1, . . . , cn ∈ C we have

M |= ψ(c1/ ∼, . . . , cn/ ∼) iff ψ(c1, . . . , cn) ∈ T.

In particular M |= T . □

We proceed to show that without loss we can assume T is maximal and has the witness
property.

Lemma 2.4. If T is finitely satisfiable, then there is a language L′ ⊇ L such that |L′| =
|L| + ℵ0 and an L′-theory T ′ ⊇ T such that T ′ is finitely satisfiable and has the witness
property.

Proof. Let us define a new language

C1 := C ∪ {cϕ | ϕ(x) is an L-formula}, L1 := (F ,R, C1),
and an L1-theory

T1 := T ∪ {(∃x ϕ(x)) → ϕ(cϕ) | ϕ(x) is an L-formula}.
Claim
T1 is finitely satisfiable.

Proof of Claim. Take ∆, a finite subset of T1, and let ∆0 := ∆ ∩ T . Since T is finitely
satisfiable, there is an L-structure M which is a model of ∆0. We will expand M to an
L1-structure which will be a model of ∆. For any L-formula ϕ(x) we need to find a right
cMϕ ∈ M . If M |= ∃xϕ(x), then we set cMϕ ∈ M such that M |= ϕ(cMϕ ). If M |= ¬∃xϕ(x),
then we set cMϕ ∈M arbitrarily. □

Now we define a language L2 and an L2-theory T2 such that T2 is finitely satisfiable and
“witnesses L1-formulas”. We continue inductively this process and take L′ :=

⋃
Ln and

T ′ :=
⋃
Tn. By Lemma 1.5, |L′| = |L| + ℵ0. By Claim, T ′ is finitely satisfiable and by the

construction, T ′ has the witness property. □

Lemma 2.5. If T is finitely satisfiable, then there is T ∗ ⊇ T , a finitely satisfiable and
maximal L-theory.

Proof. Let ϕ be an L-sentence.
Claim
T ∪ {ϕ} is finitely satisfiable or T ∪ {¬ϕ} is finitely satisfiable.

Proof of Claim. Assume T ∪{ϕ} is not finitely satisfiable. Then, there is a finite ∆ ⊆ T such
that ∆ ∪ {ϕ} has no model. Therefore, for any L-structure M, if M |= ∆, then M |= ¬ϕ.
Let us take a finite subset Σ ⊆ T . Since T is finitely satisfiable, there is an L-structure M
such that M |= Σ ∪ ∆. By the above considerations, M |= ¬ϕ. Hence M |= Σ ∪ {¬ϕ}, so
T ∪ {¬ϕ} is finitely satisfiable. □

Exercise 3: Lemma 2.5 follows from Claim and Zorn’s lemma. □
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Proof of Compactness Theorem. By Lemma 2.4, there is a language L′ ⊇ L of cardinality κ
and an L′-theory T ′ ⊇ T such that T ′ is finitely satisfiable and has the witness property. By
Lemma 2.5, there is an L′-theory T ∗ ⊇ T ′ which is finitely satisfiable and maximal. Since
T ′ has the witness property, T ∗ has the witness property as well (as a larger theory). By
Lemma 2.3, T ∗ has a model M of cardinality at most κ. Then M (or formally its restriction
to the language L) is also a model of T . □

We say that T proves ϕ, denoted T ⊢ ϕ, if there is a “finite logical proof” showing that ϕ
follows from a finite subset of T (for example {α, ϕ} ⊢ α ∧ ϕ). The following famous result
is closely related to the Compactness Theorem.

Theorem 2.6 (Gödel’s Completeness Theorem). T ⊢ ϕ if and only if T |= ϕ.

Gödel proved the Compactness Theorem using the Completeness Theorem.

Exercise 4: Assuming the Completeness Theorem prove that the following are equivalent:

(1) T has a model.
(2) T does not prove a contradictory statement, i.e. it is not true that T ⊢ ϕ ∧ ¬ϕ.

T is consistent, if it satisfies the equivalent conditions above. By Compactness Theorem, T
is consistent if and only if it is finitely satisfiable.
T is complete, if T is consistent and for any L-sentence ϕ we have T |= ϕ or T |= ¬ϕ. Of
course maximal theories are complete, but completeness is a more meaningful notion.

Exercise 5: Prove that the following are equivalent:

(1) T is complete;
(2) For any L-structures M,N if M |= T and N |= T , then M ≡ N.

Exercise 6: Assume that T is complete and ϕ is a sentence. Show that:

(1) If M |= T , then M |= ϕ iff T |= ϕ;
(2) T |= ϕ iff T ∪ {ϕ} is consistent.

3. Wednesday

Today we prove the model-theoretic theorems from Monday which were necessary for Ax’s
theorem and the Nullstellensatz.
Let L = (F ,R, C) be a language,

M = (M, fM , RM , cM)f∈F ,R∈R,c∈C, N = (N, fN , RN , cN)f∈F ,R∈R,c∈C

be L-structures and Φ :M → N . We say that Φ is an L-monomorphism between M and N,
denoted Φ : M → N, if it is a one-to-one function preserving the interpretations of all the
function, relation and constant symbols of L, i.e.

• for each f ∈ F of arity n and all m1, . . . ,mn ∈M we have:

Φ(fM(m1, . . . ,mn)) = fN(Φ(m1), . . . ,Φ(mn));

• for each R ∈ F of arity n and all m1, . . . ,mn ∈M we have:

(m1, . . . ,mn) ∈ RM iff (Φ(m1), . . . ,Φ(mn)) ∈ RN ;

• for each c ∈ C we have:

Φ(cM) = cN .

We say that Φ is an L-isomorphism between M and N if Φ is a bijection and an L-
monomorphism (then Φ−1 is an L-monomorphism as well). As usual, if there is an L-
isomorphism between M and N, we denote M ∼= N (or M ∼=L N) and this is an “equivalence
relation”.
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The following lemma (saying that “isomorphisms preserve the truth”) can be proven by
induction on the complexity of formulas.

Lemma 3.1. Let ϕ(x1, . . . , xn) be an L-formula and m1, . . . ,mn ∈ M . If Φ : M → N is an
isomorphism, then we have

M |= ϕ(m1, . . . ,mn) iff N |= ϕ(Φ(m1), . . . ,Φ(mn)).

M is an L-substructure of N if M ⊆ N and the inclusion is an L-monomorphism, i.e. we
have fM ⊆ fN , RM = RN ∩MnR , cM = cN for all f ∈ F , R ∈ R, c ∈ C.

Remark 3.2. Let M0 ⊆ M . We say that M0 is closed under F and C, if for all f ∈ F we
have fM(M

nf

0 ) ⊆ M0 and for all c ∈ C, we have cM ∈ M0. If M0 is closed under F and
C, then M0 together with the restrictions of all the interpretations of elements of L is an
L-substructure of M. Abusing the language (the one we speak) a little bit, we sometimes
say that a subset M0 ⊆M is an L-substructure of M if it is closed under F and C (compare
with group theory, ring theory, etc.). If Φ : M → N is an L-monomorphism, then Φ(M)
is closed under F and C, so Φ(M) becomes an L-substrucutre of N. Clearly, Φ becomes
than an L-isomorphism between M and Φ(M). If L is a purely relational language, then a
substructure is the same as a subset.

Example

• (N, <) is an Lo-substructure of (Q, <), (Q, <) is an Lo-substructure of (R, <);
• (Q,+,−, ·) is an Lr-substructure of (R,+,−, ·).
• If N is a ring and M is an Lr-substructure of N, then M is a (sub)ring as well. (This
is the reason why we have also included the unary symbol “−” in the language Lr.)

Definition 3.3. We say that M is an elementary substructure of N (denoted M ≼ N), if M
is a substructure of N and for any L-sentence ϕ with parameters from M , M |= ϕ iff N |= ϕ.

The above definition can be rephrased. If M is a substructure of N, then the following are
equivalent:

(1) M ≼ N;
(2) ThM(M) = ThM(N).

In particular, if M ≼ N, then M ≡ N . We will see below that the converse need not hold.

Non-examples

• R is not an elementary substructure C, since the sentence ϕ1 from Section 1.3 holds
in C but it does not hold in R. Hence these structures are not even elementarily
equivalent.

• (N, <) is not an elementary substructure of (Q, <) since the ordering on N is not
dense. Hence these structures are not even elementarily equivalent.

• (N>0, <) is not an elementary substructure of (N, <) (1 is the smallest element in the
substructure) but we even have

(N>0, <) ∼= (N, <),

so, by 3.1, we also have (N>0, <) ≡ (N, <).

It is difficult now to give examples of elementary substructures. The following theorem
provides many such in a general context.

Theorem 3.4 (Upward Löwenheim-Skolem Theorem). Let M be an infinite L-structure
and κ ⩾ |M |+ |L|. Then there is N ≽ M such that |N | = κ.
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Proof. Let us expand the language LM to L′ by adding new constant symbols {ci|i < κ} and
define an L′-theory:

T := ThM(M) ∪ {ci ̸= cj|i < j < κ}.
SinceM is infinite, we can easily make M a model of any finite subset of T . By the compact-
ness theorem, T has a model N of cardinality at most κ. Hence |N | = κ (new constants!)
and N (or rather its restriction to the language L) is an elementary extension of M. □

We will sometimes denote a structure by the same symbol as its universe, for example in the
proof below.

Proof of Theorem 1.4. Let us take κ > |M |. By Theorem 3.4, there are elementary extensions
F ≼ F ′,M ≼M ′ such that |F ′| = |M ′| = κ. Hence we have extensions of algebraically closed
fields F ⊆ F ′, F ⊆M ′. By the choice of κ, we have:

trdegF F
′ = trdegF M

′.

Exercise 7: There is an F -isomorphism Φ : F ′ →M ′.
Hence we have a commutative diagram:

F ′ Φ // M ′

F
⊆ //

≼

OO

M.

≼

OO

Let us take an Lr-formula ϕ(x1, . . . , xn) and t1 . . . , tn ∈ F . Since F ≼ F ′, “Φ preserves the
truth” (3.1) and Φ(t1) = t1, . . . ,Φ(tn) = tn (Φ is over F ), we get that:

F |= ϕ(t1 . . . , tn) iff M ′ |= ϕ(t1 . . . , tn).

Since M ≼M ′, we get that:

M |= ϕ(t1 . . . , tn) iff M ′ |= ϕ(t1 . . . , tn).

Therefore F ≼M . □

Let ACF denote the Lr-theory of algebraically closed fields and for p, a prime number or 0,
ACFp denote the Lr-theory of algebraically closed fields of characteristic p.

Theorem 3.5. ACFp is complete.

Proof. Let us take two algebraically closed fields K1, K2 of characteristic p and their prime
subfields F1, F2. Clearly, F alg

1
∼= F alg

2 . By 1.4, F alg
1 ≼ K1 and F alg

2 ≼ K2. In particular we
have (using 3.1):

Th(K1) = Th(F alg
1 ) = Th(F alg

2 ) = Th(K2).

Hence any two models of ACFp are elementarily equivalent, so ACFp is complete (see Exercise
5). □

We can now state and prove an extended version of Theorem 1.2.

Theorem 3.6 (Lefschetz Principle). Let ϕ be an Lr-sentence. The following are equiva-
lent:

(1) For almost all prime numbers p, Falg
p |= ϕ;

(2) For infinitely many prime numbers p, Falg
p |= ϕ;

(3) ACF0 |= ϕ;
(4) C |= ϕ.
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Proof. The implication (1) ⇒ (2) is obvious.
We will prove (2) ⇒ (3). By Exercise 6(2), it is enough to show that ACF0 ∪{ϕ} is consistent.
Let T0 be a finite subset of ACF0 ∪{ϕ}. For n ∈ N>0, let ϕn be the following Lr-sentence:

¬(1 + . . .+ 1 = 0) (+ taken n times).

Since ACF0 = ACF∪{ϕn|n ∈ N>0}, there is N ∈ N such that

T0 ⊂ ACF∪{ϕn|n < N} ∪ {ϕ}.

Let us take a prime number p such that p > N and Falg
p |= ϕ. Then Falg

p |= T0, so ACF0 ∪{ϕ}
is finitely satisfiable.
The equivalence (3) ⇔ (4) is given by Exercise 6(1).
We will prove (3) ⇒ (1). Assume that (1) does not hold, i.e. there are infinitely many prime
numbers p such that Falg

p |= ¬ϕ. By the already proven implication (2) ⇒ (3), we get that
ACF0 |= ¬ϕ, so (3) does not hold (since ACF0 is consistent). □

4. Friday

Today we will find a criterium under which formulas have a particularly simple form. Let
us fix a language L = (F ,R, C) and an L-structure M. First we look at a notion which is
somehow dual to the notion of a formula. Let n > 0 and x̄ := (x1, . . . , xn).

Definition 4.1. For an LM -formula ϕ(x̄) let

ϕ(x̄)M := {m̄ ∈Mn | M |= ϕ(m̄)}.

A subset X ⊆ Mn is called definable (in M over M), if there is an LM -formula ϕ(x̄) such
that X = ϕ(x̄)M .

Remark 4.2. In the definition above, there is a subset of Mn definable in the structure M
with parameters from M . It is not good to confuse those three difference appearances of M .

Before seeing examples, let us note some basic properties of definable sets. If we have LM -
formulas ϕ(x̄), α(x̄), then:

(ϕ(x̄) ∨ α(x̄))M = ϕ(x̄)M ∪ α(x̄)M;

(ϕ(x̄) ∧ α(x̄))M = ϕ(x̄)M ∩ α(x̄)M;

(¬ϕ(x̄))M =Mn \ ϕ(x̄)M;

(∃xk+1, . . . , xn ϕ(x̄))
M = πn

k (ϕ(x̄)
M),

where πn
k :Mn →Mk is the projection on the first k coordinates.

Hence the conjunction corresponds to the intersection, the disjunction to the union, the
negation to the complement, and the existential quantifier to the coordinate projection.
Basic definable sets are the graphs of fM for f ∈ F , the subsets RM for R ∈ R, the points
cM for c ∈ C and a bit more complicated sets as

{(a, b) ∈M2 | M |= RM(fM
1 (fM

2 (a)), fM
3 (b))}.

(I skip the technical definition of the notion of term here.) Other definable sets come from
these basic ones after applying Boolean combinations (i.e. unions, intersections and comple-
ments) and projections. The following question arises: how many of these operations (most
importantly projections) have to be taken to obtain all the definable sets?

Examples
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• If K is a field (considered as an Lr-structure), then any set of solutions of a system
of polynomial equations in n variables is a definable subset of Kn (e.g. for n = 2 we
have parabolas, hyperbolas, etc.). Such a set of solutions is called a Zariski closed
set. A Boolean combination of Zariski closed sets is still a definable set, such a set is
called a constructible set.

• For any Lo-structure (X,<) and x, y ∈ X, the interval (x, y) is a definable set.
• The order <R is definable in the Lr-structure R. Hence in a way, the Lor-structure R
is definable in the Lr-structure R.

• N is definable in Z.
• Z is definable in Q.
• N,Z,Q are not definable in C.
• N,Z,Q are not definable in R.

Theorem 4.3 (Chevalley’s Theorem). If K is an algebraically closed field, then a projec-
tion of a constructible set is again a constructible set.

The above theorem (to be proved later) says that in the case of algebraically closed fields the
above-mentioned process terminates very quickly, actually no projections are needed at all!
In such a case we say that the theory of an algebraically closed field, ACFp, has quantifier
elimination (definition below).

Definition 4.4. An L-theory T has quantifier elimination if any L-formula ϕ(x̄) is equivalent
modulo T with a quantifier-free formula, i.e. there is a formula α(x̄) having no quantifiers
such that

T |= ∀x̄ (ϕ(x̄) ↔ α(x̄)).

We proceed to find a checkable criterium for quantifier elimination, which will serve to prove
Chevalley’s theorem. We will need some more notions.

Definition 4.5. Let M be an L-structure and m̄ ∈Mn.

• An (L-)type q(x̄) is any set of formulas with free variables x̄.
• If q(x̄) is a type, then the set of realizations of q(x̄) in M is

q(x̄)M :=
⋂

ϕ(x̄)∈q(x̄)

ϕ(x̄)M.

• A type q(x̄) is finitely satisfiable in M, if for any finite q0(x̄) ⊆ q(x̄), the set q0(x̄)
M

is non-empty.
• The quantifier-free type of m̄ in M is the following collection of L-formulas:

qftpM(m̄) := {ϕ(x̄) | M |= ϕ(m̄) and ϕ(x̄) is quantifier-free}.
• The complete type of m̄ in M is the following collection of L-formulas:

tpM(m̄) := {ϕ(x̄) | M |= ϕ(m̄)}.

Remark 4.6. Let M be an L-substructure of N and ā ∈Mn.

(1) It can be shown by induction on the complexity of formulas that qftpM(ā) = qftpN(ā),
e.g. for any f1, f2 ∈ F ;R1, R2 ∈ R we clearly have

fM
1 (ā) = fM

2 (ā) iff fN
1 (ā) = fN

2 (ā),

ā ∈ RM
1 iff ā ∈ RM

2 .

(2) If M ≼ N, then tpM(ā) = tpN(ā), but in general the complete types need not be
equal. For example tpR(−1) ̸= tpC(−1).

(3) Actually, if M is a substructure of N, then M ≼ N if and only if for all ā ∈Mn (and
all n > 0) we have tpM(ā) = tpN(ā).
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We can formulate now an intuitive (but still not easy to check) criterium for quantifier
elimination.

Lemma 4.7. An L-theory T has quantifier elimination if and only if, for all models M of
T , all n ∈ N and ā, b̄ ∈Mn we have:

qftpM(ā) = qftpM(b̄) ⇒ tpM(ā) = tpM(b̄).

Proof. Exercise 8: The (easy) left-to-right implication.
Assume that T does not have quantifier elimination and take an L-formula ϕ(x̄) which is not
equivalent modulo T with a quantifier free formula. We will find in two steps M |= T and
āM , b̄M ∈Mn such that

qftpM(ā) = qftpM(b̄) and tpM(ā) ̸= tpM(b̄).

Let L′ be L expanded by new constant symbols ā, b̄. Since ϕ(x̄) is not equivalent modulo T
to a quantifier free formula, the following L′-theory is consistent:

T ∪ {ϕ(ā) ∧ ¬α(ā) | T |= ∀x̄ (α(x̄) → ϕ(x̄)) and α(x̄) is quant.-free}.

Let (N, āN) |= Tā, where Tā is the above L
′-theory. The first step is completed, in the second

one we will find an appropriate b̄. Since (N, āN) |= Tā, the following L′-theory is consistent:

Tā ∪ {α(b̄) ∧ ¬ϕ(b̄) | α(x̄) ∈ qftpN(āN)}.

Let (M, āM , b̄M) be a model of this theory, so qftpM(āM) = qftpM(b̄M). However, M |= ϕ(ā)
and M |= ¬ϕ(b̄), hence tpM(āM) ̸= tpM(b̄M). □

In the next lemma we find a general (independent from any complete theory T ) criterium
for checking equality of quantifier-free types.

Lemma 4.8. Let M,N be L-structures, ā ∈Mn and b̄ ∈ Nn. The following are equivalent:

(1) there is an L-substructure M0 ⊆ M containing ā and an L-monomorphism Φ : M0 →
N such that Φ(ā) = b̄;

(2) qftpM(ā) = qftpN(b̄).

Proof. Let us assume (1) and set N0 := Φ(M0). Then N0 (i.e. N0 with the restrictions of all
fN , RN , cN) is an L-substructure of N and Φ is an L-isomorphism between M0 and N0. By
Remark 4.6 and 3.1, we have:

qftpM(ā) = qftpM0(ā) = qftpN0(b̄) = qftpN(b̄).

Let us assume (2). We define M0 inductively. (It will be the substructure of M generated
by ā.) Let A0 := CM ∪ {a1, . . . , an}, where ā = (a1, . . . , an). For k ∈ N, we define:

Ak+1 := Ak ∪
⋃
f∈F

{fM(A
nf

k )}.

Finally, let M0 :=
⋃

k Ak. Then M0 is closed under all the fM , so it gives M0, an L-
substructure of M. We define now inductively a monomorphism Φ : M0 → N taking ā to b̄.
On A0 we define:

Φ0(a1) := b1, . . . ,Φ0(an) := bn, Φ0(c
M) := cN for c ∈ C.

Since qftpM(ā) = qftpN(b̄) we get that:

• for i, j ⩽ n, ai = aj if and only if bi = bj;
• for c1, c2 ∈ C, cM1 = cM2 if and only cN1 = cN2 . (Note that the “quantifier-free theory of
M” is a part of qftpM(ā)!)
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Hence Φ0 is well-defined and injective on A0.
We will define one more step. For any f ∈ F and s̄ ∈ A

nf

0 let

Φ1(f
M(ā)) := fN(Φ0(ā)).

As above, Φ1 is well-defined and injective on A1. Similarly, we can see that Φ1 satisfies the
definition of L-monomorphism “wherever it makes sense”. We continue to define Φ2 : A2 → N
etc. and set Φ :=

⋃
Φn. □

Remark 4.9. As in the proof of the implication (2) ⇒ (1) above, for any A ⊆ M we can
define a substructure ofM generated by A. Hence we also get the notion of a finitely generated
substructure of M. If M0 is a substructure of M, then M0⟨A⟩ denotes the substructure of
M generated by M0∪A. The Lr-substructure of a ring R generated by A ⊆ R is exactly the
subring of R generated by A.

To formulate the main criterium for quantifier elimination, we need to define one more
property of structures which is called saturation. Existence of saturated structures allows to
work in one model of a complete theory, rather than in all of them.

Definition 4.10. An L-structure M is ℵ0-saturated, if for any finite A ⊆M and any finitely
satisfiable LA-type q(x) (one variable!), q(x)M is non-empty.

Exercise 9: Show that if M is ℵ0-saturated, then for any finite A ⊆ M and any finitely
satisfiable LA-type q(x1, . . . , xn) (finitely many variables!), q(x1, . . . , xn)

M is non-empty.

Examples

• The field R (considered as an Lr-structure) is not ℵ0-saturated. To see this, consider
for each n ∈ N the following Lr-formula:

ϕn(x) : ∃y y2 + 1 + . . .+ 1 = x (“+” taken n times),

and let q(x) := {ϕn(x) | n ∈ N}. Any finite subset of q(x) is satisfiable by a large
enough real number, however q(x)R = ∅. Intuitively, “+∞” satisfies q(x).

• The field C (considered as an Lr-structure) is ℵ0-saturated. We will see it later as a
consequence of quantifier elimination.

The following existence result can be proved similarly as the Upper Löwenheim-Skolem The-
orem.

Lemma 4.11. Let M be an infinite L-structure. Then there is N ≽ M which is ℵ0-saturated.

We can finally formulate and show our desired criterion for quantifier elimination. See Remark
4.9 for some of the terminology used below.

Theorem 4.12 (Schoenfield-Blum Criterion). Let T be an L-theory without finite mod-
els. The following are equivalent:

(1) If M1,M2 |= T , M2 is ℵ0-saturated, U ⊆ M1,M2 is a common finitely generated
L-substructure and c ∈M1, then there is an L-monomorphism Φ : U⟨c⟩ → M2 which
is the identity on U .

(2) T has quantifier elimination.

Proof of Theorem 4.12. Exercise 10: Prove the (not so easy) implication (2) ⇒ (1) (how the
saturation is used?).
Let us assume (1). To show (2) we will check the criterion for quantifier elimination from
Lemma 4.7. Let us take M |= T and ā, b̄ ∈ Mn such that qftpM(ā) = qftpM(b̄). We aim to
show that tpM(ā) = tpM(b̄). By 4.11, there is M ≼ N such that N is ℵ0-saturated. Since
for any s̄ ∈ Mn we have tpM(s̄) = tpN(s̄) (Remark 4.6), we may assume that M is already
ℵ0-saturated.
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By 4.8, there are finitely generated (see Remark 4.9) substructures Mā,Mb̄ ⊆ M such ā ∈
Mn

ā , b̄ ∈Mn
b̄
and an L-isomorphism Ψ : Mā → Mb̄ such that Ψ(ā) = b̄.

Let us take an L-formula ϕ(x̄) such that M |= ϕ(ā). We will show that M |= ϕ(b̄). For
simplicity we assume that ϕ(x̄) is existential, i.e. that there is a quantifier-free formula
ψ(x̄, ȳ), where ȳ = (y1, . . . , yk), such that

ϕ(x̄) = ∃ȳ ψ(x̄, ȳ).
Since M |= ϕ(ā), there is s̄ = (s1, . . . , sk) ∈Mk such that M |= ψ(ā, s̄).
We will inductively extend Ψ to an L-monomorphism

Ψk : Mā⟨s1, . . . , sk⟩ → M.

Let us take 0 ⩽ l < k, set U := Mā⟨s1, . . . , sl⟩ and assume that we have an L-monomorphism
Ψl : U → M extending Ψ. We will define Ψl+1 using the condition (1). We first extend Ψl

to an L-isomorphism (denoted also Ψl) between M and M′, an L-superstructure of Mb̄. The
existence of such an extension is left as Exercise 11. We apply (1) for U as above and

M1 := M′, M2 := M, c := Ψ(sl+1).

We get an L-monomorphism Φ : U⟨Ψ(sl+1)⟩ → M which is the identity on U. Let

Ψl+1 : Mb̄⟨s1, . . . , sl, sl+1⟩ → M, Ψl+1(t) := Φ(Ψl(t)).

Since Φ is identity onU, Φl+1 extends Φl. Therefore, we have inductively defined an extension
of Ψ to Ψk : Mā⟨s̄⟩ → M.
Let t̄ := Ψk(s̄). Since M |= ψ(ā, s̄) and ψ(x̄, ȳ) is quantifier-free, we get by Remark 4.6
that Mā⟨s̄⟩ |= ψ(ā, s̄). Clearly Ψk is an L-isomorphism between Mā⟨s̄⟩ and Mb̄⟨t̄⟩. By 3.1,
we have Mb̄⟨t̄⟩ |= ψ(b̄, t̄). Again by Remark 4.6, we get M |= ψ(b̄, t̄). Hence M |= ϕ(b̄)
indeed. □

5. Saturday

Today we will apply the Schoenfield-Blum Criterion for quantifier elimination to several
theories. To do that, we need to understand the “isomorphism type” of an element over a
finitely generated substructure.

Theorem 5.1. The theory ACF has quantifier elimination.

Proof. We will use the criterion from Theorem 4.12. Let us take algebraically closed fields
M1,M2 such thatM2 is ℵ0-saturated, a common finitely generated subring (an Lr-substructure)
R ⊆M1,M2 and c ∈M1. Let K be the fraction field of R. Then K naturally embedds both
in M1 and M2, so we may assume that R = K.

Case 1 c is algebraic over K (the saturation will not be used)

Let f ∈ K[X] be the minimal polynomial of c over K. Then we have:

(∗) K(c) = K[c] ∼=K K[X]/(f).

Since M2 is algebraically closed, there is d ∈M2 such that f(d) = 0. Again we have:

(∗∗) K(d) = K[d] ∼=K K[X]/(f).

Composing the isomorphisms from (∗) and (∗∗), we get a monomorphism K(c) → M2 over
K.

Case 2 c is transcendental over K (the saturation will be used)

Let ā be a finite tuple generating K, and q(x) be an Lā-type expressing that x is transcen-
dental over K. The type q(x) is finitely satisfiable in M2, since every polynomial has only
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finitely many zeroes and M2 is infinite being algebraically closed. Since M2 is ℵ0-saturated,
there is d ∈ q(x)M2 . Then d is transcendental over K and we have:

K(c) ∼=K K(X) ∼=K K(d).

Composing the above isomorphisms we get a monomorphism K(c) →M2 over K. □

Exercise 12: Let K be any field and V ⊆ Kn. Show that V is constructible if and only if,
there is a quantifier-free LK-formula ϕ(x̄) such that V = ϕ(x̄)K .

Corollary 5.2. If K is an algebraically closed fields and X ⊆ K is definable, then X is finite
or cofinite.

Proof. By Exercise 12 and quantifier elimination for ACF. □

Note that we would not be able to check the condition (1) from the Schoenfield-Blum test, if
M2 were not ℵ0-saturated. For example take K = Q, M1 = Q(X)alg, M2 = Q

alg and c = X.

Exercise 13: Show that an algebraically closed field is saturated if an only if it has infinite
transcendence degree over its prime subfield.

Definition 5.3. Let M be an L-structure and T be an L-theory.

(1) M is minimal, if any definable subset of M is either finite or cofinite.
(2) T is strongly minimal, if for any M |= T , M is minimal.
(3) M is strongly minimal, if ThM(M) is strongly minimal, i.e. for any M ≼ N, N is

minimal.

Examples

(1) ACF is strongly minimal.
(2) Let LE = {E}, where E is a binary relation symbol. An LE-structure (M,EM) such

that EM is an equivalence relation having one EM -class of size n for each n ∈ N>0

and no infinite classes is minimal and not strongly minimal. Quantifier elimination
necessary for minimality. Bounds...

Let K be a field. We know that if K is algebraically closed, then K is strongly minimal.
Actually, the converse also holds. But if K is minimal, then we know that K is algebraically
closed only if K has finite characteristic.

Let DLO be the Lo-theory of dense linear orders without endpoints.

Theorem 5.4. DLO has quantifier elimination.

Proof. Let M1,M2 |= DLO, where M2 is ℵ0-saturated (the saturation actually will not be
used here) and Mi = (M,<i) for i = 1, 2. Since the language Lo is purely relational, any
subset of an Lo-structure is an Lo-substructure. In particular, a finitely generated substruc-
ture is just a finite subset. Let us take a finite substructure U ⊆ M1,M2 and c ∈ M1 \ U .
Since the order <1 is linear, the order <U is linear as well, so U = {u1, . . . , un}, where
u1 <

U . . . <U un.

Case 1 c <1 u1

Since<2 has no end-points, there is d ∈M2 such that d <2 u1. We define an Lo-monomorphism

Ψ : U⟨c⟩ →M, Ψ(c) = d, Ψ|U = idU .

Case 2 there is 1 ⩽ i < n such that ui <
1 c <1 ui+1

Since <2 is dense, there is d ∈M2 such that ui <
2 d <2 ui+1 and we define Ψ as in Case 1.

Case 3 un <
1 c

This is analogous to Case 1. □
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Let R be a ring and define the following language

LR := (+,−, 0, λr)r∈R,
where + is a binary function symbol, − and all λr are unary function symbol and 0 is a
constant symbol. Then any (left,right) R-module is naturally an LR-structure and in this
case an LR-substructure os the same as R-submodule.

Theorem 5.5. Let K be a field. The LK-theory of infinite K-vector spaces has quantifier
elimination

Proof. Exercise 14: check that the (very easy here) Shoenfield-Blum test holds. □

Let us consider now the real field.

Fact 5.6. The Lr-theory Th(R) does not have quantifier elimination.

Proof. Assume that the Lr-theory Th(R) has quantifier elimination. As in 5.2, we conclude
that each Lr-definable subset of R is either finite or cofinite. But [0,∞) is definable by the
formula ∃y x = y2, a contradiction. □

We can also consider R as an Lor-structure and this is the right language for quantifier
elimination.

Theorem 5.7 (Tarski). The Lor-theory Th(R) has quantifier elimination.

We have no time for the proof. We will just write an Lor-theory RCF whose models are
exactly the same as models of Th(R). Such models are called real closed fields
Axioms for RCF

(1) < is a total order;
(2) ∀x, y, z x ⩽ y → x+ z ⩽ y + z;
(3) ∀x, y, z (x ⩽ y ∧ z > 0) → x · z ⩽ y · z;
(4) ∀x, y (x ⩽ y ↔ ∃z y − x = z · z);
(5) Each polynomial of odd degree has a root.

By checking the shape of subsets of R definable by quantifier-free formula, it is easy to see
(having quantifier elimination) that finite union of intervals are all the definable subsets or
R.

Definition 5.8. Let L be a language containing Lo andM be an L-structure. M is o-minimal
(“o” stands for order) if any definable subset of M is a finite union of (<M -)intervals.

We know that R is o-minimal. We quote a remarkable theorem of Wilkie:

Theorem 5.9. The structure (R, <,+,−, ·, exp, 0, 1) is o-minimal.

Many other o-minimal structures are known and there is a rich theory of o-minimal structures.
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