1. MoONDAY

We start with two algebraic results whose easiest and most natural proofs have model-
theoretic content.

1.1. Ax’s Theorem. A polynomial f € C[X] defines the polynomial function f : C — C
denoted by the same symbol. If f ¢ C, then f has a zero. Let z € C. Replacing f with
f — z, we see that z is in the image of f, so f is onto. In particular we have:
if fis 1-1, then f is onto.

Ax proved a theorem generalizing the above fact to several variables. Let us take fi,..., f, €
C[Xy,...,X,] and define

F:C"—=C" F(z1,...y20) = (filz1,- -, 20)s s ful(z1, -y 20)).
Theorem 1.1 (Ax). If F' is 1-1, then F is onto.

We will say that a field K satisfies Ax’s theorem if Theorem [I.1] holds for K in place of C.
(Note that e.g. @ does not satisfy Ax’s theorem, since the polynomial function X3 is 1-1,
but it is not onto.)

Step 1
Any finite field satisfies Ax’s theorem.

Proof of Step 1. For self-functions on finite sets, 1-1 is equivalent to onto. O

Step 2
Let p be a prime number and F3® the algebraic closure of I,. Then F3® satisfies Ax’s
theorem.

Proof of Step 2. Let fi,..., f. € ]F;lg[Xl, ..., X,]. Since Fglg is the union of its finite sub-
fields, there is m € IN such that for each & € IN we have fi,...,f, € Fm[Xy,..., X,].
Therefore, by Step 1, for k, m as above F’ (szm) = F;‘km. Since we can also represent ]F;'jjlg as
the following union
Fo = | ) Fpem,
kEN
F(IF3l8) = 2, so F4'% satisfies Ax’s theorem. O

Step 3
C satisfies Ax’s theorem.

Proof of Step 3. For any d,n € IN there is a sentence ¢4, in the language of rings (formal
definitions later) expressing Ax’s theorem for polynomials in n variables of degree at most d.
It is enough now to use the following model-theoretic theorem (to be proved later). 0

Theorem 1.2. For any sentence ¢ in the language of rings, ¢ is true in C if and only if ¢
18 true in ]Fglg for infinitely many prime numbers p.

1.2. Nullstellensatz. Let f € C[X]\{0}. Then f € C if and only if (f) = C[X]. Therefore

we have:
if (f) # C[X], then f has a zero.
Hilbert’s Nullstellensatz generalizes the above fact to several variables.

Theorem 1.3 (Hilbert’s Nullstellensatz). Let f1,..., fn, € C[ X1, ..., X,]. If (f1,..., f;m) #
C[Xy,...,X,], then there is z € C" such that

fi(2)=0,..., fu(2) = 0.
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Proof. Let I := (f1,..., fm). Since I # C[Xy,...,X,], I extends to a maximal ideal m. Let
K :=C[Xy,...,X,]/m. Let ® : C — K8 denote the following composition:

C—=C[Xy,...,X,] — C[X1,..., X,]/m = K —— K&,

Then @ is a non-zero homomorphism of fields, so it is an embedding. Hence we can identify C
with a subfield of K22, Let as consider a sentence ¢ in the language of rings with parameters
from C saying that

Azy, .., fi(zg, o x,) =0A A f(xy, . x,) = 0.

Then ¢ holds in K8, since we can take X; +m for z; (Exercise 1). Nullstellensatz follows
now from another model-theoretic theorem. ]

Theorem 1.4. Any extension of algebraically closed fields FF C M is elementary, i.e. for
any sentence ¢ in the language of rings with parameters from F', ¢ holds in F if and only if

¢ holds in M.

1.3. Basic definitions: the case of fields. We start with a concrete example. The notion
of language of rings appeared above. It is

Lr = {+7 "y _7Oa ]-}7

where + and - are binary function symbols, — is a unary function symbols and 0, 1 are constant
symbols.
An L,-formula is a formula “obtained in a meaningful way” using:

e variables x;,y; for i € IN (occasionally other symbols may appear);

constant symbols 0, 1;

binary function symbols +, -, a unary function symbol —, and the equality symbol =;
parentheses ), ( and logical connectives A, V, —;

quantifiers V, 3.

The formal definition of a formula is inductive (induction on the “complexity of a formula”)
and a bit cumbersome, so we skip it. Note that using the logical connectives A, V,— we can
also define other logical connectives as —, <> in the standard way.

Examples of L,.-formulas
¢1: drxx-x=-1 ‘“asquare root of —1 exists”
¢o: Vrxdyx=y-y “all square roots exist”
¢3: VrIdyz=(y-y)-y “cube roots exist”
¢: Jyx=y-y.

We will write the formula ¢4, which appeared in the proof of Ax’s theorem. For simplicity
we take d = 1,n = 2 and skip some of the brackets below:

Vag, a1, as, bo, by, by (Va1,y1, 02,92 (ao +ay - o1 +ag-y1 = ao+ a1 - T2 + az - Yo
ANbo+by-a1+by-yp =bg+br-22+by-y2) — (v1 =22 Ay =192))
—
(Vz,v dz,y ap+ay-x+ay-y=2 N bg+by-x+by-y=n0).
In the formula ¢ above the variable z is free (i.e. not quantified) and in the formulas
b1, P2, O3, Ga.n there are no free variables. It is better to denote the formula ¢ above by ¢(z)

pointing out the free variable z. If a formula has no free variables it is called a sentence. Any
set of sentences is called a theory.

Examples of L,.-theories



the theory of rings;

the theory of fields;

the theory of domains of characteristic 5;

the theory of algebraically closed fields (infinitely many sentences required!).

Exercise 2: Write (the sentences in) the last two theories.

An L,-structure is a set M together with two binary functions one unary function and two
specified elements:

+M MM M — M, MM M, 0M 1M e M.
If ¢ is an L,-sentence, then we can check whether ¢ holds (or is satisfied) in

M = (M, +M, M M oM M)

or not. If T is an L.-theory and each sentence of T" holds in an L,-structure M, then we say
that M is a model of T'.

Examples

e If T is the theory of rings, then an L.-structure M is a model of T if and only if M is
a ring. Similarly for the other theories in the example above. (This looks tautological
and reminds Tarski’s example: “The sentence ‘Snow is white’ is true if and only if
snow is white”.)

e The sentence ¢; does not hold in R.

e The sentence ¢3 holds in R.

Again it is cumbersome to write the formal definition of the satisfaction of an L,-sentence
in an L,-structure (Tarski’s definition of truth) but it conforms to common sense as in the
examples above.

Notation
If ¢ is an L,-sentence, T is an L,-theory and M is an L,-structure, then we write M |= ¢ if
¢ holds in M and M |= T if M is a model of T

1.4. Basic definitions: the general case. A language L consists of:

e a set of function symbols F and positive integers n; (called the arity of f) for any
ferF;

e a set of relation symbols R and positive integers ng (called the arity of R) for any
ReR;

e a set of constant symbols C.
Examples

e language of rings above L, (two function symbols of arity 2, one function symbol of
arity 1 and two constants),

e language of orderings L, = {<} (one relation symbol of arity 2),

e language of ordered rings L, = {+, —, -, <,0, 1} (two function symbols of arity 2, one
function symbol of arity 1 and two constant symbols)

Let us fix a language L = (F,R,C). As in Section 1.3, we can produce L-formulas, L-
sentences and L-theories from L.
By the cardinality of L, denoted |L|, we mean |F|+ |R| + |C|. We notice an easy result.

Lemma 1.5. The set of L-formulas has cardinality |L| + R.

If we have an L-formula ¢(z1,...,x,) (as in Section 1.3, z1,...,x, are all the free variables
in ¢) and ¢y, ..., ¢, € C, then we can define an L-sentence ¢(cy, ..., c,) plugging for each free
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variable x; the constant symbol c;.
For any set A, we have the new language L4 = (F,R,C4), where

Ca=CU{c,la € A}.
The L 4-formulas are usually called L-formulas with parameters from A.

An L-structure is a set M together with:

e a function fM : M"™ — M for each f € F;
e a subset RM C M"~ for each R € R;
e an element ¢ € M for each ¢ € C.

We denote
M := (M7 fMJ RM7 CM)fEJ—',RGR,CGC

and call M the universe of the L-structure M, and f™, RM c™ the interpretations of the
language symbols f, R, ¢ in the structure M.
As in Section 1.3, if we have an L-sentence ¢ (resp. an L-theory T'), we can check whether
¢ holds in an L-structure M (resp. whether M is a model of T).
Examples

e (Q, <) is an L,-structure. It satisfies for example the following L,-sentence (density):

Ve,y3dz e<y — (z<z Az<y).

e (R,+,—,-,<,0,1) is an L,-structure. It satisfies for example the following sentence
(squares are non-negative)

Ve,y x=y-y — (x>0 V z=0).
If M is an L-structure and A C M, then M is also naturally an L 4-structure. We define:
Th(M) := {¢ | ¢ is an L-sentence and M = ¢},
Tha(M) :={¢ | ¢ is an Ly-sentence and M |= ¢}.

Definition 1.6. We say that two L-structures M and N are elementarily equivalent (denoted
M = N), if Th(M) = Th(N).

2. TUESDAY

We will prove today the Compactness Theorem, which is the starting point of any model-
theoretic considerations. Let us fix a language L = (F,R,C), an L-theory T and an L-
sentence ¢.

Theorem 2.1 (Compactness Theorem). Let  := Xo+ |L|. If each finite subset of T has
a model, then T has a model of cardinality at most k.

Before the proof we need several definitions:
e ¢ is a logical consequence of T, denoted T' |= ¢, if for any L-structure M, M = T
implies M = ¢.
e T is maximal if for any L-sentence « either « € T or ma € T'.
e T'is finitely satisfiable if each finite subset of T has a model.
e T has the witness property if whenever a(x) is an L-formula with one free variable,
then there is ¢ € C such that

[(Fr a(z)) — ale)] eT.
Note that for any L-structure M, the theory Th(M) is maximal.

Lemma 2.2. Let T be finitely satisfiable and mazimal. If A C T is finite and A |= ¢, then
peT.
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Proof. Assume not, i.e. ¢ ¢ T. Since T is maximal, =¢ € T. For any L-structure M, if
M = A then M | ¢ (since A |= ¢). Hence AU{—¢} is a finite subset of T" without a model,
which contradicts the finite satisfability of T O

Lemma 2.3. If T is finitely satisfiable, maximal, and has the witness property, then T has
a model of cardinality at most |C|.

Proof. For ¢y, co € C let us define:
c1 ~ Cy iff  the formula ¢; = ¢, belongs to T

Claim 1
The relation ~ is an equivalence relation on C.

Proof of Claim 1. Let c¢1,co,c3 € C and assume that ¢; ~ ¢o,¢0 ~ c3. Then the sentences
¢1 = ¢ and ¢ = ¢3 belong to T', which we write for example “[c; = ¢;] € T”. Clearly we

have:
{ler = e, [ca = 3]} = [c1 = c3).
By the sentence ¢; = c3 belongs to T. Hence ¢; ~ cs.
Similarly we show that ¢; ~ ¢;, and that ¢; ~ ¢y implies ¢ ~ ¢;. O

Let M :=C/ ~. Clearly |M| < |C|. We need to define the interpretations of the elements of
F,R and C in the set M to obtain the structure M with universe M.

For ¢ € C, we define ¢ := ¢/ ~.

Let Re R, n:=ng and c¢1,dq,...,c,,d, €C.

Claim 2

If ey ~dy,...,cp ~dy,, then R(cy,...,¢c,) € Tiff R(dy,...,d,) €T.

Proof of Claim 2. Tt is enough to show one implication. Assume that R(cy,...,c,) belongs
to T'. The sentences ¢; = dy,...,c, = d, also belong to T'. Clearly:

{R(c1y...,cn)[c1 =dul,...,[cn =dn]} E R(dy,. .., d,).
By the sentence R(dy, ... ,d,) belongs to T. O
By Claim 2, we can define
(c1) ~y.oicn) ~) € RMiff R(cy,...,c) €T.

Let f € F,n:=nyand ¢1,...,c, € C. Since T" has the witness property, there is ¢ € C such
that
[(Fz fler,...,cn)=x) — fler,...,cn) =c] €T.
Claim 3
The sentence f(cq,...,c,) = ¢ belongs to T

Proof of Claim 3. Suppose not and we will reach a contradiction. Since 7" is maximal and

[f(ci,...,cn) =c] & T, then =[f(c1,...,¢,) =c] €T. Since
(3x f(er,...,en)=2) = flc1,...,cn)=cl €T
and T is finitely satisfiable, there is an L-structure M such that:
M E {=[f(c1,...,cn) =, [Bx flcr,...,cn) =) = flcr,...,cn) =cl}.
But it means that

fM(c{W,...,cf‘f);écM and fM(ciw,...,cﬁ/[):cM,

which is a contradiction. O



Using one proves (similarly as in Claims 1 and 2) that for any d,d;,...,d, € C if
¢ ~di,...,c, ~ d, and sentences f(ci,...,¢,) = ¢, f(di,...,d,) = d belong to T, then
¢ ~ d. Hence, we define for ¢, cq,...,c, € C the following

fM(cl/N,...,cn/w):c/N iff  [f(er, ... en) e T.

=c
By Claim 3, for any ¢y, ..., ¢, € C, there is ¢ € C such that [f(cy,...,¢,) = ¢] € T. Therefore,
the function fM is well-defined.
We have defined an L-structure M. Let ¢(xy,...,x,) be an L-formula. Using again,

m

it can be shown by induction on the complexity of the formula ¥ (xy,...,x,) that for any
c1,...,c, € C we have

MEY(er) ~,...,cn) ~) it Y(er,...,c,) €T.
In particular M =T O

We proceed to show that without loss we can assume 7' is maximal and has the witness
property.
Lemma 2.4. If T is finitely satisfiable, then there is a language L' O L such that |L'| =
|L| + No and an L'-theory T' O T such that T" is finitely satisfiable and has the witness
property.

Proof. Let us define a new language

C1 :=CU{cy | ¢(x) is an L-formula}, L, := (F,R,Cy),
and an L-theory

Ty =T U{( 3z ¢(z)) = ¢(cy) | ¢(z) is an L-formula}.

Claim
T} is finitely satisfiable.

Proof of Claim. Take A, a finite subset of 77, and let Ay := A NT. Since T is finitely
satisfiable, there is an L-structure M which is a model of Ag. We will expand M to an
Lq-structure which will be a model of A. For any L-formula ¢(z) we need to find a right
cyl € M. If M |= 3z¢(z), then we set ci' € M such that M = ¢(c}’). If M = =3z¢(z),

then we set cf € M arbitrarily. O

Now we define a language Lo, and an Lo-theory T, such that T5 is finitely satisfiable and
“witnesses L;-formulas”. We continue inductively this process and take L' := (J L, and
T" .= JT,. By Lemma , |L'| = |L| + XNy. By Claim, 7" is finitely satisfiable and by the
construction, 7" has the witness property. 0

Lemma 2.5. If T is finitely satisfiable, then there is T* O T, a finitely satisfiable and
mazimal L-theory.

Proof. Let ¢ be an L-sentence.
Claim
T U{¢} is finitely satisfiable or T'U {—¢} is finitely satisfiable.

Proof of Claim. Assume T'U{¢} is not finitely satisfiable. Then, there is a finite A C T" such
that A U {¢} has no model. Therefore, for any L-structure M, if M = A, then M = —¢.
Let us take a finite subset 3 C T'. Since T is finitely satisfiable, there is an L-structure M
such that M = ¥ U A. By the above considerations, M = —¢. Hence M = ¥ U {—¢}, so
T U {—¢} is finitely satisfiable. O

Exercise 3: Lemma 2.5 follows from Claim and Zorn’s lemma. O
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Proof of Compactness Theorem. By Lemma there is a language L' D L of cardinality x
and an L'-theory T” D T such that T” is finitely satisfiable and has the witness property. By
Lemma [2.5], there is an L'-theory T* 2 T” which is finitely satisfiable and maximal. Since
T’ has the witness property, 7™ has the witness property as well (as a larger theory). By
Lemma , T* has a model M of cardinality at most x. Then M (or formally its restriction
to the language L) is also a model of T'. O

We say that T" proves ¢, denoted T' = ¢, if there is a “finite logical proof” showing that ¢
follows from a finite subset of T' (for example {«, ¢} F a A ¢). The following famous result
is closely related to the Compactness Theorem.

Theorem 2.6 (Godel’s Completeness Theorem). T+ ¢ if and only if T' |= ¢.

Godel proved the Compactness Theorem using the Completeness Theorem.

Exercise 4: Assuming the Completeness Theorem prove that the following are equivalent:

(1) T has a model.
(2) T does not prove a contradictory statement, i.e. it is not true that T F ¢ A —¢.

T is consistent, if it satisfies the equivalent conditions above. By Compactness Theorem, T’
is consistent if and only if it is finitely satisfiable.
T is complete, if T is consistent and for any L-sentence ¢ we have T' = ¢ or T' = —¢. Of
course maximal theories are complete, but completeness is a more meaningful notion.
Exercise 5: Prove that the following are equivalent:

(1) T is complete;

(2) For any L-structures M, N if M =T and N = T, then M = N.
Exercise 6: Assume that T is complete and ¢ is a sentence. Show that:

(1) fMET, then M = ¢ iff T |= ¢;

(2) T = ¢ it TU{¢} is consistent.

3. WEDNESDAY

Today we prove the model-theoretic theorems from Monday which were necessary for Ax’s
theorem and the Nullstellensatz.
Let L = (F,R,C) be a language,

M = (M, f R™ M) ter rerece, N = (N, fN, RN M) ter rercec

be L-structures and ® : M — N. We say that ® is an L-monomorphism between M and N,
denoted ® : M — N, if it is a one-to-one function preserving the interpretations of all the
function, relation and constant symbols of L, i.e.

e for each f € F of arity n and all mq,...,m, € M we have:

(I)<fM(m17 SR 7mn)) = fN((I)(ml)7 SRR q)(mn))v
e for each R € F of arity n and all mq,...,m, € M we have:
(my,...,my) € RM iff (®(my),...,®(m,)) € RY;
e for each ¢ € C we have:
d(cM) = V.
We say that ® is an L-isomorphism between M and N if & is a bijection and an L-
monomorphism (then ®~! is an L-monomorphism as well). As usual, if there is an L-

isomorphism between M and N, we denote M = N (or M 22, N) and this is an “equivalence
relation”.
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The following lemma (saying that “isomorphisms preserve the truth”) can be proven by
induction on the complexity of formulas.

Lemma 3.1. Let ¢(x1,...,x,) be an L-formula and mq,... ,m, € M. If & : M — N is an
1somorphism, then we have

M o(my,...,m,) iff NEo(®(my),...,0(m,)).

M is an L-substructure of N if M C N and the inclusion is an L-monomorphism, i.e. we
have fM C fN RM = RN N M=, M =cNforall fe F,RE€R,ceC.

Remark 3.2. Let My C M. We say that M, is closed under F and C, if for all f € F we
have fM(M:f) C M, and for all ¢ € C, we have cM € M,. If M, is closed under F and
C, then M, together with the restrictions of all the interpretations of elements of L is an
L-substructure of M. Abusing the language (the one we speak) a little bit, we sometimes
say that a subset My C M is an L-substructure of M if it is closed under F and C (compare
with group theory, ring theory, etc.). If & : M — N is an L-monomorphism, then ®(M)
is closed under F and C, so ®(M) becomes an L-substrucutre of N. Clearly, ® becomes
than an L-isomorphism between M and ®(M). If L is a purely relational language, then a
substructure is the same as a subset.

Example

e (N, <) is an Ly-substructure of (Q, <), (Q, <) is an Ly-substructure of (R, <);

e (Q,+,—,-) is an L,-substructure of (R, +, —,-).

e If N is a ring and M is an L,-substructure of N, then M is a (sub)ring as well. (This
is the reason why we have also included the unary symbol “—” in the language L,.)

Definition 3.3. We say that M is an elementary substructure of N (denoted M < N), if M
is a substructure of N and for any L-sentence ¢ with parameters from M, M = ¢ iff N = ¢.

The above definition can be rephrased. If M is a substructure of N, then the following are
equivalent:

(1) M N;

(2) Thyr(M) = Thy(N).
In particular, if M < N, then M = N. We will see below that the converse need not hold.

Non-examples

e R is not an elementary substructure C, since the sentence ¢; from Section 1.3 holds
in C but it does not hold in R. Hence these structures are not even elementarily
equivalent.

e (N, <) is not an elementary substructure of (Q, <) since the ordering on IN is not
dense. Hence these structures are not even elementarily equivalent.

e (IN.g, <) is not an elementary substructure of (IN, <) (1 is the smallest element in the
substructure) but we even have

(]N>07 <) = (]N’ <)v
so, by 3.1} we also have (N5, <) = (NN, <).

It is difficult now to give examples of elementary substructures. The following theorem
provides many such in a general context.

Theorem 3.4 (Upward Lowenheim-Skolem Theorem). Let M be an infinite L-structure
and = |M| + |L|. Then there is N = M such that |N| = k.
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Proof. Let us expand the language L), to L' by adding new constant symbols {¢;|i < k} and
define an L’-theory:

T :=Thy(M)U{¢ #¢jli < j <k}

Since M is infinite, we can easily make M a model of any finite subset of 7". By the compact-
ness theorem, T has a model N of cardinality at most k. Hence |N| = k (new constants!)
and N (or rather its restriction to the language L) is an elementary extension of M. O

We will sometimes denote a structure by the same symbol as its universe, for example in the
proof below.

Proof of Theorem[1.4 Let us take x > |M|. By Theorem , there are elementary extensions
F < F',M < M'such that |F'| = |M’'| = k. Hence we have extensions of algebraically closed
fields F* C F', F C M’. By the choice of k, we have:

trdegp F' = trdeg, M.
Exercise 7: There is an F-isomorphism & : F' — M.

Hence we have a commutative diagram:

=2\
| -l
F—S- M.
Let us take an L,-formula ¢(zq,...,2,) and t;...,t, € F. Since F' < F', “® preserves the
truth” and ®(t1) =t1,...,P(t,) =t, (P is over F'), we get that:
FEOt ... t,) iff M EOOt ... t).
Since M < M’, we get that:

ME ... t,) Mt M Eo(t... t,).
Therefore F' < M. 0J

Let ACF denote the L,-theory of algebraically closed fields and for p, a prime number or 0,
ACF, denote the L,-theory of algebraically closed fields of characteristic p.

Theorem 3.5. ACF,, is complete.

Proof. Let us take two algebraically closed fields K7, Ky of characteristic p and their prime
subfields Fy, F,. Clearly, Flalg = F;lg. By 1.4 Flalg < K; and F;lg < K,. In particular we
have (using [3.1)):

Th(K,) = Th(F"8) = Th(F¢) = Th(K>).
Hence any two models of ACF,, are elementarily equivalent, so ACF,, is complete (see Exercise

5). 0
We can now state and prove an extended version of Theorem [1.2]

Theorem 3.6 (Lefschetz Principle). Let ¢ be an L,-sentence. The following are equiva-
lent:

1) For almost all prime numbers p, F;lg = o
) For infinitely many prime numbers p, F;lg = o;
) ACFO ): 9257'
)

(

2
(3
(4) CE 9.
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Proof. The implication (1) = (2) is obvious.
We will prove (2) = (3). By Exercise 6(2), it is enough to show that ACFyU{¢} is consistent.
Let Ty be a finite subset of ACFyU{¢}. For n € Ny, let ¢, be the following L,-sentence:
—(14...41=0) (4 taken n times).
Since ACFy = ACF U{¢,|n € N>}, there is N € N such that
To C ACFU{¢,In < N} U{¢}.

Let us take a prime number p such that p > N and F2 |= ¢. Then F3* |= Tp), so ACF, U{¢}
is finitely satisfiable.

The equivalence (3) < (4) is given by Exercise 6(1).

We will prove (3) = (1). Assume that (1) does not hold, i.e. there are infinitely many prime
numbers p such that F28 = =¢. By the already proven implication (2) = (3), we get that
ACF( = —¢, so (3) does not hold (since ACFy is consistent). O

4. FrRIDAY

Today we will find a criterium under which formulas have a particularly simple form. Let
us fix a language L = (F,R,C) and an L-structure M. First we look at a notion which is
somehow dual to the notion of a formula. Let n > 0 and 7 := (xy, ..., z,).

Definition 4.1. For an Lj-formula ¢(z) let

$(1)M == {m € M" | M |= ¢(m)}.
A subset X C M™ is called definable (in M over M), if there is an Lj/-formula ¢(Z) such
that X = ¢(z)M.

Remark 4.2. In the definition above, there is a subset of M™ definable in the structure M
with parameters from M. It is not good to confuse those three difference appearances of M.

Before seeing examples, let us note some basic properties of definable sets. If we have L ;-
formulas ¢(z), a(Z), then:

)M = (@M U (@)™
a(@)™ = (@™ Na(@)™;
(oM = M\ o)™
(Ftrr, s G(@)M = T (D(2)M),
where 7' : M™ — M* is the projection on the first k coordinates.
Hence the conjunction corresponds to the intersection, the disjunction to the union, the
negation to the complement, and the existential quantifier to the coordinate projection.
Basic definable sets are the graphs of f for f € F, the subsets RM for R € R, the points
cM for ¢ € C and a bit more complicated sets as
{(a,0) € M? | M |= R (" (f2"(a)), £3" (D))}

(I skip the technical definition of the notion of term here.) Other definable sets come from
these basic ones after applying Boolean combinations (i.e. unions, intersections and comple-
ments) and projections. The following question arises: how many of these operations (most
importantly projections) have to be taken to obtain all the definable sets?

Examples
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e If K is a field (considered as an L,-structure), then any set of solutions of a system
of polynomial equations in n variables is a definable subset of K™ (e.g. for n = 2 we
have parabolas, hyperbolas, etc.). Such a set of solutions is called a Zariski closed
set. A Boolean combination of Zariski closed sets is still a definable set, such a set is
called a constructible set.

e For any Lo-structure (X, <) and z,y € X, the interval (z,y) is a definable set.

e The order <® is definable in the L,-structure R. Hence in a way, the L-structure R

is definable in the L,-structure R.

N is definable in Z.

7. is definable in Q.

N, Z, QQ are not definable in C.

IN, Z, QQ are not definable in R.

Theorem 4.3 (Chevalley’s Theorem). If K is an algebraically closed field, then a projec-
tion of a constructible set is again a constructible set.

The above theorem (to be proved later) says that in the case of algebraically closed fields the
above-mentioned process terminates very quickly, actually no projections are needed at all!
In such a case we say that the theory of an algebraically closed field, ACF),, has quantifier
elimination (definition below).

Definition 4.4. An L-theory T has quantifier elimination if any L-formula ¢(Z) is equivalent
modulo T with a quantifier-free formula, i.e. there is a formula «(z) having no quantifiers
such that

T =Yz (6(7) < a(T)).

We proceed to find a checkable criterium for quantifier elimination, which will serve to prove
Chevalley’s theorem. We will need some more notions.

Definition 4.5. Let M be an L-structure and m € M™".

e An (L-)type q(Z) is any set of formulas with free variables z.
e If ¢() is a type, then the set of realizations of ¢q(z) in M is

g@M:= [ e@™
o(z)€q(T)
o A type q(Z) is finitely satisfiable in M, if for any finite qo(Z) C ¢(Z), the set go(z)M
is non-empty.
e The quantifier-free type of m in M is the following collection of L-formulas:
qftp™(m) == {¢(Z) | M k= ¢(m) and ¢(Z) is quantifier-free}.
e The complete type of m in M is the following collection of L-formulas:
tp™(m) := {6(z) | M | ¢(m)}.
Remark 4.6. Let M be an L-substructure of N and a € M™.
(1) Tt can be shown by induction on the complexity of formulas that qftp™(a) = qftp™ (@),
e.g. for any f1, fo € F; Ry, Ry € R we clearly have
@) = f" @) iff f(a) = £ (),
acRY iff acR)Y.
(2) If M < N, then tpM(a) = tp™(a), but in general the complete types need not be
equal. For example tp®(—1) # tp®(—1).
(3) Actually, if M is a substructure of N, then M < N if and only if for all a € M™ (and
all n > 0) we have tpM(a) = tp™(a).
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We can formulate now an intuitive (but still not easy to check) criterium for quantifier
elimination.

Lemma 4.7. An L-theory T has quantifier elimination if and only if, for all models M of
T, alln € N and a,b € M™ we have:
aftp™(a) = qftp™ (b)) = tp™(a) = tp™(b).

Proof. Exercise 8: The (easy) left-to-right implication.

Assume that T" does not have quantifier elimination and take an L-formula ¢(z) which is not
equivalent modulo 7" with a quantifier free formula. We will find in two steps M |= T and
aM . b™ ¢ M™ such that

aftp™ (@) = aftp™(b) and tp™(a) # tp™(b).

Let L’ be L expanded by new constant symbols a, b. Since ¢(Z) is not equivalent modulo T
to a quantifier free formula, the following L’-theory is consistent:

TU{¢(a) N—a(a) | T | Vz (a(z) — ¢(Z)) and a(Z) is quant.-free}.

Let (N,a") |= T;, where T; is the above L'-theory. The first step is completed, in the second
one we will find an appropriate b. Since (N, a") = Ty, the following L'-theory is consistent:
Ty U {a(b) A=p(b) | a(z) € gftp™ (@™)}.

Let (M, a™, b™) be a model of this theory, so qftp™ (@) = qftp™ (b™). However, M = ¢(a)
and M = —¢(b), hence tpM(a) # tpM(bM). O

In the next lemma we find a general (independent from any complete theory T') criterium
for checking equality of quantifier-free types.

Lemma 4.8. Let M, N be L-structures, @ € M™ and b € N™. The following are equivalent:
(1) there is an L-substructure My C M containing a and an L-monomorphism ® : My —
N such that ®(a) = b;
(2) aftp™(a) = aftp™ (D).
Proof. Let us assume (1) and set Ny := ®(M;). Then Ny (i.e. Ny with the restrictions of all
N RN V) is an L-substructure of N and @ is an L-isomorphism between My and Nj. By

Remark [4.6) and [3.1], we have:
aftp™ (a) = aftp™ (@) = qftp™ (b) = qftp™ (b).

Let us assume (2). We define M, inductively. (It will be the substructure of M generated
by a.) Let Ag:=CM U{ay,...,a,}, where a = (ai,...,a,). For k € N, we define:

Apyr = A U U {FMA)}
feFr

Finally, let My := |J, Ax. Then My is closed under all the f*, so it gives My, an L-
substructure of M. We define now inductively a monomorphism ® : My — N taking a to b.
On A, we define:

Do(ar) = b1, ..., Po(an) := bn, Po(cM) :=c" for ceC.
Since qftp™ (@) = qftp™ (b) we get that:
o for i,7 < n, a; = a; if and only if b; = b;;

o for ¢, co € C, M =) if and only ¢ = . (Note that the “quantifier-free theory of
M” is a part of qftp™(a)!)
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Hence @, is well-defined and injective on A.
We will define one more step. For any f € F and 5 € Ay’ let

O, (fM (@) = [V (®o(a)).
As above, @ is well-defined and injective on A;. Similarly, we can see that ®; satisfies the

definition of L-monomorphism “wherever it makes sense”. We continue to define &, : Ay — N
ete. and set @ :=J P,,. O

Remark 4.9. As in the proof of the implication (2) = (1) above, for any A C M we can
define a substructure of M generated by A. Hence we also get the notion of a finitely generated
substructure of M. If My is a substructure of M, then M(A) denotes the substructure of
M generated by MU A. The L.-substructure of a ring R generated by A C R is exactly the
subring of R generated by A.

To formulate the main criterium for quantifier elimination, we need to define one more
property of structures which is called saturation. Existence of saturated structures allows to
work in one model of a complete theory, rather than in all of them.

Definition 4.10. An L-structure M is Ng-saturated, if for any finite A C M and any finitely
satisfiable L 4-type q(z) (one variable!), ¢(z)™ is non-empty.

Exercise 9: Show that if M is Ng-saturated, then for any finite A C M and any finitely
satisfiable L 4-type q(z1,...,z,) (finitely many variables!), ¢(z1,...,z,)™ is non-empty.

Examples

e The field R (considered as an L,-structure) is not Ry-saturated. To see this, consider
for each n € N the following L,-formula:

Gu(x): yy*+1+...+1=2x (“4” taken n times),

and let g(z) := {¢n(z) | n € IN}. Any finite subset of ¢(x) is satisfiable by a large
enough real number, however q(x)® = ). Intuitively, “+o00” satisfies ¢(z).
e The field C (considered as an L,-structure) is No-saturated. We will see it later as a
consequence of quantifier elimination.
The following existence result can be proved similarly as the Upper Lowenheim-Skolem The-
orem.

Lemma 4.11. Let M be an infinite L-structure. Then there is N = M which is Rg-saturated.

We can finally formulate and show our desired criterion for quantifier elimination. See Remark
for some of the terminology used below.

Theorem 4.12 (Schoenfield-Blum Criterion). Let T' be an L-theory without finite mod-
els. The following are equivalent:
(1) If My, My = T, My is Ng-saturated, U C My, My is a common finitely generated
L-substructure and ¢ € My, then there is an L-monomorphism ® : U(c) — My which
is the identity on U.
(2) T has quantifier elimination.

Proof of Theorem[4.13. Exercise 10: Prove the (not so easy) implication (2) = (1) (how the
saturation is used?).

Let us assume (1). To show (2) we will check the criterion for quantifier elimination from
Lemma 4.7, Let us take M = T and a,b € M™ such that qftp™(a) = qftp™(b). We aim to
show that tp™(a@) = tpM(b). By [4.11] there is M < N such that N is Ny-saturated. Since
for any 5 € M™ we have tpM(3) = tp™¥(5) (Remark [4.6)), we may assume that M is already
No-saturated.
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By there are finitely generated (see Remark substructures M;, My € M such a €
M7 ,b € M and an L-isomorphism ¥ : M — Mj such that ¥(a) = b.

Let us take an L-formula ¢(Z) such that M = ¢(a). We will show that M | ¢(b). For
simplicity we assume that ¢(z) is ewistential, i.e. that there is a quantifier-free formula
Y(z,y), where y = (y1,...,yx), such that

o(x) = Jy (7).
Since M = ¢(a), there is 5§ = (sy,...,s;) € M* such that M [= 4 (a, 3).
We will inductively extend ¥ to an L-monomorphism
\I/k : Ma<$1, R ,Sk> — M.

Let us take 0 < 1 < k, set U := M;(s1, ..., s;) and assume that we have an L-monomorphism
U, : U — M extending W. We will define ¥,,; using the condition (1). We first extend W,
to an L-isomorphism (denoted also ¥;) between M and M/, an L-superstructure of Mj. The
existence of such an extension is left as Exercise 11. We apply (1) for U as above and
M, :=M', My :=M, c:=VU(s141).

We get an L-monomorphism & : U(¥(s;41)) — M which is the identity on U. Let

Wi M(st, oo s,501) = M, Wy () 1= O(W(2)).
Since @ is identity on U, ;. extends ;. Therefore, we have inductively defined an extension
of U to ¥y : M;(s) — M.
Let t := W(5). Since M [ 1(a,s) and ¢(Z,y) is quantifier-free, we get by Remark
that Mg (s) |= ¢(a,s). Clearly ¥y, is an L-isomorphism between Mg (s) and My(t). By [3.1]
we have M;(f) = v(b,1). Again by Remark [1.6] we get M |= 9(b,#). Hence M [= ¢(b)

indeed. ]
5. SATURDAY

Today we will apply the Schoenfield-Blum Criterion for quantifier elimination to several
theories. To do that, we need to understand the “isomorphism type” of an element over a
finitely generated substructure.

Theorem 5.1. The theory ACF has quantifier elimination.

Proof. We will use the criterion from Theorem [£.12] Let us take algebraically closed fields
My, My such that M, is Rg-saturated, a common finitely generated subring (an L,-substructure)
R C My, M5 and ¢ € M;. Let K be the fraction field of R. Then K naturally embedds both
in M; and Ms, so we may assume that R = K.

Case 1 c is algebraic over K (the saturation will not be used)

Let f € K[X] be the minimal polynomial of ¢ over K. Then we have:

(*) K(c) = K|d =x K[X]/(f).

Since M, is algebraically closed, there is d € M such that f(d) = 0. Again we have:

(%) K(d) = K[d] =x K[X]/(f).

Composing the isomorphisms from (x) and (*x), we get a monomorphism K (c) — My over

K.
Case 2 c is transcendental over K (the saturation will be used)

Let @ be a finite tuple generating K, and ¢(z) be an Ls-type expressing that x is transcen-
dental over K. The type ¢(x) is finitely satisfiable in M, since every polynomial has only
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finitely many zeroes and M, is infinite being algebraically closed. Since M is Np-saturated,
there is d € g(z)™2. Then d is transcendental over K and we have:

K(c) 2k K(X) =g K(d).
Composing the above isomorphisms we get a monomorphism K(c) — M, over K. O

Exercise 12: Let K be any field and V' C K™. Show that V' is constructible if and only if,
there is a quantifier-free Lx-formula ¢(7) such that V = ¢(z)¥.

Corollary 5.2. If K is an algebraically closed fields and X C K is definable, then X is finite
or cofinite.

Proof. By Exercise 12 and quantifier elimination for ACF. 0

Note that we would not be able to check the condition (1) from the Schoenfield-Blum test, if
M, were not Ng-saturated. For example take K = Q, M; = Q(X)*¢, My = Q¥ and ¢ = X.

Exercise 13: Show that an algebraically closed field is saturated if an only if it has infinite
transcendence degree over its prime subfield.
Definition 5.3. Let M be an L-structure and 7" be an L-theory.

(1) M is minimal, if any definable subset of M is either finite or cofinite.

(2) T is strongly minimal, if for any M = T', M is minimal.

(3) M is strongly minimal, if Thy,(M) is strongly minimal, i.e. for any M < N, N is
minimal.

Examples

(1) ACF is strongly minimal.

(2) Let Lg = {E}, where E is a binary relation symbol. An Lg-structure (M, E*) such
that E™ is an equivalence relation having one E™-class of size n for each n € Ny,
and no infinite classes is minimal and not strongly minimal. Quantifier elimination
necessary for minimality. Bounds...

Let K be a field. We know that if K is algebraically closed, then K is strongly minimal.
Actually, the converse also holds. But if K is minimal, then we know that K is algebraically
closed only if K has finite characteristic.

Let DLO be the L,-theory of dense linear orders without endpoints.
Theorem 5.4. DLO has quantifier elimination.

Proof. Let My, M, = DLO, where M, is Ng-saturated (the saturation actually will not be
used here) and M; = (M, <") for ¢ = 1,2. Since the language L, is purely relational, any
subset of an L,-structure is an L,-substructure. In particular, a finitely generated substruc-
ture is just a finite subset. Let us take a finite substructure U C M, My and ¢ € M; \ U.
Since the order <! is linear, the order <Y is linear as well, so U = {uy,...,u,}, where
up <Y ..o <Y

1 ce Up,-

Case 1 c <!y

Since <2 has no end-points, there is d € M, such that d <2 u;. We define an L,-monomorphism
U:Ulc) > M, VY(c)=d, V|jp=idy.

Case 2 there is 1 <4 < n such that u; <! ¢ <! u; 1y

Since <? is dense, there is d € M, such that u; <2 d <? u;;; and we define ¥ as in Case 1.

Case 3 u, <'c

This is analogous to Case 1. 0



16

Let R be a ring and define the following language
LR = (+7 I 07 Ar)rERa

where + is a binary function symbol, — and all )\, are unary function symbol and 0 is a
constant symbol. Then any (left,right) R-module is naturally an LZ-structure and in this
case an Lf-substructure os the same as R-submodule.

Theorem 5.5. Let K be a field. The L¥-theory of infinite K -vector spaces has quantifier
elimination

Proof. Exercise 14: check that the (very easy here) Shoenfield-Blum test holds. O
Let us consider now the real field.
Fact 5.6. The L,-theory Th(R) does not have quantifier elimination.

Proof. Assume that the L,-theory Th(R) has quantifier elimination. As in[5.2] we conclude
that each L,-definable subset of R is either finite or cofinite. But [0, 00) is definable by the
formula Jy 2 = 32, a contradiction. 0

We can also consider R as an L,-structure and this is the right language for quantifier
elimination.

Theorem 5.7 (Tarski). The L,.-theory Th(R) has quantifier elimination.

We have no time for the proof. We will just write an L,-theory RCF whose models are
exactly the same as models of Th(RR). Such models are called real closed fields
Axioms for RCF
(1) < is a total order;
2) Vae,y,zx<y—r+z2<y+z;
(3) Va,y,z (1 <yANz>0)—z-2<y- 2
4) Vo,y (z<y Fey—a=2-2);
(5) Each polynomial of odd degree has a root.
By checking the shape of subsets of R definable by quantifier-free formula, it is easy to see

(having quantifier elimination) that finite union of intervals are all the definable subsets or
R.

Definition 5.8. Let L be a language containing L, and M be an L-structure. M is o-minimal
(“o0” stands for order) if any definable subset of M is a finite union of (<*-)intervals.

We know that R is o-minimal. We quote a remarkable theorem of Wilkie:
Theorem 5.9. The structure (R, <,+, —, -, exp,0,1) is o-minimal.

Many other o-minimal structures are known and there is a rich theory of o-minimal structures.
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