
1. Monday

We start with two algebraic results whose easiest and most natural
proofs have model-theoretic content.

1.1. Ax’s Theorem. A polynomial f ∈ C[X] defines the polynomial
function f : C → C denoted by the same symbol. If f /∈ C, then f
has a zero. Let z ∈ C. Replacing f with f − z, we see that z is in the
image of f , so f is onto. In particular we have:

if f is 1-1, then f is onto.

Ax proved a theorem generalizing the above fact to several variables.
Let us take f1, . . . , fn ∈ C[X1, . . . , Xn] and define

F : Cn → Cn, F (z1, . . . , zn) := (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn)).

Theorem 1.1 (Ax). If F is 1-1, then F is onto.

We will say that a field K satisfies Ax’s theorem if Theorem 1.1 holds
for K in place of C. (Note that e.g. Q does not satisfy Ax’s theorem,
since the polynomial function X3 is 1-1, but it is not onto.)

Step 1
Any finite field satisfies Ax’s theorem.

Proof of Step 1. For self-functions on finite sets, 1-1 is equivalent to
onto. �

Step 2
Let p be a prime number and Falg

p the algebraic closure of Fp. Then

Falg
p satisfies Ax’s theorem.

Proof of Step 2. Let f1, . . . , fn ∈ Falg
p [X1, . . . , Xn]. Since Falg

p is the
union of its finite subfields, there is m ∈ N such that for each k ∈ N
we have f1, . . . , fn ∈ Fpkm [X1, . . . , Xn]. Therefore, by Step 1, for k,m
as above F (Fn

pkm
) = Fn

pkm
. Since we can also represent Falg

p as the
following union

Falg
p =

⋃
k∈N

Fpkm ,

F (Falg
p ) = Falg

p , so Falg
p satisfies Ax’s theorem. �

Step 3
C satisfies Ax’s theorem.
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Proof of Step 3. For any d, n ∈ N there is a sentence φd,n in the lan-
guage of rings (formal definitions later) expressing Ax’s theorem for
polynomials in n variables of degree at most d. It is enough now to use
the following model-theoretic theorem (to be proved later). �

Theorem 1.2. For any sentence φ in the language of rings, φ is true
in C if and only if φ is true in Falg

p for infinitely many prime numbers
p.

1.2. Nullstellensatz. Let f ∈ C[X] \ {0}. Then f ∈ C if and only if
(f) = C[X]. Therefore we have:

if (f) 6= C[X], then f has a zero.

Hilbert’s Nullstellensatz generalizes the above fact to several variables.

Theorem 1.3 (Hilbert’s Nullstellensatz). Let f1, . . . , fm ∈ C[X1, . . . , Xn].
If (f1, . . . , fm) 6= C[X1, . . . , Xn], then there is z̄ ∈ Cn such that

f1(z̄) = 0, . . . , fm(z̄) = 0.

Proof. Let I := (f1, . . . , fm). Since I 6= C[X1, . . . , Xn], I extends to
a maximal ideal m. Let K := C[X1, . . . , Xn]/m. Let Φ : C → Kalg

denote the following composition:

C
⊆ // C[X1, . . . , Xn] // C[X1, . . . , Xn]/m = K

⊆ // Kalg.

Then Φ is a non-zero homomorphism of fields, so it is an embedding.
Hence we can identify C with a subfield of Kalg. Let as consider a
sentence φ in the language of rings with parameters from C saying
that

∃x1, . . . , xn f1(x1, . . . , xn) = 0 ∧ . . . ∧ fm(x1, . . . , xn) = 0.

Then φ holds in Kalg, since we can take Xi + m for xi (Exercise 1).
Nullstellensatz follows now from another model-theoretic theorem. �

Theorem 1.4. Any extension of algebraically closed fields F ⊆ M
is elementary, i.e. for any sentence φ in the language of rings with
parameters from F , φ holds in F if and only if φ holds in M .

1.3. Basic definitions: the case of fields. We start with a concrete
example. The notion of language of rings appeared above. It is

Lr = {+,−, ·, 0, 1},
where + and · are binary function symbols, − is a unary function sym-
bols and 0, 1 are constant symbols.
An Lr-formula is a formula “obtained in a meaningful way” using:
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• variables xi, yi for i ∈ N (occasionally other symbols may ap-
pear);
• constants 0, 1;
• binary function symbols +, ·, a unary function symbol −, and

the equality symbol =;
• parentheses ), ( and logical connectives ∧,∨,¬;
• quantifiers ∀,∃.

The formal definition of a formula is inductive (induction on the “com-
plexity of a formula”) and a bit cumbersome, so we skip it. Note that
using the logical connectives ∧,∨,¬ we can also define other logical
connectives as →,↔ in the standard way.

Examples of Lr-formulas

φ1 : ∃x x · x = −1 “a square root of −1 exists”

φ2 : ∀x ∃y x = y · y “square roots exist”

φ3 : ∀x ∃y x = (y · y) · y “cube roots exist”

φ : ∃y x = y · y.
We will write the formula φd,n which appeared in the proof of Ax’s
theorem. For simplicity we take d = 1, n = 2 and skip some of the
brackets below:

∀a0, a1, a2, b0, b1, b2 (∀x1, y1, x2, y2 (a0+a1·x1+a2·y1 = a0+a1·x2+a2·y2

∧ b0 + b1 · x1 + b2 · y1 = b0 + b1 · x2 + b2 · y2) → (x1 = x2 ∧ y1 = y2))

→

(∀z, v ∃x, y a0 + a1 · x+ a2 · y = z ∧ b0 + b1 · x+ b2 · y = v).

In the formula φ above the variable x is free (i.e. not quantified) and
in the formulas φ1, φ2, φ3, φd,n there are no free variables. It is better
to denote the formula φ above by φ(x) pointing out the free variable
x. If a formula has no free variables it is called a sentence. Any set of
sentences is called a theory.

Examples of Lr-theories

• the theory of rings;
• the theory of fields;
• the theory of domains of characteristic 5;
• the theory of algebraically closed fields (infinitely many sen-

tences required!).
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Exercise 2: Write (the sentences in) the last two theories.

An Lr-structure is a set M together with two binary functions one
unary function and two specified elements:

+M , ·M : M ×M →M ; −M : M →M ; 0M , 1M ∈M.

If φ is an Lr-sentence, then we can check whether φ holds (or is satisfied)
in M := (M,+M , ·M ,−M , 0M , 1M) or not. If T is an Lr-theory and each
sentence of T holds in an Lr-structure M, then we say that M is a model
of T .

Examples

• If T is the theory of rings, then an Lr-structure M is a model
of T if and only if M is a ring. Similarly for the other theories
in the example above. (This looks tautological and reminds
Tarski’s example: “The sentence ‘Snow is white’ is true if and
only if snow is white”.)
• The sentence φ1 does not hold in R.
• The sentence φ3 holds in R.

Again it is cumbersome to write the formal definition of the satisfaction
of an Lr-sentence in an Lr-structure (Tarski’s definition of truth) but
it conforms to common sense as in the examples above.

Notation
If φ is an Lr-sentence, T is an Lr-theory and M is an Lr-structure, then
we write M |= φ if φ holds in M and M |= T if M is a model of T .

1.4. Basic definitions: the general case. A language L consists of:

• a set of function symbols F and positive integers nf (called the
arity of f) for any f ∈ F ;
• a set of relation symbols R and positive integers nR (called the

arity of R) for any R ∈ R;
• a set of constant symbols C.

Examples

• language of rings above Lr (two function symbols of arity 2, one
function symbol of arity 1 and two constants),
• language of orderings Lo = {<} (one relation symbol of arity

2),
• language of ordered rings Lor = {+,−, ·, <, 0, 1} (two function

symbols of arity 2, one function symbol of arity 1 and two con-
stant symbols)

Let us fix a language L = (F ,R, C). As in Section 1.3, we can produce
L-formulas, L-sentences and L-theories from L.
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By the cardinality of L, denoted |L|, we mean |F| + |R| + |C|. We
notice an easy result.

Lemma 1.5. The set of L-formulas has cardinality |L|+ ℵ0.

If we have an L-formula φ(x1, . . . , xn) (as in Section 1.3, x1, . . . , xn are
all the free variables in φ) and c1, . . . , cn ∈ C, then we can define an
L-sentence φ(c1, . . . , cn) plugging for each free variable xi the constant
symbol ci.
For any set A, we have the new language LA = (F ,R, CA), where

CA = C ∪ {ca|a ∈ A}.
The LA-formulas are usually called L-formulas with parameters from
A.

An L-structure is a set M together with:

• a function fM : Mnf →M for each f ∈ F ;
• a subset RM ⊆MnR for each R ∈ R;
• an element cM ∈M for each c ∈ C.

We denote

M := (M, fM , RM , cM)f∈F ,R∈R,c∈C

and call M the universe of the L-structure M, and fM , RM , cM the
interpretations of the language symbols f,R, c in the structure M.
As in Section 1.3, if we have an L-sentence φ (resp. an L-theory T ),
we can check whether φ holds in an L-structure M (resp. whether M
is a model of T ).

Examples

• (Q, <) is an Lo-structure. It satisfies for example the following
Lo-sentence (density):

∀x, y ∃z x < y → (x < z ∧ z < y).

• (R,+,−, ·, <, 0, 1) is an Lor-structure. It satisfies for example
the following sentence (squares are non-negative)

∀x, y x = y · y → (x > 0 ∨ x = 0).

If M is an L-structure and A ⊆ M , then M is also naturally an LA-
structure. We define:

Th(M) := {φ | φ is an L-sentence and M |= φ},

ThA(M) := {φ | φ is an LA-sentence and M |= φ}.

Definition 1.6. We say that two L-structures M and N are elemen-
tarily equivalent (denoted M ≡ N), if Th(M) = Th(N).
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2. Tuesday

We will prove today the Compactness Theorem, which is the starting
point of any model-theoretic considerations. Let us fix a language
L = (F ,R, C), an L-theory T and an L-sentence φ.

Theorem 2.1 (Compactness Theorem). Let κ := ℵ0 + |L|. If each
finite subset of T has a model, then T has a model of cardinality at
most κ.

Before the proof we need several definitions:

• φ is a logical consequence of T , denoted T |= φ, if for any L-
structure M, M |= T implies M |= φ.
• T is maximal if for any L-sentence α either α ∈ T or ¬α ∈ T .
• T is finitely satisfiable if each finite subset of T has a model.
• T has the witness property if whenever α(x) is an L-formula

with one free variable, then there is c ∈ C such that

[(∃x α(x)) → α(c)] ∈ T.

Note that for any L-structure M, the theory Th(M) is maximal.

Lemma 2.2. Let T be finitely satisfiable and maximal. If ∆ ⊆ T is
finite and ∆ |= φ, then φ ∈ T .

Proof. Assume not, i.e. φ /∈ T . Since T is maximal, ¬φ ∈ T . For
any L-structure M, if M |= ∆ then M |= φ (since ∆ |= φ). Hence
∆ ∪ {¬φ} is a finite subset of T without a model, which contradicts
the finite satisfability of T . �

Lemma 2.3. If T is finitely satisfiable, maximal, and has the witness
property, then T has a model of cardinality at most |C|.

Proof. For c1, c2 ∈ C let us define:

c1 ∼ c2 iff the formula c1 = c2 belongs to T .

Claim 1
The relation ∼ is an equivalence relation on C.

Proof of Claim 1. Let c1, c2, c3 ∈ C and assume that c1 ∼ c2, c2 ∼ c3.
Then the sentences c1 = c2 and c2 = c3 belong to T . Clearly we have:

{c1 = c2, c2 = c3} |= c1 = c3.

By 2.2, the sentence c1 = c3 belongs to T . Hence c1 ∼ c3.
Similarly we show that c1 ∼ c1, and that c1 ∼ c2 implies c2 ∼ c1. �



7

Let M := C/ ∼. Clearly |M | 6 |C|. We need to define the interpreta-
tions of the elements of F ,R and C in the set M to obtain the structure
M with universe M .
For c ∈ C, we define cM := c/ ∼.
Let R ∈ R, n := nR and c1, d1, . . . , cn, dn ∈ C.
Claim 2
If c1 ∼ d1, . . . , cn ∼ dn, then R(c1, . . . , cn) ∈ T iff R(d1, . . . , dn) ∈ T .

Proof of Claim 2. It is enough to show one implication. Assume that
R(c1, . . . , cn) belongs to T . The sentences c1 = d1, . . . , cn = dn also
belong to T . Clearly:

{R(c1, . . . , cn), c1 = d1, . . . , cn = dn} |= R(d1, . . . , dn).

By 2.2, the sentence R(d1, . . . , dn) belongs to T . �

By Claim 2, we can define

(c1/ ∼, . . . , cn/ ∼) ∈ RM iff R(c1, . . . , cn) ∈ T.

Let f ∈ F , n := nf and c1, . . . , cn ∈ C. Since T has the witness
property, there is c ∈ C such that

T |= (∃x f(c1, . . . , cn) = x) → f(c1, . . . , cn) = c.

Hence for any M |= T , we have M |= f(c1, . . . , cn) = c. Hence the
sentence ¬f(c1, . . . , cn) = c does not belong to T . Since T is maximal,
the sentence f(c1, . . . , cn) = c belongs to T . Using 2.2 one proves
(similarly as in Claims 1 and 2) that for any d, d1, . . . , dn ∈ C if c1 ∼
d1, . . . , cn ∼ dn and sentences f(c1, . . . , cn) = c, f(d1, . . . , dn) = d
belong to T , then c ∼ d. Therefore for c, c1, . . . , cn ∈ C, we can define

fM(c1/ ∼, . . . , cn/ ∼) = c/ ∼ iff “f(c1, . . . , cn) = c”∈ T .

We have defined an L-structure M. Let ψ(x1, . . . , xn) be an L-formula.
Using 2.2 again, it can be shown by induction on the complexity of the
formula ψ(x1, . . . , xn) that for any c1, . . . , cn ∈ C we have

M |= ψ(c1/ ∼, . . . , cn/ ∼) iff ψ(c1, . . . , cn) ∈ T.

In particular M |= T . �

We proceed to show that without loss we can assume T is maximal and
has the witness property.

Lemma 2.4. If T is finitely satisfiable, then there is a language L′ ⊇ L
such that |L′| = |L|+ℵ0 and an L′-theory T ′ ⊇ T such that T ′ is finitely
satisfiable and has the witness property.
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Proof. Let us define a new language

C1 := C ∪ {cφ | φ(x) is an L-formula}, L1 := (F ,R, C1),

and an L1-theory

T1 := T ∪ {(∃x φ(x))→ φ(cφ) | φ(x) is an L-formula}.
Claim
T1 is finitely satisfiable.

Proof of Claim. Take ∆, a finite subset of T1, and let ∆0 := ∆ ∩ T .
Since T is finitely satisfiable, there is an L-structure M which is a
model of ∆0. We will expand M to an L1-structure which will be a
model of ∆. For any L-formula φ(x) we need to find a right cMφ ∈ M .

If M |= ∃xφ(x), then we set cMφ ∈ M such that M |= φ(cMφ ). If

M |= ¬∃xφ(x), then we set cMφ ∈M arbitrarily. �

Now we define a language L2 and an L2-theory T2 such that T2 is finitely
satisfiable and “witnesses L1-formulas”. We continue inductively this
process and take L′ :=

⋃
Ln and T ′ :=

⋃
Tn. By Lemma 1.5, |L′| =

|L| + ℵ0. By Claim, T ′ is finitely satisfiable and by the construction,
T ′ has the witness property. �

Lemma 2.5. If T is finitely satisfiable, then there is T ∗ ⊇ T , a finitely
satisfiable and maximal L-theory.

Proof. Let φ be an L-sentence.
Claim
T ∪ {φ} is finitely satisfiable or T ∪ {¬φ} is finitely satisfiable.

Proof of Claim. Assume T ∪{φ} is not finitely satisfiable. Then, there
is a finite ∆ ⊆ T such that ∆ ∪ {φ} has no model. Therefore, for
any L-structure M, if M |= ∆, then M |= ¬φ. Let us take a finite
subset Σ ⊆ T . Since T is finitely satisfiable, there is an L-structure M
such that M |= Σ ∪∆. By the above considerations, M |= ¬φ. Hence
M |= Σ ∪ {¬φ}, so T ∪ {¬φ} is finitely satisfiable. �

Exercise 3: Lemma 2.5 follows from Claim and Zorn’s lemma. �

Proof of Compactness Theorem. By Lemma 2.4, there is a language
L′ ⊇ L of cardinality κ and an L′-theory T ′ ⊇ T such that T ′ is finitely
satisfiable and has the witness property. By Lemma 2.5, there is an
L′-theory T ∗ ⊇ T ′ which is finitely satisfiable and maximal. Since T ′

has the witness property, T ∗ has the witness property as well (as a
larger theory). By Lemma 2.3, T ∗ has a model M of cardinality at
most κ. Then M (or formally its restriction to the language L) is also
a model of T . �
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We say that T proves φ, denoted T ` φ, if there is a “finite logical
proof” showing that φ follows from a finite subset of T (for example
{α, φ} ` α ∧ φ). The following famous result is closely related to the
Compactness Theorem.

Theorem 2.6 (Gödel’s Completeness Theorem). T ` φ if and
only if T |= φ.

Gödel proved the Compactness Theorem using the Completeness The-
orem.

Exercise 4: Assuming the Completeness Theorem prove that the fol-
lowing are equivalent:

(1) T has a model.
(2) T does not prove a contradictory statement, i.e. it is not true

that T ` φ ∧ ¬φ.

T is consistent, if it satisfies the equivalent conditions above. By Com-
pactness Theorem, T is consistent if and only if it is finitely satisfiable.
T is complete, if T is consistent and for any L-sentence φ we have
T |= φ or T |= ¬φ. Of course maximal theories are complete, but
completeness is a more meaningful notion.

Exercise 5: Prove that the following are equivalent:

(1) T is complete;
(2) For any L-structures M,N if M |= T and N |= T , then M ≡ N.

Exercise 6: Assume that T is complete and φ is a sentence. Show that:

(1) If M |= T , then M |= φ iff T |= φ;
(2) T |= φ iff T ∪ {φ} is consistent.

3. Wednesday

Today we prove the model-theoretic theorems from Monday which were
necessary for Ax’s theorem and the Nullstellensatz.
Let L = (F ,R, C) be a language,

M = (M, fM , RM , cM)f∈F ,R∈R,c∈C, N = (N, fN , RN , cN)f∈F ,R∈R,c∈C

be L-structures and Φ : M → N . We say that Φ is an L-monomorphism
between M and N, denoted Φ : M→ N, if it is a one-to-one function
preserving the interpretations of all the function, relation and constant
symbols of L, i.e.

• for each f ∈ F of arity n and all m1, . . . ,mn ∈M we have:

Φ(fM(m1, . . . ,mn)) = fN(Φ(m1), . . . ,Φ(mn));
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• for each R ∈ F of arity n and all m1, . . . ,mn ∈M we have:

(m1, . . . ,mn) ∈ RM iff (Φ(m1), . . . ,Φ(mn)) ∈ RN ;

• for each c ∈ C we have:

Φ(cM) = cN .

We say that Φ is an L-isomorphism between M and N if Φ is a bijection
and an L-monomorphism (then Φ−1 is an L-monomorphism as well).
As usual, if there is an L-isomorphism between M and N, we denote
M ∼= N (or M ∼=L N) and this is an “equivalence relation”.
The following lemma (saying that “isomorphisms preserve the truth”)
can be proven by induction on the complexity of formulas.

Lemma 3.1. Let φ(x1, . . . , xn) be an L-formula and m1, . . . ,mn ∈M .
If Φ : M→ N is an isomorphism, then we have

M |= φ(m1, . . . ,mn) iff N |= φ(Φ(m1), . . . ,Φ(mn)).

M is an L-substructure of N if M ⊆ N and the inclusion is an L-
monomorphism, i.e. we have fM ⊆ fN , RM = RN ∩MnR , cM = cN for
all f ∈ F , R ∈ R, c ∈ C.

Remark 3.2. Let M0 ⊆ M . We say that M0 is closed under F and
C, if for all f ∈ F we have fM(M

nf

0 ) ⊆ M0 and for all c ∈ C, we
have cM ∈ M0. If M0 is closed under F and C, then M0 together
with the restrictions of all the interpretations of elements of L is an
L-substructure of M. Abusing the language (the one we speak) a little
bit, we sometimes say that a subset M0 ⊆M is an L-substructure of M
if it is closed under F and C (compare with group theory, ring theory,
etc.). If Φ : M → N is an L-monomorphism, then Φ(M) is closed
under F and C, so Φ(M) becomes an L-substrucutre of N. Clearly,
Φ becomes than an L-isomorphism between M and Φ(M). If L is a
purely relational language, then a substructure is the same as a subset.

Example

• (N, <) is an Lo-substructure of (Q, <), (Q, <) is an Lo-substructure
of (R, <);
• (Q,+,−, ·) is an Lr-substructure of (R,+,−, ·).
• If N is a ring and M is an Lr-substructure of N, then M is a

(sub)ring as well. (This is the reason why we have also included
the unary symbol “−” in the language Lr.)

Definition 3.3. We say that M is an elementary substructure of N
(denoted M 4 N), if M is a substructure of N and for any L-sentence
φ with parameters from M , M |= φ iff N |= φ.
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The above definition can be rephrased. If M is a substructure of N,
then the following are equivalent:

(1) M 4 N;
(2) ThM(M) = ThM(N).

In particular, if M 4 N, then M ≡ N . We will see below that the
converse need not hold.

Non-examples

• R is not an elementary substructure C, since the sentence φ1

from Section 1.3 holds in C but it does not hold in R. Hence
these structures are not even elementarily equivalent.
• (N, <) is not an elementary substructure of (Q, <) since the

ordering on N is not dense. Hence these structures are not
even elementarily equivalent.
• (N>0, <) is not an elementary substructure of (N, <) (1 is the

smallest element in the substructure) but we even have

(N>0, <) ∼= (N, <),

so, by 3.1, we also have (N>0, <) ≡ (N, <).

It is difficult now to give examples of elementary substructures. The
following theorem provides many such in a general context.

Theorem 3.4 (Upward Löwenheim-Skolem Theorem). Let M be
an infinite L-structure and κ > |M |+ |L|. Then there is N <M such
that |N | = κ.

Proof. Let us expand the language LM to L′ by adding new constant
symbols {ci|i < κ} and define an L′-theory:

T := ThM(M) ∪ {ci 6= cj|i < j < κ}.

Since M is infinite, we can easily make M a model of any finite subset
of T . By the compactness theorem, T has a model N of cardinality
at most κ. Hence |N | = κ (new constants!) and N (or rather its
restriction to the language L) is an elementary extension of M. �

We will sometimes denote a structure by the same symbol as its uni-
verse, for example in the proof below.

Proof of Theorem 1.4. Let us take κ > |M |. By Theorem 3.4, there
are elementary extensions F 4 F ′,M 4M ′ such that |F ′| = |M ′| = κ.
Hence we have extensions of algebraically closed fields F ⊆ F ′, F ⊆M ′.
By the choice of κ, we have:

trdegF F
′ = trdegF M

′.
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Exercise 7: There is an F -isomorphism Φ : F ′ →M ′.
Hence we have a commutative diagram:

F ′
Φ // M ′

F
⊆ //

4

OO

M.

4

OO

Let us take an Lr-formula φ(x1, . . . , xn) and t1 . . . , tn ∈ F . Since F 4
F ′, “Φ preserves the truth” (3.1) and Φ(t1) = t1, . . . ,Φ(tn) = tn (Φ is
over F ), we get that:

F |= φ(t1 . . . , tn) iff M ′ |= φ(t1 . . . , tn).

Since M 4M ′, we get that:

M |= φ(t1 . . . , tn) iff M ′ |= φ(t1 . . . , tn).

Therefore F 4M . �

Let ACF denote the Lr-theory of algebraically closed fields and for p, a
prime number or 0, ACFp denote the Lr-theory of algebraically closed
fields of characteristic p.

Theorem 3.5. ACFp is complete.

Proof. Let us take two algebraically closed fields K1, K2 of character-
istic p and their prime subfields F1, F2. Clearly, F alg

1
∼= F alg

2 . By 1.4,

F alg
1 4 K1 and F alg

2 4 K2. In particular we have (using 3.1):

Th(K1) = Th(F alg
1 ) = Th(F alg

2 ) = Th(K2).

Hence any two models of ACFp are elementarily equivalent, so ACFp
is complete (see Exercise 5). �

We can now state and prove an extended version of Theorem 1.2.

Theorem 3.6 (Lefschetz Principle). Let φ be an Lr-sentence. The
following are equivalent:

(1) For almost all prime numbers p, Falg
p |= φ;

(2) For infinitely many prime numbers p, Falg
p |= φ;

(3) ACF0 |= φ;
(4) C |= φ.

Proof. The implication (1)⇒ (2) is obvious.
We will prove (2) ⇒ (3). By Exercise 6(2), it is enough to show that
ACF0 ∪{φ} is consistent. Let T0 be a finite subset of ACF0 ∪{φ}. For
n ∈ N>0, let φn be the following Lr-sentence:

¬(1 + . . .+ 1 = 0) (+ taken n times).
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Since ACF0 = ACF∪{φn|n ∈ N>0}, there is N ∈ N such that

T0 ⊂ ACF∪{φn|n < N} ∪ {φ}.
Let us take a prime number p such that p > N and Falg

p |= φ. Then

Falg
p |= T0, so ACF0 ∪{φ} is finitely satisfiable.

The equivalence (3)⇔ (4) is given by Exercise 6(1).
We will prove (3)⇒ (1). Assume that (1) does not hold, i.e. there are
infinitely many prime numbers p such that Falg

p |= ¬φ. By the already
proven implication (2)⇒ (3), we get that ACF0 |= ¬φ, so (3) does not
hold (since ACF0 is consistent). �

4. Friday

Today we will find a criterium under which formulas have a particularly
simple form. Let us fix a language L = (F ,R, C) and an L-structure
M. First we look at a notion which is somehow dual to the notion of
a formula. Let n > 0 and x̄ := (x1, . . . , xn).

Definition 4.1. For an LM -formula φ(x̄) let

φ(x̄)M := {m̄ ∈Mn | M |= φ(m̄)}.
A subset X ⊆ Mn is called definable (in M over M), if there is an
LM -formula φ(x̄) such that X = φ(x̄)M .

Remark 4.2. In the definition above, there is a subset of Mn definable
in the structure M with parameters from M . It is not good to confuse
those three difference appearances of M .

Before seeing examples, let us note some basic properties of definable
sets. If we have LM -formulas φ(x̄), α(x̄), then:

(φ(x̄) ∨ α(x̄))M = φ(x̄)M ∪ α(x̄)M;

(φ(x̄) ∧ α(x̄))M = φ(x̄)M ∩ α(x̄)M;

(¬φ(x̄))M = Mn \ φ(x̄)M;

(∃xk+1, . . . , xn φ(x̄))M = πnk (φ(x̄)M),

where πnk : Mn →Mk is the projection on the first k coordinates.
Hence the conjunction corresponds to the intersection, the disjunction
to the union, the negation to the complement, and the existential quan-
tifier to the coordinate projection.
Basic definable sets are the graphs of fM for f ∈ F , the subsets RM

for R ∈ R, the points cM for c ∈ C and a bit more complicated sets as

{(a, b) ∈M2 | M |= RM(fM1 (fM2 (a)), fM3 (b))}.
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(I skip the technical definition of the notion of term here.) Other
definable sets come from these basic ones after applying Boolean com-
binations (i.e. unions, intersections and complements) and projections.
The following question arises: how many of these operations (most im-
portantly projections) have to be taken to obtain all the definable sets?

Examples

• If K is a field (considered as an Lr-structure), then any set of
solutions of a system of polynomial equations in n variables is
a definable subset of Kn (e.g. for n = 2 we have parabolas,
hyperbolas, etc.). Such a set of solutions is called a Zariski
closed set. A Boolean combination of Zariski closed sets is still
a definable set, such a set is called a constructible set.
• For any Lo-structure (X,<) and x, y ∈ X, the interval (x, y) is

a definable set.
• The order <R is definable in the Lr-structure R. Hence in a

way, the Lor-structure R is definable in the Lr-structure R.
• N is definable in Z.
• Z is definable in Q.
• N,Z,Q are not definable in C.
• N,Z,Q are not definable in R.

Theorem 4.3 (Chevalley’s Theorem). If K is an algebraically closed
field, then a projection of a constructible set is again a constructible set.

The above theorem (to be proved later) says that in the case of al-
gebraically closed fields the above-mentioned process terminates very
quickly, actually no projections are needed at all! In such a case we say
that the theory of an algebraically closed field, ACFp, has quantifier
elimination (definition below).

Definition 4.4. An L-theory T has quantifier elimination if any L-
formula φ(x̄) is equivalent modulo T with a quantifier-free formula, i.e.
there is a formula α(x̄) having no quantifiers such that

T |= ∀x̄ (φ(x̄)↔ α(x̄)).

We proceed to find a checkable criterium for quantifier elimination,
which will serve to prove Chevalley’s theorem. We will need some
more notions.

Definition 4.5. Let M be an L-structure and m̄ ∈Mn.

• An (L-)type q(x̄) is any set of formulas with free variables x̄.
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• If q(x̄) is a type, then the set of realizations of q(x̄) in M is

q(x̄)M :=
⋂

φ(x̄)∈q(x̄)

φ(x̄)M.

• A type q(x̄) is finitely satisfiable in M, if for any finite q0(x̄) ⊆
q(x̄), the set q0(x̄)M is non-empty.
• The quantifier-free type of m̄ in M is the following collection of
L-formulas:

qftpM(m̄) := {φ(x̄) | M |= φ(m̄) and φ(x̄) is quantifier-free}.
• The complete type of m̄ in M is the following collection of L-

formulas:

tpM(m̄) := {φ(x̄) | M |= φ(m̄)}.

Remark 4.6. Let M be an L-substructure of N and ā ∈Mn.

(1) It can be shown by induction on the complexity of formulas
that qftpM(ā) = qftpN(ā), e.g. for any f1, f2 ∈ F ;R1, R2 ∈ R
we clearly have

fM1 (ā) = fM2 (ā) iff fN1 (ā) = fN2 (ā),

ā ∈ RM
1 iff ā ∈ RM

2 .

(2) If M 4 N, then tpM(ā) = tpN(ā), but in general the complete
types need not be equal. For example tpR(−1) 6= tpC(−1).

(3) Actually, if M is a substructure of N, then M 4 N if and only
if for all ā ∈Mn (and all n > 0) we have tpM(ā) = tpN(ā).

We can formulate now an intuitive (but still not easy to check) criterium
for quantifier elimination.

Lemma 4.7. An L-theory T has quantifier elimination if and only if,
for all models M of T , all n ∈ N and ā, b̄ ∈Mn we have:

qftpM(ā) = qftpM(b̄) ⇒ tpM(ā) = tpM(b̄).

Proof. Exercise 8: The (easy) left-to-right implication.
Assume that T does not have quantifier elimination and take an L-
formula φ(x̄) which is not equivalent modulo T with a quantifier free
formula. We will find in two steps M |= T and āM , b̄M ∈Mn such that

qftpM(ā) = qftpM(b̄) and tpM(ā) 6= tpM(b̄).

Let L′ be L expanded by new constant symbols ā, b̄. Since φ(x̄) is
not equivalent modulo T to a quantifier free formula, the following
L′-theory is consistent:

T ∪ {φ(ā) ∧ ¬α(ā) | T |= ∀x̄ (α(x̄)→ φ(x̄)) and α(x̄) is quant.-free}.
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Let (N, āN) |= Tā, where Tā is the above L′-theory. The first step
is completed, in the second one we will find an appropriate b̄. Since
(N, āN) |= Tā, the following L′-theory is consistent:

Tā ∪ {α(b̄) ∧ ¬φ(b̄) | α(x̄) ∈ qftpN(āN)}.
Let (M, āM , b̄M) be a model of this theory, so qftpM(āM) = qftpM(b̄M).
However, M |= φ(ā) and M |= ¬φ(b̄), hence tpM(āM) 6= tpM(b̄M). �

In the next lemma we find a general (independent from any complete
theory T ) criterium for checking equality of quantifier-free types.

Lemma 4.8. Let M,N be L-structures, ā ∈ Mn and b̄ ∈ Nn. The
following are equivalent:

(1) there is an L-substructure M0 ⊆ M containing ā and an L-
monomorphism Φ : M0 → N such that Φ(ā) = b̄;

(2) qftpM(ā) = qftpN(b̄).

Proof. Let us assume (1) and set N0 := Φ(M0). Then N0 (i.e. N0 with
the restrictions of all fN , RN , cN) is an L-substructure of N and Φ is
an L-isomorphism between M0 and N0. By Remark 4.6 and 3.1, we
have:

qftpM(ā) = qftpM0(ā) = qftpN0(b̄) = qftpN(b̄).

Let us assume (2). We define M0 inductively. (It will be the sub-
structure of M generated by ā.) Let A0 := CM ∪ {a1, . . . , an}, where
ā = (a1, . . . , an). For k ∈ N, we define:

Ak+1 := Ak ∪
⋃
f∈F

{fM(A
nf

k )}.

Finally, let M0 :=
⋃
k Ak. Then M0 is closed under all the fM , so

it gives M0, an L-substructure of M. We define now inductively a
monomorphism Φ : M0 → N taking ā to b̄. On A0 we define:

Φ0(a1) := b1, . . . ,Φ0(an) := bn, Φ0(cM) := cN for c ∈ C.
Since qftpM(ā) = qftpN(b̄) we get that:

• for i, j 6 n, ai = aj if and only if bi = bj;
• for c1, c2 ∈ C, cM1 = cM2 if and only cN1 = cN2 . (Note that the

“quantifier-free theory of M” is a part of qftpM(ā)!)

Hence Φ0 is well-defined and injective on A0.
We will define one more step. For any f ∈ F and s̄ ∈ Anf

0 let

Φ1(fM(ā)) := fN(Φ0(ā)).

As above, Φ1 is well-defined and injective on A1. Similarly, we can see
that Φ1 satisfies the definition of L-monomorphism “wherever it makes
sense”. We continue to define Φ2 : A2 → N etc. and set Φ :=

⋃
Φn. �
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Remark 4.9. As in the proof of the implication (2) ⇒ (1) above, for
any A ⊆M we can define a substructure of M generated by A. Hence
we also get the notion of a finitely generated substructure of M. If M0

is a substructure of M, then M0〈A〉 denotes the substructure of M
generated by M0 ∪ A. The Lr-substructure of a ring R generated by
A ⊆ R is exactly the subring of R generated by A.

To formulate the main criterium for quantifier elimination, we need
to define one more property of structures which is called saturation.
Existence of saturated structures allows to work in one model of a
complete theory, rather than in all of them.

Definition 4.10. An L-structure M is ℵ0-saturated, if for any finite
A ⊆M and any finitely satisfiable LA-type q(x) (one variable!), q(x)M

is non-empty.

Exercise 9: Show that if M is ℵ0-saturated, then for any finite A ⊆M
and any finitely satisfiable LA-type q(x1, . . . , xn) (finitely many vari-
ables!), q(x1, . . . , xn)M is non-empty.

Examples

• The field R (considered as an Lr-structure) is not ℵ0-saturated.
To see this, consider for each n ∈ N the following Lr-formula:

φn(x) : ∃y y2 + 1 + . . .+ 1 = x (“+” taken n times),

and let q(x) := {φn(x) | n ∈ N}. Any finite subset of q(x) is
satisfiable by a large enough real number, however q(x)R = ∅.
Intuitively, “+∞” satisfies q(x).
• The field C (considered as an Lr-structure) is ℵ0-saturated. We

will see it later as a consequence of quantifier elimination.

The following existence result can be proved similarly as the Upper
Löwenheim-Skolem Theorem.

Lemma 4.11. Let M be an infinite L-structure. Then there is N <M
which is ℵ0-saturated.

We can finally formulate and show our desired criterion for quantifier
elimination. See Remark 4.9 for some of the terminology used below.

Theorem 4.12 (Schoenfield-Blum Criterion). Let T be an L-
theory without finite models. The following are equivalent:

(1) If M1,M2 |= T , M2 is ℵ0-saturated, U ⊆M1,M2 is a common
finitely generated L-substructure and c ∈ M1, then there is an
L-monomorphism Φ : U〈c〉 →M2 which is the identity on U .

(2) T has quantifier elimination.
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Proof of Theorem 4.12. Exercise 10: Prove the (not so easy) implica-
tion (2)⇒ (1) (how the saturation is used?).
Let us assume (1). To show (2) we will check the criterion for quantifier
elimination from Lemma 4.7. Let us take M |= T and ā, b̄ ∈ Mn such
that qftpM(ā) = qftpM(b̄). We aim to show that tpM(ā) = tpM(b̄).
By 4.11, there is M 4 N such that N is ℵ0-saturated. Since for any
s̄ ∈ Mn we have tpM(s̄) = tpN(s̄) (Remark 4.6), we may assume that
M is already ℵ0-saturated.
By 4.8, there are finitely generated (see Remark 4.9) substructures
Mā,Mb̄ ⊆M such ā ∈ Mn

ā , b̄ ∈ Mn
b̄

and an L-isomorphism Ψ : Mā →
Mb̄ such that Ψ(ā) = b̄.
Let us take an L-formula φ(x̄) such that M |= φ(ā). We will show that
M |= φ(b̄). For simplicity we assume that φ(x̄) is existential, i.e. that
there is a quantifier-free formula ψ(x̄, ȳ), where ȳ = (y1, . . . , yk), such
that

φ(x̄) = ∃ȳ ψ(x̄, ȳ).

Since M |= φ(ā), there is s̄ = (s1, . . . , sk) ∈Mk such that M |= ψ(ā, s̄).
We will inductively extend Ψ to an L-monomorphism

Ψk : Mā〈s1, . . . , sk〉 →M.

Let us take 0 6 l < k, set U := Mā〈s1, . . . , sl〉 and assume that we
have an L-monomorphism Ψl : U → M extending Ψ. We will define
Ψl+1 using the condition (1). We first extend Ψl to an L-isomorphism
(denoted also Ψl) between M and M′, an L-superstructure of Mb̄. The
existence of such an extension is left as Exercise 11. We apply (1) for
U as above and

M1 := M′, M2 := M, c := Ψ(sl+1).

We get an L-monomorphism Φ : U〈Ψ(sl+1)〉 →M which is the identity
on U. Let

Ψl+1 : Mb̄〈s1, . . . , sl, sl+1〉 →M, Ψl+1(t) := Φ(Ψl(t)).

Since Φ is identity on U, Φl+1 extends Φl. Therefore, we have induc-
tively defined an extension of Ψ to Ψk : Mā〈s̄〉 →M.
Let t̄ := Ψk(s̄). Since M |= ψ(ā, s̄) and ψ(x̄, ȳ) is quantifier-free, we get
by Remark 4.6 that Mā〈s̄〉 |= ψ(ā, s̄). Clearly Ψk is an L-isomorphism
between Mā〈s̄〉 and Mb̄〈t̄〉. By 3.1, we have Mb̄〈t̄〉 |= ψ(b̄, t̄). Again by
Remark 4.6, we get M |= ψ(b̄, t̄). Hence M |= φ(b̄) indeed. �
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5. Saturday

Today we will apply the Schoenfield-Blum Criterion for quantifier elim-
ination to several theories. To do that, we need to understand the “iso-
morphism type” of an element over a finitely generated substructure.

Theorem 5.1. The theory ACF has quantifier elimination.

Proof. We will use the criterion from Theorem 4.12. Let us take al-
gebraically closed fields M1,M2 such that M2 is ℵ0-saturated, a com-
mon finitely generated subring (an Lr-substructure) R ⊆ M1,M2 and
c ∈ M1. Let K be the fraction field of R. Then K naturally embedds
both in M1 and M2, so we may assume that R = K.

Case 1 c is algebraic over K (the saturation will not be used)

Let f ∈ K[X] be the minimal polynomial of c over K. Then we have:

(∗) K(c) = K[c] ∼=K K[X]/(f).

Since M2 is algebraically closed, there is d ∈ M2 such that f(d) = 0.
Again we have:

(∗∗) K(d) = K[d] ∼=K K[X]/(f).

Composing the isomorphisms from (∗) and (∗∗), we get a monomor-
phism K(c)→M2 over K.

Case 2 c is transcendental over K (the saturation will be used)

Let ā be a finite tuple generating K, and q(x) be an Lā-type expressing
that x is transcendental over K. The type q(x) is finitely satisfiable
in M2, since every polynomial has only finitely many zeroes and M2 is
infinite being algebraically closed. Since M2 is ℵ0-saturated, there is
d ∈ q(x)M2 . Then d is transcendental over K and we have:

K(c) ∼=K K(X) ∼=K K(d).

Composing the above isomorphisms we get a monomorphism K(c) →
M2 over K. �

Exercise 12: Let K be any field and V ⊆ Kn. Show that V is con-
structible if and only if, there is a quantifier-free LK-formula φ(x̄) such
that V = φ(x̄)K .

Corollary 5.2. If K is an algebraically closed fields and X ⊆ K is
definable, then X is finite or cofinite.

Proof. By Exercise 12 and quantifier elimination for ACF. �
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Note that we would not be able to check the condition (1) from the
Schoenfield-Blum test, if M2 were not ℵ0-saturated. For example take
K = Q, M1 = Q(X)alg, M2 = Qalg and c = X.

Exercise 13: Show that an algebraically closed field is saturated if an
only if it has infinite transcendence degree over its prime subfield.

Definition 5.3. Let M be an L-structure and T be an L-theory.

(1) M is minimal, if any definable subset of M is either finite or
cofinite.

(2) T is strongly minimal, if for any M |= T , M is minimal.
(3) M is strongly minimal, if ThM(M) is strongly minimal, i.e. for

any M 4 N, N is minimal.

Examples

(1) ACF is strongly minimal.
(2) Let LE = {E}, where E is a binary relation symbol. An LE-

structure (M,EM) such that EM is an equivalence relation hav-
ing one EM -class of size n for each n ∈ N>0 and no infinite
classes is minimal and not strongly minimal. Quantifier elimi-
nation necessary for minimality. Bounds...

Let K be a field. We know that if K is algebraically closed, then K
is strongly minimal. Actually, the converse also holds. But if K is
minimal, then we know that K is algebraically closed only if K has
finite characteristic.

Let DLO be the Lo-theory of dense linear orders without endpoints.

Theorem 5.4. DLO has quantifier elimination.

Proof. Let M1,M2 |= DLO, where M2 is ℵ0-saturated (the saturation
actually will not be used here) and Mi = (M,<i) for i = 1, 2. Since
the language Lo is purely relational, any subset of an Lo-structure is
an Lo-substructure. In particular, a finitely generated substructure is
just a finite subset. Let us take a finite substructure U ⊆M1,M2 and
c ∈M1 \U . Since the order <1 is linear, the order <U is linear as well,
so U = {u1, . . . , un}, where u1 <

U . . . <U un.

Case 1 c <1 u1

Since <2 has no end-points, there is d ∈ M2 such that d <2 u1. We
define an Lo-monomorphism

Ψ : U〈c〉 →M, Ψ(c) = d, Ψ|U = idU .

Case 2 there is 1 6 i < n such that ui <
1 c <1 ui+1
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Since <2 is dense, there is d ∈ M2 such that ui <
2 d <2 ui+1 and we

define Ψ as in Case 1.

Case 3 un <
1 c

This is analogous to Case 1. �

Let R be a ring and define the following language

LR := (+,−, 0, λr)r∈R,
where + is a binary function symbol, − and all λr are unary function
symbol and 0 is a constant symbol. Then any (left,right) R-module is
naturally an LR-structure and in this case an LR-substructure os the
same as R-submodule.

Theorem 5.5. Let K be a field. The LK-theory of infinite K-vector
spaces has quantifier elimination

Proof. Exercise 14: check that the (very easy here) Shoenfield-Blum
test holds. �

Let us consider now the real field.

Fact 5.6. The Lr-theory Th(R) does not have quantifier elimination.

Proof. Assume that the Lr-theory Th(R) has quantifier elimination.
As in 5.2, we conclude that each Lr-definable subset of R is either
finite or cofinite. But [0,∞) is definable by the formula ∃y x = y2, a
contradiction. �

We can also considerR as an Lor-structure and this is the right language
for quantifier elimination.

Theorem 5.7 (Tarski). The Lor-theory Th(R) has quantifier elimina-
tion.

We have no time for the proof. We will just write an Lor-theory RCF
whose models are exactly the same as models of Th(R). Such models
are called real closed fields
Axioms for RCF

(1) < is a total order;
(2) ∀x, y, z x 6 y → x+ z 6 y + z;
(3) ∀x, y, z (x 6 y ∧ z > 0)→ x · z 6 y · z;
(4) ∀x, y (x 6 y ↔ ∃z y − x = z · z);
(5) Each polynomial of odd degree has a root.

By checking the shape of subsets of R definable by quantifier-free for-
mula, it is easy to see (having quantifier elimination) that finite union
of intervals are all the definable subsets or R.
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Definition 5.8. Let L be a language containing Lo and M be an L-
structure. M is o-minimal (“o” stands for order) if any definable subset
of M is a finite union of (<M -)intervals.

We know that R is o-minimal. We quote a remarkable theorem of
Wilkie:

Theorem 5.9. The structure (R, <,+,−, ·, exp, 0, 1) is o-minimal.

Many other o-minimal structures are known and there is a rich theory
of o-minimal structures.

References


	1. Monday
	1.1. Ax's Theorem
	1.2. Nullstellensatz
	1.3. Basic definitions: the case of fields
	1.4. Basic definitions: the general case

	2. Tuesday
	3. Wednesday
	4. Friday
	5. Saturday
	References

