
Wst¦p

Jest to skrypt do wykªadu Algebra 1 prowadzonego w Instytucie Matematycznym Uniwersy-
tetu Wrocªawskiego. Skrypt ma 15 cz¦±ci, które powinny odpowiada¢ 15 tygodniom zaj¦¢, ale
czasami materiaª zrealizowany w danym tygodniu mo»e nieco odbiega¢ od tego podziaªu.
Wykªad mo»na naturalnie podzieli¢ tematycznie na dwie cz¦±ci: teori¦ grup (pierwsze 8 ty-

godni) i teori¦ pier±cieni (kolejne 7 tygodni).

U»ywane oznaczenia

(1) Symbol �:=� oznacza, »e lewa strona jest de�niowana przez praw¡, np.:

a2 := a · a.
(2) Symbol �□� oznacza koniec dowodu.
(3) Je±li f : A→ B oraz A0 ⊆ A,B0 ⊆ B, b ∈ B, to:

• f(A0) to obraz (nie u»ywam tu nawiasów kwadratowych);
• f−1(B0) to przeciwobraz (nie u»ywam tu nawiasów kwadratowych);
• f−1(b) := f−1({b});
• A×B (produkt kartezja«ski A i B) to zbiór par (a, b), gdzie a ∈ A i b ∈ B;
• |A| to moc zbioru A.

(4) Oznaczenia zbiorów liczb:
• N := {0, 1, 2, . . .} to zbiór liczb naturalnych (czyli 0 jest liczb¡ naturaln¡);
• Z to zbiór liczb caªkowitych;
• Q to zbiór liczb wymiernych;
• R to zbiór liczb rzeczywistych;
• N>0 := {1, 2, . . .}, analogicznie np. N>5, czy te» R>2024;
• C to zbiór liczb zespolonych.



TEORIA GRUP
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1. Definicja grupy i pierwsze przykªady grup

Sªowo algebra pochodzi od arabskiego al-Jabr:

co oznacza przenoszenie b¡d¹ uzupeªnianie. Historycznie, algebra rozpocz¦ªa si¦ od rozwi¡zy-
wania konkretnych równa« stopnia 1 oraz 2, których rozwi¡zywanie wymaga przenoszenia

(na drug¡ stron¦ równania). Potem zacz¦to rozwa»a¢ ogólne równania, np. równanie:

ax2 + bx+ c = 0,

które ma nast¦puj¡ce rozwi¡zania:

x1 =
−b+

√
∆

2a
, x2 =

−b−
√
∆

2a
,

gdzie

∆ := b2 − 4ac.

W tym równaniu i w jego rozwi¡zaniach pojawiaj¡ si¦ operacje algebraiczne (dziaªania):

+,−, ·, :,√

na literach, o których my±limy jako o dowolnych liczbach. Taka wªa±nie jest algebra obec-
nie: zajmuje si¦ dziaªaniami np. na zbiorach liter, które mog¡ (ale nie musz¡) by¢ ogólnymi
wspóªczynnikami jakiego± równania.
Niech teraz A b¦dzie dowolnym niepustym zbiorem (np. N,Z,Q,R,C). Chcemy zde�niowa¢

poj¦cie dziaªania na zbiorze A. Popatrzmy najpierw na bardzo naturalny przykªad: dziaªanie
dodawania na N. Dla dowolnych dwóch liczb naturalnych (np. 2 i 3) dziaªanie dodawania
produkuje ich sum¦ (np. 2+3 = 5). Czyli dziaªanie dodawania jest funkcj¡ za zbioru par liczb
naturalnych N×N w zbiór liczb naturalnych N.

+ : N×N→ N, (a, b) 7→ a+ b.

Ogólna de�nicja dziaªania jest analogiczna.

De�nicja 1.1. Dziaªaniem na niepustym zbiorze A nazywany dowoln¡ funkcj¦

∗ : A× A→ A.

Konwencja 1.2. Dla a, a′ ∈ A piszemy �a ∗ a′� zamiast �∗((a, a′))�.

Na razie nie mamy »adnych zaªo»e« na temat wªasno±ci dziaªania ∗, czyli dziaªanie to mo»e
by¢ (bardzo) �dziwne�.

Przykªad 1.3. Poni»ej kilka przykªadów dziaªa«.

(1) Na zbiorach N,Z,Q,R,C mamy zwykªe dziaªania dodawania (+) i mno»enia (·).
(2) Mamy te» mnóstwo innych �dziwnych� dziaªa«, np. dziaªanie:

a ∗ b := (2a · b) + 5a2

na (np.) zbiorze R.
(3) Teraz wa»ny ogólny przykªad. Niech X b¦dzie dowolnym zbiorem i niech XX oznacza

zbiór wszystkich funkcji X → X. Dla f, g ∈ XX mamy zªo»enie funkcji f ◦ g ∈ XX :

∀x ∈ X (f ◦ g)(x) = f(g(x)).
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Czyli ◦ jest dziaªaniem na zbiorze XX :

X
g //

f◦g ''

X

f
��
X.

(4) Niech P(X) b¦dzie zbiorem wszystkich podzbiorów zbioru X. Wtedy przekrój zbiorów
(∩) i suma zbiorów (∪) s¡ dziaªaniami na zbiorze P(X).

(5) Rozwa»my zbiór R∪{∞}, gdzie ∞ to (nowy) formalny symbol. De�niujemy dziaªanie
+ na zbiorze R∪{∞}:
∀ a ∈ R∪{∞} a+∞ := ∞ =: ∞+ a,

∀ a, b ∈ R a+ b to dodawanie z R.

Uwaga 1.4. Mamy nast¦puj¡cy prosty opis dziaªa«. Je±li ∗ jest dziaªaniem na sko«czonym
(oraz nie za du»ym) zbiorze A = {a1, . . . , an}, to de�niujemy tabelk¦ ∗:

∗ a1 a2 . . . an
a1 a1 ∗ a1 a1 ∗ a2 . . . a1 ∗ an
a2 a2 ∗ a1 a2 ∗ a2 . . . a2 ∗ an
...

...
...

. . .
...

an an ∗ a1 an ∗ a2 . . . an ∗ an
Przykªad 1.5. (1) Niech

A = P({0, 1}) = {∅, {0}, {1}, {0, 1}}
oraz ∗ = ∪. Wtedy mamy:

∪ ∅ {0} {1} {0, 1}
∅ ∅ {0} {1} {0, 1}
{0} {0} {0} {0, 1} {0, 1}
{1} {1} {0, 1} {1} {0, 1}
{0, 1} {0, 1} {0, 1} {0, 1} {0, 1}

(2) Rozwa»my dwa przykªady dziaªa« na A = {0, 1} dane nast¦puj¡cymi tabelkami:

∗ 0 1
0 0 1
1 1 0

♦ 0 1
0 1 0
1 0 0

W zwi¡zku z Przykªadem 1.5(2), we¹my nast¦puj¡c¡ bijekcj¦:

f : {0, 1} → {2, 3}; f(0) = 2, f(1) = 3.

U»ywaj¡c f mo»emy �transportowa¢� (np.) dziaªanie ♦ ze zbioru {0, 1} do zbioru {2, 3} otrzy-
muj¡c dziaªanie, które nazwiemy ■. Policzmy np. 2■3:

• cofamy si¦ przez f−1 i dostajemy:

f−1(2) = 0, f−1(3) = 1;

• stosujemy dziaªanie ♦ i dostajemy 0♦1 = 0;
• na wynik nakªadamy f i dostajemy

2■3 := f(0) = 2.

Czyli ogólny wzór jest nast¦puj¡cy:

∀x, y ∈ {2, 3} x■y := f
(
f−1(x)♦f−1(y)

)
.

Poni»ej formalizujemy t¦ konstrukcj¦.
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De�nicja 1.6. Niech f : A→ B b¦dzie bijekcj¡ i ∗ b¦dzie dziaªaniem na zbiorze A. Dziaªanie
· na zbiorze B nazywamy dziaªaniem indukowanym przez dziaªanie ∗ poprzez funkcj¦ f (lub
dziaªaniem transportowanym poprzez funkcj¦ f z dziaªania ∗), je±li:

∀x, y ∈ B x · y = f
(
f−1(x) ∗ f−1(y)

)
.

Niedªugo poka»emy, »e dziaªania transportowane maj¡ te same �wªasno±ci algebraiczne� co
oryginalne dziaªania. Aby wyodr¦bi¢ te wªasno±ci, popatrzmy bli»ej na dziaªanie skªadania
funkcji na zbiorze XX .

(1) Dla f, g, h : X → X oraz x ∈ X mamy:

[f ◦ (g ◦ h)](x) = f((g ◦ h)(x)) = f(g(h)),

[(f ◦ g) ◦ h](x) = (f ◦ g)(h(x)) = f(g(h)).

Tak wi¦c dostajemy ª¡czno±¢ dziaªania ◦:

∀ f, g, h ∈ XX f ◦ (g ◦ h) = (f ◦ g) ◦ h.

(2) Istnieje wyró»niona funkcja

idX : X → X, idX(x) := x,

taka »e idX jest elementem neutralnym dziaªania ◦:

∀ f ∈ XX idX ◦f = f = f ◦ idX .

(3) We¹my f, g ∈ XX . Mówimy, »e g jest funkcj¡ odwrotn¡ do f , gdy:

f ◦ g = idX = g ◦ f.

Je±li funkcja odwrotna do f istnieje, to jest jedyna i oznaczamy j¡ przez f−1. Ze Wst¦pu
do Matematyki wiemy, »e funkcja odwrotna do f istnieje wtedy i tylko wtedy, gdy f
jest bijekcj¡.

De�nicja 1.7. Niech ∗ b¦dzie dziaªaniem na zbiorze A.

(1) Dziaªanie ∗ jest ª¡czne, gdy:

∀ a, b, c ∈ A a ∗ (b ∗ c) = (a ∗ b) ∗ c.
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(2) Element e ∈ A nazywamy elementem neutralnym dziaªania ∗, gdy:

∀ a ∈ A e ∗ a = a = a ∗ e.

Szybki Fakt

Je±li e1 i e2 s¡ elementami neutralnymi dziaªania ∗, to e1 = e2.

Dowód Szybkiego Faktu. Poniewa» e1 jest elementem neutralnym dziaªania ∗, tak wi¦c:

e1 ∗ e2 = e2.

Poniewa» e2 jest elementem neutralnym dziaªania ∗, tak wi¦c:

e1 ∗ e2 = e1.

St¡d e1 = e2. □

Czyli je±li element neutralny istnieje, to jest jedyny.
(3) Zaªó»my, »e ∗ ma element neutralny e (z Szybkiego Faktu wiemy, »e musi on by¢ je-

dyny!). Dla a, b ∈ A mówimy, »e b jest elementem odwrotnym do a, gdy:

a ∗ b = e = b ∗ a.

(4) Mówimy, »e dziaªanie ∗ jest przemienne, gdy:

∀ a, b ∈ A a ∗ b = b ∗ a.

De�nicja 1.8. Niech ∗ b¦dzie dziaªaniem na zbiorze G. Mówimy, »e para (G, ∗) jest grup¡,
gdy dziaªanie ∗ jest ª¡czne, ma element neutralny i dla ka»dego elementu w G istnieje element
odwrotny.
Grup¦ (G, ∗) nazywamy przemienn¡ lub abelow¡, gdy dziaªanie ∗ jest przemiennie

Konwencja 1.9. Cz¦sto zamiast �grupa (G, ∗)� piszemy �grupa G� domy±laj¡c si¦ dziaªania ∗.

Zanim zobaczymy przykªady, jeszcze jeden fakt zawieraj¡cy istotne oznaczenie.

Fakt 1.10. Niech (G, ·) b¦dzie grup¡ i g ∈ G. Wtedy istnieje jedyny element odwrotny do g w
(G, ·), który oznaczamy g−1.

Dowód. Zaªó»my, »e g1, g2 ∈ G to elementy odwrotne do g w (G, ·). Mamy pokaza¢, »e g1 = g2.
Mno»ymy równo±¢:

g1 · g = e

obustronnie przez g2 z prawej strony i otrzymujemy:

(g1 · g) · g2 = e · g2 = g2.

Z drugiej strony, u»ywaj¡c ª¡czno±ci · i tego, »e g2 jest elementem odwrotnym do g, otrzymu-
jemy:

(g1 · g) · g2 = g1 · (g · g2) = g1 · e = g1,

co daje g1 = (g1 · g) · g2 = g2. □

Udowodnimy teraz gªówn¡ wªasno±¢ dziaªa« transportowanych.

Twierdzenie 1.11. Niech f : A → B b¦dzie bijekcj¡, ∗ b¦dzie dziaªaniem na A oraz · b¦dzie
dziaªaniem na B indukowanym przez dziaªanie ∗ poprzez funkcj¦ f . Je±li dziaªanie ∗ jest ª¡czne,
to dziaªanie · te» jest ª¡czne.

Dowód. We¹my x, y, z ∈ B i oznaczmy na chwil¦:

a := f(f−1(x) ∗ f−1(y)).
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Wtedy mamy (u»ywaj¡c De�nicji 1.6):

(x · y) · z =
(
f(f−1(x) ∗ f−1(y))

)
· z

= a · z
= f

(
f−1(a) ∗ f−1(z)

)
= f( f−1(f︸ ︷︷ ︸

�kasuj¡ si¦�

[
f−1(x) ∗ f−1(y)

]
) ∗ f−1(z))

= f
([
f−1(x) ∗ f−1(y)

]
∗ f−1(z)

)
.

Podobnie dostajemy:
x · (y · z) = f

(
f−1(x) ∗

[
f−1(y) ∗ f−1(z)

])
.

Z ª¡czno±ci ∗ mamy:[
f−1(x) ∗ f−1(y)

]
∗ f−1(z) = f−1(x) ∗

[
f−1(y) ∗ f−1(z)

]
i st¡d w ko«cu dostajemy (x · y) · z = x · (y · z). □

Uwaga 1.12. Analogiczne twierdzenia s¡ prawdziwe dla przemienno±ci, istnienia elementów
neutralnych i ogólnie ka»dej algebraicznej wªasno±ci dziaªa«. W szczególno±ci mamy nast¦-
puj¡ce zadanie z ¢wicze«: je±li powy»ej (A, ∗) jest grup¡, to (B, ·) jest te» grup¡.

Przykªad 1.13. (1) Popatrzmy najpierw na najbardziej naturalne dziaªania dodawania i
mno»enia na zbiorach N,Z,Q,R,C. Dziaªania te na ka»dym z tych zbiorów s¡ ª¡czne
i przemienne. Poza tym 0 jest zawsze elementem neutralnym + oraz 1 jest zawsze
elementem neutralnym ·.
Popatrzmy, czy istniej¡ elementy odwrotne. Np. 1 ∈ N nie ma elementu odwrotnego

wzgl¦dem dodawania na zbiorze N, Czyli (N,+) nie jest grup¡. �atwo zauwa»y¢, »e
(Z,+), (Q,+), (R,+), (C,+) s¡ grupami przemiennymi. Jak dobrze wiemy, 0 na »adnym
z tych zbiorów nie ma elementu odwrotnego wzgl¦dem dziaªania · (�nie mo»na dzieli¢
przez 0�). Czyli (N, ·), (Z, ·), (Q, ·), (R, ·), (C, ·) nie s¡ grupami.

(2) Rozwa»my teraz na nast¦puj¡ce �dziwne� dziaªanie ∗ na R:

a ∗ b := a+ b2.

Dziwne dziaªania zwykle nie s¡ ª¡czne. Aby udowodni¢, »e dziaªanie ∗ nie jest ª¡czne,
nale»y wskaza¢ konkretne elementy a, b, c ∈ R, takie »e zachodzi:

a ∗ (b ∗ c) ̸= (a ∗ b) ∗ c.
Czyli trzeba te elementy jako± zgadn¡¢. Zgadujemy, »e np.:

a = 0, b = 0, c = 2.

Sprawdzamy:

(0 ∗ 0) ∗ 2 =
(
0 + 02

)
∗ 2 = 0 ∗ 2 = 0 + 22 = 4,

0 ∗ (0 ∗ 2) = 0 ∗
(
0 + 22

)
= 0 ∗ 4 = 0 + 42 = 16.

Czyli faktycznie to �dziwne� dziaªanie ∗ nie jest ª¡czne.
(3) Wiemy, »e dziaªanie skªadania funkcji na zbiorze XX jest ª¡czne i ma element neutralny

idX . Wiemy te», »e je±li f ∈ XX nie jest bijekcj¡, to f nie ma elementu odwrotnego.
Rozwa»my nast¦puj¡cy podzbiór XX :

SX := {f ∈ XX | f jest bijekcj¡}.
Skªadanie funkcji wci¡» jest dziaªaniem na zbiorze SX , bo zªo»enie bijekcji jest bijekcj¡
oraz, oczywi±cie, to dziaªanie wci¡» jest ª¡czne na zbiorze SX . Element idX jest bijekcj¡,
czyli jest elementem neutralnym dziaªania ◦ na zbiorze SX . Dla ka»dej bijekcji f ∈ SX ,
istnieje funkcja odwrotna f−1, która te» jest bijekcj¡. Czyli (SX , ◦) jest grup¡.
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(4) Rozwa»my dziaªanie + na zbiorze R∪{∞} z Przykªadu 1.3(5).
Udowodnimy »e to dziaªanie jest ª¡czne. We¹my a, b, c ∈ R∪{∞}. Je±li a = ∞ lub

b = ∞ lub c = ∞, to:

(a+ b) + c = ∞ = a+ (b+ c).

Je±li a, b, c ∈ R, to oczywi±cie równie» mamy (a + b) + c = a + (b + c). Czyli dziaªanie
+ na zbiorze R∪{∞} faktycznie jest ª¡czne.
�atwo zauwa»y¢, »e 0 jest elementem neutralnym dziaªania + na zbiorze R∪{∞}. Ale

element ∞ nie ma elementu odwrotnego (intuicja: ∞−∞ to �symbol nieoznaczony�).
Czyli (R∪{∞},+) nie jest grup¡.

(5) Rozwa»my teraz dwa dziaªania ∗,♦ na zbiorze {0, 1} z Przykªadu 1.5(2).
�atwo sprawdzi¢ (rozwa»aj¡c przypadki), »e ∗ jest ª¡czne (niedªugo zrobimy to w

inny sposób), 0 jest elementem neutralnym ∗ oraz:

0 ∗ 0 = 0, 1 ∗ 1 = 0,

czyli ka»dy element ma element odwrotny. St¡d ({0, 1}, ∗) jest grup¡ przemienn¡.
Popatrzmy teraz na dziaªanie ♦. Mamy:

(0♦0)♦1 = 1♦1 = 0,

0♦(0♦1) = 0♦0 = 1.

Czyli dziaªanie ♦ nie jest ª¡czne. Oka»e si¦ niedªugo, »e dziaªanie ∗ jest �nieprzypad-
kowe�, a dziaªanie jest �przypadkowe�.
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2. Grupy reszt, grupy izometrii oraz homomorfizmy

Popatrzmy teraz na nowe i wa»ne przykªady dziaªa«: dziaªania modulo n (n ∈ N⩾1). Niech
Zn := {0, 1, . . . , n− 1} b¦dzie zbiorem reszt modulo n oraz

rn : Z→ Zn

b¦dzie funkcj¡ n-tej reszty, tzn. ∀x ∈ Z ∀r ∈ Zn mamy:

rn(x) = r ⇐⇒ r jest reszt¡ z dzielenia x przez n

⇐⇒ n|x− r.

De�niujemy dziaªania dodawania i mno»enia modulo n (+n i ·n) na zbiorze Zn:

∀x, y ∈ Zn x+n y := rn(x+ y), x ·n y := rn(x · y).

Dla przykªadu:

3 +5 4 = r5(7) = 2, 3 ·5 4 = r5(12) = 2.

Mo»emy napisa¢ np. tabelk¦ +2:

+2 0 1
0 0 1
1 1 0

Widzimy, »e dziaªanie ∗ na {0, 1} = Z2 z Przykªadu 1.5(2) to dokªadnie dziaªanie +2, dlatego
te» to dziaªanie ∗ jest �nieprzypadkowe�!

Twierdzenie 2.1. Dziaªanie +n jest ª¡czne.

Dowód. We¹my x, y, z ∈ Zn. Poka»emy, »e:

(x+n y) +n z = rn(x+ y + z) = x+n (y +n z).

Z de�nicji +n mamy:

(x+n y) +n z = rn ((x+n y) + z) .

U»ywaj¡c de�nicji rn oraz tego, »e x+n y = rn(x+ y) dostajemy:

n|(x+n y)− (x+ y) = (x+n y) + z − (x+ y + z).

B¦dziemy u»ywa¢ nast¦puj¡cej �prostej obserwacji�:

∀ a, b ∈ Z rn(a) = rn(b) ⇐⇒ n|a− b.

U»ywaj¡c �prostej obserwacji� dostajemy, »e:

rn ((x+n y) + z) = rn(x+ y + z)

i st¡d mamy:

(x+n y) +n z = rn(x+ y + z).

Analogicznie pokazuje si¦, »e:

x+n (y +n z) = rn(x+ y + z)

i st¡d dostajemy (x+n y) +n z = x+n (y +n z), czyli dziaªanie +n jest ª¡czne. □

Ponadto mamy, »e:

• 0 jest elementem neutralnym dziaªania +n;
• 0 jest elementem odwrotnym do samego siebie (jak ka»dy element neutralny);
• dla ka»dego x ∈ Zn \{0} mamy, »e n − x ∈ Zn oraz n − x jest elementem odwrotnym
do x.
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Czyli (Zn,+n) jest grup¡. Dziaªanie +n jest przemienne, czyli:

(Zn,+n) jest grup¡ przemienn¡.

Popatrzmy teraz na dziaªanie ·n. Podobnie jak dla +n mo»na pokaza¢, »e:

∀x, y, z ∈ Zn (x ·n y) ·n z = rn(xyz) = x ·n (y ·n z),
czyli dziaªanie ·n jest ª¡czne.
Zaªó»my teraz, »e n > 1. Oczywi±cie, 1 jest elementem neutralnym ·n. Ale wci¡» 0 nie ma

elementu odwrotnego, czyli dla n > 1:

(Zn, ·n) nie jest grup¡.
Kontynuujemy przykªady grup, opiszemy teraz (sko«czone) grupy permutacji. Dla n > 0
de�niujemy (patrz Przykªad 1.13(3)):

Sn := S{1,2,...,n}

grup¦ wszystkich bijekcji {1, 2, . . . , n} → {1, 2, . . . , n}.
Dla σ ∈ Sn oznaczamy:

σ =

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
.

Przykªad 2.2. Wypiszmy elementy grup S1, S2, S3:

S1 = {id}, S2 =

{
id,

(
1 2
2 1

)}
,

S3 =

{
id,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

)
,

(
1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)}
.

Je±li oznaczmy S2 = {id, σ}, to wtedy tabelka S2 wygl¡da nast¦puj¡co:

◦ id σ
id id σ
σ σ id

Pisz¡c kod tej tabelki w TeXu, wzi¡ªem tabelk¦ dziaªania+2 i zamieniªem wszystkie wyst¡pienia
�0� na �id� oraz �1� na �σ�. Czyli tabelka (S2, ◦) jest �taka sama� jak tabelka (Z2,+2). Ogólnie,
ªatwo zauwa»y¢, »e je±li G = {e, g} jest grup¡ dwu-elementow¡, to jest tylko jedno mo»liwe
dziaªanie ∗ na G, takie »e (G, ∗) jest grup¡.

Grupy S1 i S2 s¡ przemienne. Zauwa»my, »e grupa S3 nie jest przemienna:[(
1 2 3
2 1 3

)
◦
(

1 2 3
2 3 1

)]
(1) =

(
1 2 3
2 1 3

)
(2) = 1,[(

1 2 3
2 3 1

)
◦
(

1 2 3
2 1 3

)]
(1) =

(
1 2 3
2 3 1

)
(2) = 3.

St¡d mamy: (
1 2 3
2 1 3

)
◦
(

1 2 3
2 3 1

)
̸=

(
1 2 3
2 3 1

)
◦
(

1 2 3
2 1 3

)
.

Podobnie dla wszystkich n ⩾ 3, grupa Sn nie jest przemienna.
Podsumowuj¡c, znamy ju» dwie serie grup sko«czonych dla n ⩾ 1:

• grupy przemienne (Zn,+n);
• grupy Sn, które nie s¡ przemienne dla n ⩾ 3.

Grupy macierzy

Niech n > 0 i GLn(R) b¦dzie zbiorem macierzy n × n o niezerowym wyznaczniku. Z algebry
liniowej wiemy, »e:

• iloczyn macierzy o niezerowym wyznaczniku jest macierz¡ o niezerowym wyznaczniku,
czyli mno»enie macierzy jest dziaªaniem na GLn(R);
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• mno»enie macierzy jest ª¡czne;
• dla

I :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


macierzy identyczno±ciowej mamy:

∀A ∈ GLn(R) A · I = A = I · A,
czyli I jest elementem neutralnym dziaªania mno»enia macierzy na GLn(R);

• dla ka»dej A ∈ GLn(R) istnieje macierz odwrotna B = A−1 ∈ GLn(R), taka »e:

A ·B = I = B · A.
St¡d (GLn(R), ·) jest grup¡.
Dla n = 1 mamy GL1(R) = R \{0}, czyli

(GL1(R), ·) = (R \{0}, ·)
i jest to grupa przemienna. Podobnie (C \{0}, ·) oraz (Q \{0}, ·) s¡ grupami przemiennymi.
Dla n ⩾ 2, grupa GLn(R) nie jest przemienna, np.:[

1 0
1 1

]
·
[
1 1
0 1

]
=

[
1 1
1 2

]
̸=

[
2 1
1 1

]
=

[
1 1
0 1

]
·
[
1 0
1 1

]
Notacja multyplikatywna

Dziaªanie w grupie G zwykle oznaczamy przez �·� lub przez �nic�, tzn. dla a, b ∈ G piszemy
a · b lub po prostu ab. Oczywi±cie, je±li mamy konkretn¡ grup¦ jak np. (R,+) czy (Z5,+5), to
ju» nie oznaczamy dziaªania tam przez ·. Powy»sz¡ notacj¦ stosujemy, gdy mówimy ogólnie o
grupach. Element neutralny w grupie zwykle oznaczamy przez e.

Pot¦gowanie w grupie

Niech (G, ·) b¦dzie grup¡ i n > 0. Dziaªanie · jest ª¡czne, wi¦c dla ka»dego g ∈ G element:

gn := g · . . . · g︸ ︷︷ ︸
n razy

jest dobrze okre±lony. De�niujemy te»:

g0 := e, g−n :=
(
g−1

)n
.

Czyli dla wszystkich m ∈ Z, g ∈ G mamy zde�niowany element gm ∈ G. Na ¢wiczeniach
pokazujemy nast¦puj¡cy wynik.

Twierdzenie 2.3. Dla ka»dych g, h ∈ G oraz m,n ∈ Z zachodzi:

(1) gmgn = gm+n,
(2) (gm)n = gmn,
(3) je±li gh = hg, to (gh)n = gnhn.

Notacja addytywna

Abstrakcyjn¡ grup¦ przemienn¡ cz¦sto oznaczamy przez (A,+). Wtedy element neutralny ozna-
czamy przez 0 oraz dla a ∈ A i m ∈ N zamiast am piszemy ma oraz zamiast a−1 piszemy −a.

Na ¢wiczeniach rozwa»ali±my dysk

Kr := {z ∈ C | |z| ⩽ r}
i zauwa»yli±my, »e dla r ⩽ 1, Kr jest �zamkni¦ty na ·� oraz dla r > 1, Kr nie jest �zamkni¦ty
na ·�. Formalizujemy teraz to poj¦cie �zamkni¦to±ci�.

De�nicja 2.4. Niech (G, ·) b¦dzie grup¡ i A ⊆ G. Mówimy, »e:
11



(1) A jest zamkni¦ty na dziaªanie ·, gdy:
∀ a, a′ ∈ A a · a′ ∈ A;

(2) A jest podgrup¡ G, co oznaczamy A ⩽ G, gdy:
(i) A jest zamkni¦ty na dziaªanie ·,
(ii) e ∈ A,
(iii) dla ka»dego a ∈ A mamy »e a−1 ∈ A.

Uwaga 2.5. Je±li A ⩽ G, to (A, ·) jest grup¡, gdzie tu · jest dziaªaniem z G obci¦tym do A.

Przykªad 2.6. (1) R ⩽ (C,+), Q ⩽ (R,+), Z ⩽ (Q,+).
(2) N nie jest podgrup¡ (Z,+), bo cho¢ N jest zamkni¦ty na + i 0 ∈ N, to np. 1 ∈ N ale

−1 /∈ N.
(3) R \{0} ⩽ (C \{0}, ·), Q \{0} ⩽ (R \{0}, ·).
(4) R \{0} nie jest podgrup¡ (R,+), bo R \{0} nie jest zamkni¦ty na +, np. 1,−1 ∈ R \{0}

ale 1 + (−1) = 0 /∈ R \{0}.
(5) Zadanie z ¢wicze«: je±li H ⩽ G i N ⩽ G, to H ∩N ⩽ G.

Uwaga 2.7. Teraz mo»na sprecyzowa¢ pewne konwencje.

(1) Jak mówimy �grupa R�, to zawsze to znaczy �grupa (R,+)�, bo (R, ·) nie jest grup¡!
(2) Jak mówimy �grupa R \{0}�, to zawsze to znaczy �grupa (R \{0}, ·)�, bo + nie jest

nawet dziaªaniem na R \{0}!

Grupy izometrii

Niech W ⊆ R2 b¦dzie �gur¡ pªask¡ (np. W to kwadrat b¡d¹ trójk¡t). De�niujemy:

Izo(W ) := {f ∈ SW | f jest izometri¡}.
Wtedy Izo(W ) ⩽ SW , czyli (Izo(W ), ◦) jest grup¡.
Mamy cztery typy izometrii:

• symetrie osiowe;
• obroty;
• translacje;
• zªo»enia translacji z symetriami osiowymi.

Je±li �gura W jest ograniczona, to rozwa»amy jedynie symetrie osiowe i obroty.
Popatrzmy dokªadniej na przypadek, gdy W jest trójk¡tem równobocznym. Wtedy grup¦

izometrii oznacza si¦ D3 i nale»¡ do niej tylko obroty i symetrie osiowe. Ustawiamy trójk¡t jak
na rysunku poni»ej (±rodek ci¦»ko±ci w ±rodku ukªadu wspóªrz¦dnych). Mamy:

D3 =
{
id, O 2π

3
, O 4π

3
, SA, SB, SC

}
,

gdzie SA to symetria osiowa wzgl¦dem prostej lA z rysunku, SB to symetria osiowa wzgl¦dem
prostej lB, SC to symetria osiowa wzgl¦dem prostej lC i ogólnie Oα to obrót o k¡t α w kierunku
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przeciwnym do kierunku ruchu wskazówek zegara (±rodek obrotu to ±rodek ukªadu wspóª-
rz¦dnych):

Izometria trójk¡ta równobocznego jest jednoznacznie wyznaczona przez jej warto±ci na wierz-
choªkach {A,B,C}. Czyli, aby policzy¢ np. SA ◦ O 2π

3
wystarczy zobaczy¢ na co przechodz¡

wierzchoªki. Liczymy SA ◦O 2π
3
:

A
O2π/37−−−→ B

SA7−−−→ C, B
O2π/37−−−→ C

SA7−−−→ B, C
O2π/37−−−→ A

SA7−−−→ A.

Czyli dostajemy:

SA ◦O 2π
3
= SB.

Liczymy teraz O 2π
3
◦ SA:

A
SA7−−−→ A

O2π/37−−−→ B, B
SA7−−−→ C

O2π/37−−−→ A, C
SA7−−−→ B

O2π/37−−−→ C.

Dostajemy:

O 2π
3
◦ SA = SC .

W szczególno±ci:

SA ◦O 2π
3
̸= O 2π

3
◦ SA.

czyli grupa D3 nie jest przemienna. W ten sposób mo»na napisa¢ caª¡ tabelk¦ grupy D3.
Ogólnie dla n ⩾ 3 de�niujemy Dn jako grup¦ izometrii n-k¡ta foremnego. Skªada si¦ ona

z n obrotów (identyczno±¢ rozumiemy jako obrót o 0 stopni) oraz n symetrii osiowych. Czyli
Dn jest grup¡ nieprzemienn¡ o 2n elementach, co daje nam kolejn¡ seri¦ grup sko«czonych.
Popatrzmy na D4:
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Mamy:

D4 =
{
id, Oπ

2
, Oπ, O 3π

2
, Sl1 , Sl2 , Sl3 , Sl4

}
.

Znowu warto±ci tych izometrii s¡ wyznaczone na wierzchoªkach {A,B,C,D}, czyli ªatwo jest
napisa¢ tabelk¦ D4.

Ogólne zasady

• Zªo»enie obrotu z obrotem jest obrotem.
• Zªo»enie symetrii osiowej z symetri¡ osiow¡ jest obrotem.
• Zªo»enie obrotu z symetri¡ osiow¡ (i odwrotnie) jest symetri¡ osiow¡.

Rozwa»my jeszcze jedn¡ grup¦ izometrii. NiechW b¦dzie prostok¡tem nie b¦d¡cym kwadratem:

Mamy:

K4 := Izo(W ) = {id, Oπ, Sl1 , Sl2} .
Napiszmy tabelk¦ K4:

◦ id Oπ Sl1 Sl2

id id Oπ Sl1 Sl2

Oπ Oπ id Sl2 Sl1

Sl1 Sl1 Sl2 id Oπ

Sl2 Sl2 Sl1 Oπ id

Grup¦ K4 nazywamy grup¡ Kleina.

Chcemy teraz porównywa¢ ze sob¡ grupy.

Przykªad 2.8. Dwa przykªady przed ogóln¡ de�nicj¡.

(1) Rozwa»my funkcj¦ n-tej reszty:

rn : Z→ Zn .

Dla dowolnych a, b ∈ Z mamy:

n|(a− rn(a)), n|(b− rn(b)) ⇒ n| [a+ b− (rn(a) + rn(b))] .

Czyli dostajemy:

rn(a+ b) = rn (rn(a) + rn(b)) = rn(a) +n rn(b),

czyli funkcja rn przenosi dziaªanie z grupy (Z,+) na dziaªanie w grupie (Zn,+n).
14



(2) Ponumerujmy wierzchoªki kwadratu przez zbiór {1, 2, 3, 4}. De�niujemy nast¦puj¡c¡
funkcj¦:

Ψ : D4 → S4, Ψ(f) = f |{1,2,3,4},
gdzie f |{1,2,3,4} to obci¦cie funkcji f do zbioru wierzchoªków {1, 2, 3, 4}. Wtedy dla
ka»dych f, g ∈ D4 mamy:

Ψ(f ◦ g) = Ψ(f) ◦Ψ(g),

gdzie pierwsze �◦� to skªadanie izometrii (dziaªanie w grupie D4), a drugie �◦� to skªa-
danie permutacji (dziaªanie w grupie S4).

De�nicja 2.9. Niech (G, ·), (H, ∗) b¦d¡ grupami i f : G→ H.

(1) Funkcja f jest homomor�zmem, gdy:

∀ g1, g2 ∈ G f(g1 · g2) = f(g1) ∗ f(g2).

(2) Funkcja f jest izomor�zmem, gdy f jest homomor�zmem i jest bijekcj¡.

Przykªad 2.10. (1) Funkcja n-tej reszty:

rn : (Z,+) → (Zn,+n)

jest homomor�zmem.
(2) Uogólniaj¡c homomor�zm obci¦cia Ψ : D4 → S4, dla ka»dego n ⩾ 3 mamy:

Ψn : Dn → Sn

funkcj¦ obci¦cia izometrii n-k¡ta foremnego do zbioru wierzchoªków {1, 2, . . . , n}. Po-
niewa» ka»da izometria z Dn jest wyznaczona przez warto±ci na wierzchoªkach, funkcja
Ψn jest �1-1�. Mamy:

|Dn| = 2n, |Sn| = n! ⇒ |D3| = 6 = |S3|,

tak wi¦c funkcja Ψ3 : D3 → S3 jest izomor�zmem.
(3) Rozwa»my funkcj¦:

f : R→ R>0, f(x) = 2x.

�atwo zauwa»y¢, »e R>0 ⩽ (R \{0}, ·), czyli (R>0, ·) jest grup¡. Mamy:

∀x, y ∈ R f(x+ y) = 2x+y = 2x2y = f(x)f(y).

Czyli funkcja f jest homomor�zmem z grupy (R,+) w grup¦ (R>0, ·). Funkcja f jest
te» bijekcj¡, czyli jest izomor�zmem.

Uwaga 2.11. Je±li f : (G, ·) → (H, ∗) jest izomor�zmem, to dziaªanie ∗ jest dziaªaniem
indukowanym przez dziaªanie · poprzez funkcj¦ f . St¡d algebraiczne wªasno±ci dziaªa« · i ∗ s¡
takie same.

De�nicja 2.12. Je±li dla grup (G, ·), (H, ∗) istnieje izomor�zm

f : (G, ·) → (H, ∗),

to mówimy, »e grupy (G, ·) i (H, ∗) s¡ izomor�czne, co oznaczamy (G, ·) ∼= (H, ∗) lub po prostu
G ∼= H.

Uwaga 2.13. Z Uwagi 2.11 grupy izomor�czne maj¡ te same wªasno±ci algebraiczne, np. je±li
G ∼= H i G jest przemienna, to H jest te» przemienna.

Przykªad 2.14. (1) Wiemy, »e

D3
∼= S3.
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(2) �atwo zauwa»y¢, »e
S2

∼= Z2

i »e izomor�zmem jest funkcja:

S2 → Z2, id 7→ 0,

(
1 2
2 1

)
7→ 1,

co wynika np. z porównania tabelek:

◦ id σ
id id σ
σ σ id

+2 0 1
0 0 1
1 1 0

(3) Wiemy te», »e:
(R,+) ∼= (R>0, ·).

Ten ostatni izomor�zm �przenosi dodawanie na mno»enie�. Ale dodawanie jest ªatwiejsze
ni» mno»enie! St¡d wzi¦ªa si¦ idea dziaªania suwaka logarytmicznego, gdzie dzi¦ki
dodawaniu (przesuwaniu) mo»emy te» mno»y¢ u»ywaj¡c odpowiedniej skali logarytmicz-
nej, która odpowiada powy»szemu izomor�zmowi.
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3. Grupy cykliczne i grupy permutacji

Zacznijmy od opisu dwóch konkretnych sytuacji.

Przykªad 3.1. (1) Niech:

{0, 2, 4, 6} ⩽ Z8

to b¦d¡ wszystkie wielokrotno±ci 2 w grupie (Z8,+8). Grupa Z8 jest sko«czona, wi¦c
jest sko«czenie wiele tych wielokrotno±ci:

2, 2 +8 2 = 4, 2 +8 2 +8 2 = 6, 2 +8 2 +8 2 +8 2 = 0.

(2) Niech:

3Z := {. . . ,−6,−3, 0, 3, 6, . . .} = {3k | k ∈ Z}
to b¦d¡ wszystkie wielokrotno±ci 3 w grupie (Z,+). Te» mamy:

3Z ⩽ Z .

Uogólnimy te przykªady na przypadek dowolnej grupy.

Twierdzenie 3.2. Niech G b¦dzie grup¡ i g ∈ G. Wtedy podzbiór

{gn | n ∈ Z} ⊆ G

jest najmniejsz¡ podgrup¡ G zawieraj¡c¡ element g.

Dowód. U»ywamy wªasno±ci pot¦gowania w grupach (Twierdzenie 2.3).
Poka»emy najpierw, »e:

{gn | n ∈ Z} ⩽ G.

(i) Dla ka»dych i, j ∈ Z mamy:

gigj = gi+j ∈ {gn | n ∈ Z},
czyli zbiór {gn | n ∈ Z} jest zamkni¦ty na dziaªanie z grupy G.

(ii) e = g0 ∈ {gn | n ∈ Z}, czyli element neutralny nale»y do naszego podzbioru.
(iii) Dla dowolnego gm ∈ {gn | n ∈ Z} mamy:

(gm)−1 = g−m ∈ {gn | n ∈ Z}.
St¡d faktycznie {gn | n ∈ Z} ⩽ G.
Pokazujemy teraz �najmniejszo±¢� {gn | n ∈ Z} ⩽ G.

We¹my dowoln¡ H ⩽ G, tak¡ »e g ∈ H. Mamy pokaza¢, »e:

{gn | n ∈ Z} ⊆ H.

Rozwa»amy trzy przypadki.
Je±li n > 0, to:

gn := g · . . . · g︸ ︷︷ ︸
n razy

∈ H,

poniewa» g ∈ H i H jest podgrup¡ G.
Je±li n = 0, to g0 = e ∈ H.
Je±li n < 0, to:

gn :=
(
g−n

)−1 ∈ H,

poniewa» −n > 0, tak wi¦c z rozwa»onego powy»ej przypadku mamy g−n ∈ H i wtedy (ponie-
wa» H ⩽ G) dostajemy (g−n)−1 ∈ H. □

De�nicja 3.3. Niech G b¦dzie grup¡ i g ∈ G.

(1) De�niujemy:

⟨g⟩ := {gn | n ∈ Z}.
(2) Grup¦ G nazywamy cykliczn¡, gdy istnieje g ∈ G, takie »e G = ⟨g⟩.
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Przykªad 3.4. (1) Niech G = S3 i g =

(
1 2 3
2 3 1

)
. Wtedy:〈(

1 2 3
2 3 1

)〉
=

{
id,

(
1 2 3
2 3 1

)
,

(
1 2 3
3 1 2

)}
.

(2) Niech G = Z i g = 3. Wtedy:

⟨3⟩ = 3Z = {3k | k ∈ Z}.
(3) Niech G = Z8 i g = 2. Wtedy:

⟨2⟩ = {0, 2, 4, 6}.
(4) Niech G = Zn i g = 1. Wtedy:

⟨1⟩ = Zn .

Czyli grupa Zn jest cykliczna.
(5) Niech G = Z i g = 1. Wtedy:

⟨1⟩ = Z .
Czyli grupa Z jest cykliczna.

Zobaczymy teraz, »e Zn i Z to jedyne grupy cykliczne z dokªadno±ci¡ do izomor�zmu.
Potrzebny nam jest nast¦puj¡cy pomocniczy wynik.

Lemat 3.5. Niech G b¦dzie grup¡, g ∈ G i zaªó»my, »e G = ⟨g⟩ (czyli G jest cykliczna). Je±li
dla pewnego k > 0 mamy gk = e, to wtedy |G| ⩽ k.

Dowód. Wystarczy pokaza¢, »e:

⟨g⟩ ⊆ {g0, g1, . . . , gk−1}
(przy zaªo»eniu gk = e). We¹my dowolny element gm ∈ ⟨g⟩ (m ∈ Z). Dzielimy z reszt¡ m przez
k i dostajemy l ∈ Z, r = rk(m) ∈ Zk, takie »e:

m = kl + r.

Wtedy otrzymujemy:

gm = gkl+r = glkgr =
(
gk
)l
gr = elgr = egr = gr ∈ {g0, g1, . . . , gk−1},

poniewa» r ∈ Zk = {0, 1, . . . , k − 1}, co ko«czy dowód. □

Twierdzenie 3.6. Zaªó»my, »e G jest grup¡ cykliczn¡. Wtedy mamy:

(1) je±li G jest sko«czona, to G ∼= Zn dla pewnego n > 0;
(2) je±li G jest niesko«czona, to G ∼= Z.

W szczególno±ci, ka»da grupa cykliczna jest przemienna.

Dowód. We¹my g ∈ G, takie »e G = ⟨g⟩. Rozwa»amy dwa przypadki.

Przypadek 1: G jest sko«czona i |G| = n
De�niujemy funkcj¦:

f : Zn → G, f(r) = gr.

Udowodnimy w czterech krokach, »e f jest izomor�zmem.
Krok 1: f jest �1-1�

We¹my i, j ∈ Zn, takie »e i < j i zaªó»my nie wprost, »e f(i) = f(j). Dojdziemy do sprzeczno±ci.
Mamy:

gi = f(i) = f(j) = gj.

Mno»¡c t¦ równo±¢ obustronnie przez g−i otrzymujemy:

e = g0 = gjg−i = gj−i.
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Ale 0 < j − i < n oraz G = ⟨g⟩, tak wi¦c z Lematu 3.5 otrzymujemy:

|G| ⩽ j − i < n,

sprzeczno±¢, poniewa» |G| = n.
Krok 2: f jest �na�

f jest ró»nowarto±ciow¡ (Krok 1) funkcj¡ ze zbioru n-elementowego w zbiór n-elementowy, tak
wi¦c f jest na, bo n jest sko«czone.
Krok 3: gn = e
Z Kroku 2, mamy:

G = {g0, g1, . . . , gn−1},
tak wi¦c istnieje r ∈ Zn, takie »e g

n = gr. Je±li r > 0, to post¦puj¡c jak w Kroku 1, otrzymujemy
gn−r = 0 i znowu z Lematu 3.5 mamy:

|G| ⩽ n− r < n,

sprzeczno±¢.
Krok 4: f jest homomor�zmem

We¹my i, j ∈ Zn. Wtedy istnieje l ∈ Z, taki »e:
i+n j = rn(i+ j) = i+ j + ln.

Liczymy:

f (i+n j) = gi+nj = gi+j+ln = gigj (gn)l =︸︷︷︸
Krok 3

gigjel = gigje = gigj = f(i)f(j).

Z Kroków 1�4 otrzymujemy, »e f jest izomor�zmem.

Przypadek 2: G jest niesko«czona

Ten przypadek jest znacznie ªatwiejszy. De�niujemy funkcj¦:

f : Z→ G, f(i) = gi.

Udowodnimy, »e f jest izomor�zmem.
Poniewa»

G = ⟨g⟩ = {gi | i ∈ Z},
tak wi¦c f jest �na�.
�atwo pokazujemy, »e f jest homomor�zmem:

∀ i, j ∈ Z f(i+ j) = gi+j = gigj = f(i)f(j).

Pozostaje pokaza¢, »e f jest �1-1�. We¹my i, j ∈ Z, takie »e i < j. Je±li f(i) = f(j), to tak jak
w dowodzie Przypadku 1, dostajemy »e gj−i = e, czyli z Lematu 3.5, |G| ⩽ j− i jest sko«czona,
sprzeczno±¢. □

Uwaga 3.7. Zauwa»my, »e z dowodu Twierdzenia 3.6, wynika »e dla G = ⟨g⟩ mamy:

(1) je±li G jest sko«czona i |G| = n, to n jest najmniejsz¡ liczb¡ dodatni¡, tak¡ »e gn = e;
(2) je±li G jest niesko«czona, to dla ka»dej n > 0 mamy gn ̸= e.

De�nicja 3.8. Niech G b¦dzie grup¡ i g ∈ G. De�niujemy rz¡d g, oznaczany ordG(g), jako
najmniejsze n > 0, takie »e gn = e. Je±li takie n > 0 nie istnieje, to de�niujemy ordG(g) := ∞.
Cz¦sto piszemy �ord(g)� zamiast �ordG(g)�.

Z Uwagi 3.7 natychmiast wynika nast¦puj¡ce:

Twierdzenie 3.9. Je±li G jest grup¡ i g ∈ G, to wtedy mamy:

ordG(g) = |⟨g⟩|,
czyli rz¡d elementu g, to moc najmniejszej podgrupy zawieraj¡cej g.
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Wniosek 3.10. Je±li grupa G jest sko«czona i g ∈ G, to rz¡d g jest te» sko«czony. Niedªugo
zobaczymy, »e:

ordG(g) dzieli |G|.

Uwaga 3.11. Twierdzenie 3.9 mówi, »e rz¡d elementu g to moc grupy ⟨g⟩. Dlatego te»
cz¦sto na moc dowolnej grupy G mówi si¦ rz¡d G.

Przykªad 3.12. (1) Mamy ordZ8(2) = 4, poniewa»:

2 +8 2 = 4 ̸= 0, 2 +8 2 +8 2 = 6 ̸= 0, 2 +8 2 +8 2 +8 2 = 0.

Mamy te»:
2 +8 2 +8 · · ·+8 2︸ ︷︷ ︸

8 razy

= 0,

ale ordZ8(2) ̸= 8 (uwaga, to cz¦sty bª¡d!), bo 8 nie jest najmniejsz¡ n > 0, tak¡ »e:

2 +8 2 +8 · · ·+8 2︸ ︷︷ ︸
n razy

= 0.

(2) Mamy:

ordS2

(
1 2
2 1

)
= 2.

(3) Mamy:

ordS3

(
1 2 3
2 3 1

)
= 3.

(4) Mamy:
ordZ(1) = ∞,

a nawet:

∀ k ∈ Z \{0} ordZ(k) = ∞.

(5) Mamy:
ordZn(1) = n.

(6) Je±li G jest grup¡ i g ∈ G, to wtedy:

ord(g) = 1 ⇔ g = e.

Teraz pokrótce omówimy sytuacj¦, gdy zamiast {g} mamy dowolny podzbiór A grupy G.

De�nicja 3.13. Niech G b¦dzie grup¡ i A ⊆ G. Wtedy ⟨A⟩ oznacza najmniejsz¡ podgrup¦ G
zawieraj¡c¡ A. Je±li ⟨A⟩ = G, to mówimy »e G jest generowana przez A, lub »e A jest zbiorem
generatorów G. Dla g1, . . . , gn ∈ G, zamiast ⟨{g1, . . . , gn}⟩ piszemy ⟨g1, . . . , gn⟩.

Pomijamy dowód nast¦pnego twierdzenia.

Twierdzenie 3.14. Niech A,G b¦d¡ jak wy»ej oraz g ∈ G. Wtedy g ∈ ⟨A⟩ wtedy i tylko wtedy,
gdy:

∃a1, . . . , an ∈ A ∃k1, . . . , kn ∈ Z g = ak11 . . . aknn .

Przykªad 3.15. (1) Mamy:

D3 =
〈
O 2π

3
, S

〉
,

gdzie S jest dowoln¡ symetri¡ osiow¡ z D3, poniewa»:

O 2π
3
◦O 2π

3
= O 4π

3
, O 2π

3
◦ S = S ′, S ◦O 2π

3
= S ′′,

gdzie S ′, S ′′ to dwie pozostaªe symetrie osiowe z D3.
(2) Podobnie mamy dla dowolnego n ⩾ 3:

Dn =
〈
O 2π

n
, S

〉
.
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(3) Mo»na, pokaza¢ »e:

∀ k1, l1, . . . , kn, ln ∈ Z \{0}
[
1 1
0 1

]k1 [1 0
1 1

]l1
. . .

[
1 1
0 1

]kn [
1 0
1 1

]ln
̸= I.

Czyli potrzeba wszystkich tego typu iloczynów aby dosta¢:〈[
1 1
0 1

]
,

[
1 0
1 1

]〉
< GL2(R).

Grupy permutacji

Chcemy opisa¢ ka»d¡ permutacj¦ za pomoc¡ pewnych prostych permutacji.

Przykªad 3.16. (1) Niech:

σ ∈ S5, σ =

(
1 2 3 4 5
2 3 5 4 1

)
Powiemy, »e σ jest cyklem (de�nicja pó¹niej).

(2) Niech:

τ ∈ S4, τ =

(
1 2 3 4
2 1 4 3

)
Tutaj τ nie jest cyklem.

Aby zde�niowa¢ poj¦cie cyklu, musimy najpierw zde�niowa¢ poj¦cie no±nika permutacji,
czyli zbioru tych �istotnych� punktów.

De�nicja 3.17. Niech σ ∈ Sn. Wtedy no±nik σ to:

Xσ := {i ∈ {1, 2, . . . , n} | σ(i) ̸= i}.
W Przykªadzie 3.16(1) mamy:

Xσ = {1, 2, 3, 5} (n = 5).

W Przykªadzie 3.16(2) mamy:

Xτ = {1, 2, 3, 4} (n = 4).

De�nicja 3.18. (1) Niech σ ∈ Sn. Mówimy, »e σ jest cyklem dªugo±ci k, gdy |Xσ| = k oraz
mo»emy przedstawi¢:

Xσ = {i1, i2, . . . , ik},
tak »e:

σ(i1) = i2, σ(i2) = i3, . . . , σ(ik−1) = ik, σ(ik) = i1.

Taki cykl zapisujemy:
σ = (i1, i2, . . . , ik).
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(2) Cykl dªugo±ci 2 nazywamy transpozycj¡.

Uwaga 3.19. Zapis z De�nicji 3.18(1) nie jest jednoznaczny, np. mamy:

(1, 2) = (2, 1).

Przykªad 3.20. Mamy:

S2 = {id, (1, 2)}, S3 = {id, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}.
Czyli grupy S2 i S3 skªadaj¡ si¦ z samych cykli! Ale wiemy, »e np.(

1 2 3 4
2 1 4 3

)
∈ S4

nie jest cyklem. Zauwa»my, »e:(
1 2 3 4
2 1 4 3

)
= (1, 2) ◦ (3, 4),

czyli ta permutacja jest zªo»eniem �rozª¡cznych� cykli.

De�nicja 3.21. Niech σ, τ ∈ Sn. Powiemy, »e σ i τ s¡ rozª¡czne, gdy:

Xσ ∩Xτ = ∅,
czyli gdy no±niki σ i τ s¡ rozª¡czne.

Przykªad 3.22. Permutacje (1, 2) i (3, 4) s¡ rozª¡czne. Zauwa»my, »e:

(1, 2) ◦ (3, 4) =
(

1 2 3 4
2 1 4 3

)
= (3, 4) ◦ (1, 2).

Poni»ej uogólniamy obserwacj¦ z Przykªadu 3.22.

Twierdzenie 3.23. Je±li σ, τ ∈ Sn s¡ rozª¡czne, to mamy:

σ ◦ τ = τ ◦ σ.

Dowód. We¹my dowolne i ∈ {1, 2, . . . , n}. Mamy pokaza¢, »e:

σ(τ(i)) = τ(σ(i)).

B¦dziemy korzystali z ªatwej do sprawdzenia obserwacji, »e σ(Xσ) = Xσ (czyli te» τ(Xτ ) = Xτ ).
Rozwa»amy 3 przypadki.

Przypadek 1: i ∈ Xσ

Poka»emy, »e:
σ(τ(i)) = σ(i) = τ(σ(i)).

Z rozª¡czno±ci σ i τ dostajemy i /∈ Xτ , st¡d τ(i) = i, czyli mamy:

σ(τ(i)) = σ(i).

Poniewa» i ∈ Xσ, tak wi¦c z powy»szej obserwacji mamy σ(i) ∈ Xσ. Z rozª¡czno±ci σ i τ
dostajemy σ(i) /∈ Xτ . Czyli mamy:

τ(σ(i)) = σ(i).

Przypadek 2: i ∈ Xτ

Podobnie jak Przypadku 1 pokazuje si¦:

σ(τ(i)) = τ(i) = τ(σ(i)).

Przypadek 3: i /∈ Xσ ∪Xτ

Podobnie jak Przypadkach 1 i 2 pokazuje si¦:

σ(τ(i)) = i = τ(σ(i)),

co ko«czy dowód. □
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Przykªad 3.24. Obliczenia na permutacjach.

(1) We¹my:

σ1 =

(
1 2 3 4 5
2 3 1 5 4

)
, σ2 =

(
1 2 3 4 5
2 1 5 4 3

)
.

To jest zapis w postaci tabularycznej b¡d¹ dwuwierszowej.
(2) Mamy te» zapis w postaci iloczynu cykli rozª¡cznych

σ1 =

(
1 2 3 4 5
2 3 1 5 4

)
= (1, 2, 3) ◦ (4, 5),

σ2 =

(
1 2 3 4 5
2 1 5 4 3

)
= (1, 2) ◦ (3, 5).

B¦dziemy zwykle pisa¢ np. �(1, 2)(3, 5)� zamiast �(1, 2) ◦ (3, 5)�.
(3) Mno»enie permutacji.

(a) W postaci tabularycznej:

σ2 ◦ σ1 =
(

1 2 3 4 5
1 5 2 3 4

)
,

1
σ17−→ 2

σ27−→ 1, 2
σ17−→ 3

σ27−→ 5, 3
σ17−→ 1

σ27−→ 2, 4
σ17−→ 5

σ27−→ 3, 5
σ17−→ 4

σ27−→ 4,

(b) Jako iloczyny cykli rozª¡cznych:

(1, 2)(3, 5)(1, 2, 3)(4, 5) = (2, 5, 4, 3).

Oba wyniki si¦ zgadzaj¡:(
1 2 3 4 5
1 5 2 3 4

)
= (2, 5, 4, 3).

(4) Permutacje odwrotne.
(a) W postaci tabularycznej (pierwsza równo±¢ to �zamiana wierszy� a druga to

�przestawienie�):

σ−1
1 =

(
1 2 3 4 5
2 3 1 5 4

)−1

=

(
2 3 1 5 4
1 2 3 4 5

)
=

(
1 2 3 4 5
3 1 2 5 4

)
.

(b) Jako iloczyny cykli rozª¡cznych:
Ogólnie dla cykli mamy:

(i1, i2, . . . , ik−1, ik)
−1 = (ik, ik−1, . . . , i2, i1).

Poza tym poni»ej korzystamy z przemienno±ci cykli rozª¡cznych:

σ−1
1 = ((1, 2, 3)(4, 5))−1 = (1, 2, 3)−1(4, 5)−1 = (3, 2, 1)(5, 4) = (1, 3, 2)(4, 5).

Oba wyniki si¦ zgadzaj¡:(
1 2 3 4 5
3 1 2 5 4

)
= (1, 3, 2)(4, 5).

(5) Podnoszenie do pot¦g.
Jest zdecydowanie ªatwiej podnosi¢ do pot¦g przy zapisie w postaci iloczynu cykli

rozª¡cznych, np. (ponownie korzystamy z przemienno±ci cykli rozª¡cznych):

σ10
1 = ((1, 2, 3)(4, 5))10 = (1, 2, 3)10(4, 5)10 = (1, 2, 3).

Zauwa»my tutaj, »e transpozycja (cykl dªugo±ci 2) ma rz¡d 2, cykl dªugo±ci 3 ma rz¡d
3 i ogólnie cykl dªugo±ci k ma rz¡d k.

Aby u»ywa¢ Przykªadu 3.24 potrzebujemy nast¦puj¡cego wyniku.

Twierdzenie 3.25. Ka»da permutacja ma przedstawienie w postaci iloczynu cykli rozª¡cznych.
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Idea dowodu. We¹my σ ∈ Sn i dowolny i ∈ Xσ. Patrzymy na cykl:

τ :=
(
i, σ(i), σ2(i), . . . , σk−1(i)

)
,

gdzie
k := min{n | σn(i) = i}.

Je±li σ = τ , to twierdzenie jest ju» udowodnione. Je±li nie, to bierzemy j ∈ Xσ \Xτ i tworzymy
kolejny cykl (rozª¡czny z τ) postaci:

τ ′ :=
(
j, σ(j), σ2(j), . . . , σl−1(i)

)
.

Je±li σ = τ ◦ τ ′, to twierdzenie jest udowodnione. Je±li nie, to kontynuujemy... □

Twierdzenie 3.26. Ka»dy cykl rozkªada si¦ na iloczyn transpozycji.

Dowód. Mamy:
(i1, i2, . . . , ik−1, ik) = (i1, i2)(i2, i3) . . . (ik−1, ik).

□

Z ostatnich dwóch twierdze« natychmiast wynika:

Wniosek 3.27. Ka»da permutacja rozkªada si¦ na iloczyn transpozycji.

Pozostaªy nam do omówienia ostatnie poj¦cia dotycz¡ce permutacji.

De�nicja 3.28. Niech σ ∈ Sn oraz 1 ⩽ i < j ⩽ n.

(1) Par¦ (i, j) nazywamy inwersj¡ σ, gdy σ(i) > σ(j).

(2) Znak permutacji σ, oznaczany sgn(σ), to:

sgn(σ) := (−1)liczba inwersji σ.

(3) Mówimy, »e σ jest parzysta, gdy sgn(σ) = 1, tzn. σ ma parzy±cie wiele inwersji.
(4) Mówimy, »e σ jest nieparzysta, gdy sgn(σ) = −1, tzn. σ ma nieparzy±cie wiele inwersji.

Fakt 3.29. Je±li σ jest transpozycj¡, to σ jest nieparzysta.

Dowód. Niech σ = (i, j), gdzie i < j oraz niech r := j − i− 1. Powy»szy rysunek pokazuje, »e
σ ma 2r + 1 inwersji, czyli nieparzy±cie wiele. □

Pomijamy dowód nast¦pnego wyniku.

Twierdzenie 3.30. Dla dowolnych σ, τ ∈ Sn mamy:

sgn(σ ◦ τ) = sgn(σ) · sgn(τ).

Z Faktu 3.29 i Twierdzenia 3.30 otrzymujemy:

Twierdzenie 3.31. Dla dowolnej σ ∈ Sn mamy, »e σ jest parzysta wtedy i tylko wtedy, gdy w
rozkªadzie σ na transpozycje wyst¦puje parzy±cie wiele transpozycji.
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Z dowodu Twierdzenia 3.26 oraz z Twierdzenia 3.31 otrzymujemy:

Wniosek 3.32. • Cykl dªugo±ci parzystej jest permutacj¡ nieparzyst¡.
• Cykl dªugo±ci nieparzystej jest permutacj¡ parzyst¡.

Uwaga 3.33. (1) Rozkªad permutacji na cykle rozª¡czne jest jednoznaczny z dokªadno-
±ci¡ do permutacji czynników, np.:

(1, 2)(3, 4) = (3, 4)(1, 2).

(2) Rozkªad permutacji na transpozycje jest bardzo niejednoznaczny, ale jednoznaczna
jest (tylko) parzysto±¢ ilo±ci transpozycji w rozkªadzie, np.:

(1, 2) = (1, 2)(2, 3)(2, 3).
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4. Warstwy, tw. Lagrange'a i zastosowania

Na pocz¡tek kilka nazw.

De�nicja 4.1. (1) Grupa trywialna to grupa G = {e} skªadaj¡ca si¦ tylko z elementu
neutralnego.

(2) Je±li G to grupa, to podgrup¦ {e} ⩽ G nazywamy podgrup¡ trywialn¡.
(3) Je±li A ⊆ B (A to podzbiór B), to podzbiór A jest wªa±ciwy, gdy A ̸= B.
(4) Podobnie, je±li H ⩽ G (H to podgrupa G), to podgrupa H jest wªa±ciwa, gdy H ̸= G.

Ustalmy grup¦ G i podgrup¦ H ⩽ G. Teraz wa»ne poj¦cie, z którym cz¦sto studenci maj¡
kªopoty.

De�nicja 4.2. Niech a ∈ G.

(1) Zbiór postaci:
aH := {ah | h ∈ H}

nazywamy warstw¡ lewostronn¡ elementu a wzgl¦dem podgrupy H w grupie G.
(2) Zbiór postaci:

Ha := {ha | h ∈ H}
nazywamy warstw¡ prawostronn¡ elementu a wzgl¦dem podgrupy H w grupie G.

Przykªad 4.3. (1) G = Z, H = 3Z, a = 1.
Wtedy warstwy zapisujemy addytywnie:

1 + 3Z = {1 + 3k | k ∈ Z}.
Czyli powy»sza warstwa lewostronna skªada si¦ z tych liczb caªkowitych, które daj¡
reszt¦ 1 przy dzieleniu przez 3. Mamy te»:

3Z+1 = {3k + 1 | k ∈ Z} = {1 + 3k | k ∈ Z} = 1 + 3Z .

Czyli warstwa lewostronna 1 wzgl¦dem 3Z w grupie Z pokrywa si¦ z warstw¡ prawo-
stronn¡ 1 wzgl¦dem 3Z w grupie Z. Tak jest zawsze dla grup przemiennych.
Popatrzmy teraz na inne warstwy 3Z w Z:

0 + 3Z = {0 + 3k | k ∈ Z} = 3Z,

2 + 3Z = {2 + 3k | k ∈ Z}.
Czyli widzimy, »e Z jest rozª¡czn¡ sum¡ warstw podgrupy 3Z. Zobaczymy niedªugo, »e
nie jest to przypadek.

(2) G = Z10, H = ⟨2⟩ = {0, 2, 4, 6, 8}, a = 1.
Wtedy mamy:

1 +10 {0, 2, 4, 6, 8} = {1, 3, 5, 7, 9}.
(3) G = S3, H = ⟨(1, 2)⟩ = {id, (1, 2)}, a = (1, 3).

Wtedy mamy:

(1, 3){id, (1, 2)} = {(1, 3) id, (1, 3)(1, 2)} = {(1, 3), (1, 2, 3)},
{id, (1, 2)}(1, 3) = {id(1, 3), (1, 2)(1, 3)} = {(1, 3), (1, 3, 2)}.

W tej sytuacji widzimy, »e:

(1, 3){id, (1, 2)} ≠ {id, (1, 2)}(1, 3),
czyli warstwa lewostronna ró»ni si¦ od warstwy prawostronnej!
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Dla H ⩽ G wªa±ciwa intuicja jest wyra»ona nast¦puj¡cym rysunkiem (podobnie dla warstw
prawostronnych):

Czyli G ma by¢ rozª¡czn¡ sum¡ warstw lewostronnych H oraz rozª¡czn¡ sum¡ warstw prawo-
stronnych H. D¡»ymy do pokazania, »e ta intuicja jest wªa±ciwa caªy czas zakªadaj¡c H ⩽ G.

Twierdzenie 4.4. Dowolne dwie warstwy lewostronne H w G s¡ sobie równe lub s¡ rozª¡czne.
Analogicznie dla warstw prawostronnych.

Dowód (dla warstw lewostronnych). We¹my a, b ∈ G. Mamy pokaza¢, »e

aH ∩ bH = ∅ lub aH = bH.

Zaªó»my, »e aH ∩ bH ̸= ∅. Poka»emy, »e aH = bH. Poniewa» aH ∩ bH ̸= ∅, tak wi¦c mo»emy
wzi¡¢ c ∈ aH ∩ bH. Wtedy istniej¡ h1, h2 ∈ H, takie »e:

ah1 = c = bh2.

Pokazujemy teraz, »e aH = bH.
Dla dowodu inkluzji �⊆�, we¹my dowolne g ∈ aH. Chcemy pokaza¢, »e g ∈ bH. Poniewa»
g ∈ aH, w¦c istnieje h ∈ H, takie »e g = ah. Wtedy mamy:

g = ah = ah1︸︷︷︸
c

h−1
1 h = bh2︸︷︷︸

c

h−1
1 h ∈ bH,

bo h2h
−1
1 h ∈ H (poniewa» H jest podgrup¡ G).

Inkluzj¦ �⊇� pokazujemy analogicznie zamieniaj¡c rolami a i b. □

Wniosek 4.5. G jest sum¡ rozª¡czn¡ warstw lewostronnych. Analogicznie dla warstw prawo-
stronnych.

Dowód. Poniewa» ka»dy g ∈ G nale»y do pewnej warstwy H (g ∈ gH), tak wi¦c dostajemy
tez¦ dzi¦ki Twierdzeniu 4.4. □

Musimy si¦ teraz nauczy¢ rozpoznawa¢, czy dane dwie warstwy s¡ równe czy te» rozª¡czne.
Sªu»y temu nast¦puj¡cy wynik.

Twierdzenie 4.6. Zaªó»my, »e a, b ∈ G. Wtedy mamy:

(1) aH = bH ⇔ a−1b ∈ H ⇔ b−1a ∈ H;
(2) Ha = Hb ⇔ ab−1 ∈ H ⇔ ba−1 ∈ H.
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Dowód (tylko dla (1)). Z Twierdzenia 4.4 otrzymujemy (poniewa» b ∈ bH):

aH = bH ⇔ b ∈ aH ⇔ (∃h ∈ H) b = ah ⇔ a−1b ∈ H.

Z drugiej strony:

∀ g ∈ G g ∈ H ⇔ g−1 ∈ H,

czyli dla g = a−1b otrzymujemy:

a−1b ∈ H ⇔ b−1a =
(
a−1b

)−1 ∈ H,

co ko«czy dowód (1). □

Przykªad 4.7. (1) Mamy:

1 + 3Z = 4 + 3Z,

poniewa»:

4− 1 = 3 ∈ 3Z .

(2) Mamy:

1 + 3Z ̸= 2 + 3Z,

poniewa»:

2− 1 = 1 /∈ 3Z .

Teraz idziemy krok dalej w abstrakcji.

De�nicja 4.8. Niech G/H oznacza zbiór wszystkich warstw lewostronnych H w G:

G/H := {gH | g ∈ G},

czyli G/H to pewien zbiór podzbiorów G.
Podobnie H\G oznacza zbiór wszystkich warstw prawostronnych H w G:

H\G := {Hg | g ∈ G}.

B¦dziemy si¦ koncentrowa¢ na zbiorze G/H.

Przykªad 4.9. (1) Mamy:

Z /3Z = {0 + 3Z︸ ︷︷ ︸
3Z

, 1 + 3Z, 2 + 3Z},

czyli s¡ 3 warstwy.
(2) Mamy:

Z10 /{0, 2, 4, 6, 8} = {{0, 2, 4, 6, 8}, {1, 3, 5, 7, 9}},
czyli s¡ 2 warstwy.

(3) Mamy:

S3/{id, (1, 2)} = {{id, (1, 2)}, {(1, 3), (1, 2, 3)}, {(2, 3), (1, 3, 2)}},

czyli s¡ 3 warstwy.

Czemu w ogóle rozwa»amy G/H? Idea: chcemy wydzieli¢ G przez podgrup¦ H i dosta¢
znowu grup¦ (to nie zawsze si¦ uda, o czym niedªugo). Podobnie jak mamy dwie liczby n oraz
m i chcemy wydzieli¢ n przez m i dosta¢ n

m
.

Na pocz¡tek zauwa»my:

Twierdzenie 4.10. Mamy:

|G/H| = |H\G|,
czyli zbiór warstw lewostronnych H w G jest równoliczny ze zbiorem warstw prawostronnych H
w G.
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Szkic dowodu. Dla dowolnego podzbioru A ⊆ G de�niujemy:

A−1 := {a−1 | a ∈ A}.
Wtedy dla gH ∈ G/H mamy:

(gH)−1 = Hg−1 ∈ H\G.
De�niujemy funkcj¦:

G/H ∋ gH 7→ (gH)−1 = Hg−1 ∈ H\G
i ªatwo zauwa»y¢, »e jest to bijekcja. □

De�nicja 4.11. Indeks H w G, oznaczany [G : H], to jest moc zbioru G/H (równowa»nie moc
zbioru H\G) warstw lewostronnych H w G.

Zmierzamy do porównania: |H|, |G| i [G : H]. Najpierw mamy nast¦puj¡ce:

Twierdzenie 4.12. Dla ka»dego g ∈ G mamy:

|gH| = |H| = |Hg|,
czyli wszystkie warstwy H w G s¡ równoliczne.

Szkic dowodu. Mamy funkcj¦:
H ∋ h 7→ gh ∈ gH

i ªatwo zauwa»y¢, »e jest to bijekcja. □

Mo»emy teraz udowodni¢ nast¦puj¡cy, najwa»niejszy tutaj, wynik.

Twierdzenie 4.13 (Twierdzenie Lagrange'a). Niech G b¦dzie grup¡ sko«czon¡ i H ⩽ G. Wtedy
mamy:

|G| = [G : H] · |H|.
W szczególno±ci dostajemy:

|H| | |G|, [G : H] | |G|.
Czyli:

• rz¡d podgrupy dzieli rz¡d grupy;
• indeks podgrupy dzieli rz¡d grupy.

Dowód. Niech n := [G : H]. Wiemy, »e G jest rozª¡czn¡ sum¡ warstw H (Wniosek 4.5), tak
wi¦c istniej¡ a1, a2, . . . , an ∈ G, takie »e:

G = a1H ∪· a2H ∪· . . . ∪· anH.
Wtedy dostajemy:

|G| = |a1H|+ |a2H|+ . . .+ |anH| = n · |H| = [G : H] · |H|,
gdzie pierwsza równo±¢ wynika z rozª¡czno±ci warstw i druga równo±¢ wynika z Twierdzenia
4.12. □

Wniosek 4.14. Niech G b¦dzie grup¡ sko«czon¡ rz¦du k i a ∈ G. Wtedy mamy:

ord(a) | k, ak = e.

Czyli rz¡d elementu dzieli rz¡d grupy.

Dowód. Wiemy, »e (Twierdzenie 3.9):

ord(a) = |⟨a⟩|,
czyli ord(a) | k z Twierdzenia Lagrange'a.
Na Konwersatorium pokazujemy, »e je±li ord(a) | k, to ak = e co daje drug¡ cz¦±¢ dowodzo-

nego wyniku. □

Potrzebujemy jeszcze jednej serii grup sko«czonych.
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De�nicja 4.15. Dla n > 0 de�niujemy:

An := {σ ∈ Sn | σ jest parzysta}.
Na ¢wiczeniach pokazujemy, »e:

An ⩽ Sn.

Zauwa»my, »e dla n > 1 mamy:

|An| =
n!

2
,

czyli:
|A3| = 3, |A4| = 12, |A5| = 60, . . .

Uwaga 4.16. (1) Z Wniosku 4.14, wiemy »e rz¡d elementu dzieli rz¡d grupy, czyli np. nie
ma elementu rz¦du 4 w S3, bo

4 ∤ 6 = |S3|.
Ale implikacja odwrotna nie jest prawdziwa, bo np.

4 | 4 = |K4|,
ale w K4 nie ma elementu rz¦du 4.

(2) Z Twierdzenia Lagrange'a, wiemy »e rz¡d podgrupy dzieli rz¡d grupy st¡d te» np. nie
ma podgrupy rz¦du 4 w S3.
Ale implikacja odwrotna znowu nie jest prawdziwa, bo np.

6 | 12 = |A4|,
ale mo»na pokaza¢, »e w A4 nie ma podgrupy rz¦du 6.

Zanim przejdziemy do zastosowa«, poznamy jeszcze jedn¡ seri¦ przykªadów grup. Dla n ⩾ 2,
wiemy »e ·n jest dziaªaniem ª¡cznym i przemiennym na Zn, które ma element neutralny 1,
ale 0 nie ma elementu odwrotnego wzgl¦dem ·n. Równie» np. 2 nie ma elementu odwrotnego
wzgl¦dem ·4. De�niujemy:

Z∗
n := {k ∈ Zn | NWD(k, n) = 1}.

Na ¢wiczeniach pokazujemy, »e ·n jest dziaªaniem na Z∗
n i »e (Z∗

n, ·n) jest grup¡ przemienn¡.
Je±li p jest liczb¡ pierwsz¡, to oczywi±cie mamy:

Z∗
p := {1, 2, . . . , p− 1}.

Mo»emy teraz udowodni¢:

Twierdzenie 4.17 (Maªe Twierdzenie Fermata). Zaªó»my, »e a ∈ Z, p jest liczb¡ pierwsz¡ i
p ∤ a. Wtedy mamy:

ap−1 ≡ 1 (mod p).

Dowód. Niech r := rp(a). Wtedy mamy:

ap−1 ≡ rp−1 (mod p).

Czyli mo»emy przyj¡¢, »e:
a = r ∈ Zp .

Poniewa» p ∤ a, tak wi¦c a ̸= 0, czyli a ∈ Z∗
p.

Wiemy, »e |Z∗
p | = p− 1. Z Wniosku 4.14, dostajemy »e:

a ·p . . . ·p a︸ ︷︷ ︸
p− 1 razy

= 1 w Z∗
p.

Czyli mamy:
ap−1︸︷︷︸
w Z

≡ a ·p . . . ·p a︸ ︷︷ ︸
p− 1 razy w Zp

(mod p) ≡ 1 (mod p),

co ko«czy dowód. □
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Uwaga 4.18. Dzi¦ki Maªemu Twierdzeniu Fermata mo»emy ªatwo liczy¢ reszty typu rp(n
m),

gdzie p to liczba pierwsza i m,n ∈ Z, poniewa»:
• n mo»emy zast¡pi¢ przez rp(n) (tu nic nie u»ywamy);
• m mo»emy zast¡pi¢ przez rp−1(m) (tu u»ywamy Maªego Twierdzenia Fermata).

Przykªad 4.19. Mamy:
r17

(
172165

)
= r17

(
25
)
,

poniewa» 17 jest liczb¡ pierwsz¡ oraz:

r17(172) = 2, r16(165) = 5.

A potem liczymy:
r17

(
172165

)
= r17

(
25
)
= r17(32) = 15.

Zmierzamy do jeszcze jednego zastosowania w teorii liczb.

Twierdzenie 4.20 (Twierdzenie Wilsona). Je±li p jest liczb¡ pierwsz¡, to mamy:

(p− 1)! ≡ −1 (mod p).

Przed dowodem potrzebujemy dwóch lematów.

Lemat 4.21. Niech (A,+) (notacja addytywna!) b¦dzie sko«czon¡ grup¡ przemienn¡. Uporz¡d-
kujmy elementy A, w taki sposób »e:

A = {a1, . . . , ak, ak+1, . . . , an},
gdzie a1, . . . , ak to wszystkie elementy a ∈ A, takie »e a+ a = 0. Wtedy mamy:

a1 + . . .+ an = a1 + . . .+ ak.

Dowód. Mamy, »e:

∀ a ∈ A a+ a = 0 ⇔ a = −a.
Liczymy teraz:

a1 + . . .+ an = a1 + . . .+ ak︸ ︷︷ ︸
a=−a

+ ak+1 + . . .+ an︸ ︷︷ ︸
a̸=−a

.

Wtedy mamy:
ak+1 + . . .+ an = 0,

poniewa» dla ka»dego a ∈ {ak+1, . . . , an} zachodzi:

a ̸= −a ∈ {ak+1, . . . , an},
tak wi¦c w powy»szej sumie wszystkie elementy �kasuj¡ si¦ nawzajem�. □

Lemat 4.22. Niech p ⩾ 3 b¦dzie liczb¡ pierwsz¡. Wtedy p − 1 ∈ Z∗
p jest jedynym elementem

rz¦du 2 w Z∗
p.

Dowód. Poniewa» p ⩾ 3, tak wi¦c mamy p− 1 ̸= 1, czyli:

ordZ∗
p
(p− 1) ⩾ 2.

Mamy te»:
(p− 1) ·p (p− 1) = rp

(
p2 − 2p+ 1

)
= 1,

czyli faktycznie:
ordZ∗

p
(p− 1) = 2.

Pozostaje pokaza¢, »e p−1 jest jedynym elementem rz¦du 2 w Z∗
p. W tym celu we¹my a ∈ Z∗

p,
taki »e ordZ∗

p
(a) = 2. Poka»emy, »e a = p− 1. Mamy:

rp
(
a2
)
= a ·p a = 1,

czyli:
p | a2 − 1 = (a− 1)(a+ 1).

Poniewa» a ∈ Z∗
p \{1}, dostajemy 1 ⩽ a− 1 < p, czyli p ∤ a− 1. St¡d mamy:
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• p to liczba pierwsza;
• p | (a− 1)(a+ 1);
• p ∤ a− 1.

Z wªasno±ci liczb pierwszych dostajemy, »e p | a+ 1. Ale 0 < a+ 1 ⩽ p, tak wi¦c dostajemy, »e
p = a+ 1, czyli faktycznie a = p− 1. □

Dowód Tw. Wilsona. Mamy pokaza¢, »e:

(p− 1)! ≡ −1 (mod p).

Jest to prawda dla p = 2, zaªó»my wi¦c »e p ⩾ 3.
Mamy, »e:

(p− 1)! ≡ 1 ·p 2 ·p 3 ·p . . . ·p (p− 1) (mod p),

gdzie po prawej stronie kongruencji jest produkt wszystkich elementów w sko«czonej grupie
przemiennej Z∗

p. Z Lematu 4.21 i Lematu 4.22 dostajemy:

(p− 1)! ≡ p− 1 (mod p) ≡ −1 (mod p),

bo p− 1 to jedyny element rz¦du 2 w grupie Z∗
p. □

Uwaga 4.23. (1) Prawdziwa (i ªatwa do pokazania) jest te» implikacja przeciwna do tej w
Twierdzeniu Wilsona, tzn. nast¦puj¡ce stwierdzenie jest prawdziwe

∀n ∈ N>0 (n− 1)! ≡ −1 (mod n) ⇒ n jest liczb¡ pierwsz¡

(2) Implikacja przeciwna do implikacji w Maªym Twierdzeniu Fermata nie jest praw-

dziwa, tzn. je±li sformuªujemy Maªe Twierdzenie Fermata jako:

p : pierwsza ⇒ (∀a ∈ Z) ap ≡ a (mod p),

to implikacja przeciwna nie jest prawdziwa, tzn. istniej¡ liczby zªo»one n, takie »e dla
ka»dego a ∈ Z mamy an ≡ a (mod n). Liczby takie nazywaj¡ si¦ liczbami Carmi-

chaela. Najmniejsz¡ liczb¡ Carmichaela jest 561. Dopiero w 1994 roku udowodniono,
»e istnieje niesko«czenie wiele liczb Carmichaela.
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5. Homomorfizmy, j¡dra i dzielniki normalne

Na pocz¡tek troch¦ nazw.

De�nicja 5.1. Niech f : G→ H b¦dzie homomor�zmem. Wtedy mówimy, »e:

• f jest monomor�zmem, gdy f jest �1-1�;
• f jest epimor�zmem, gdy f jest �na�;
• f jest endomor�zmem, gdy G = H;
• f jest automor�zmem, gdy G = H i f jest izomor�zmem.

Na ¢wiczeniach udowadniamy nast¦puj¡cy:

Fakt 5.2. Niech G,H,N to b¦d¡ grupy oraz

φ : G→ H, ψ : H → N.

Wtedy mamy:

(1) je±li φ i ψ s¡ homomor�zmami, to ψ ◦ φ jest te» homomor�zmem;
(2) je±li φ jest izomor�zmem, to φ−1 : H → G jest te» izomor�zmem;
(3) mamy:

G ∼= G, G ∼= H ⇔ H ∼= G, G ∼= H i H ∼= N ⇒ G ∼= N.

Czyli ∼= �przypomina� relacj¦ równowa»no±ci.

De�nicja 5.3. Niech G b¦dzie grup¡. De�niujemy:

Aut(G) := {φ ∈ SG | φ jest automor�zmem}.

Na ¢wiczeniach dowodzimy, »e:
Aut(G) ⩽ SG,

czyli Aut(G) jest grup¡ z dziaªaniem skªadania funkcji.

Przykªad 5.4. (1) Na Konwersatorium pokazujemy, »e dla ka»dego k ∈ Z funkcja:

φk : Z→ Z, φk(x) = kx

jest endomor�zmem Z i »e wszystkie endomor�zmy Z s¡ tej postaci. �atwo zauwa»y¢,
»e:

φk ∈ Aut(Z) ⇔ k ∈ {−1, 1}.
Czyli mamy:

Aut(Z) = { φ1︸︷︷︸
id

, φ−1}.

�atwo napisa¢ tabelk¦ Aut(Z):

◦ φ1 φ−1

φ1 φ1 φ−1

φ−1 φ−1 φ1

czyli mamy:
Aut(Z) ∼= Z2 .

(2) Na Konwersatorium pokazujemy, »e dla ka»dego k ∈ Zn funkcja:

φk : Zn → Zn, φk(x) = k ·n x
jest endomor�zmem Zn i »e wszystkie endomor�zmy Zn s¡ tej postaci. Wtedy mamy:

φk ∈ Aut(Zn) ⇔ k ∈ Z∗
n .

Poza tym:

∀ k, l ∈ Zn φk ◦ φl = φk·nl,

czyli funkcja:
Z∗

n ∋ k 7→ φk ∈ Aut(Zn)
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jest izomor�zmem, st¡d:
Aut(Zn) ∼= (Z∗

n, ·n) .
Dla przykªadu, popatrzmy na sytuacj¦ gdy n = 8. Wtedy:

Aut(Z8) ∼= (Z∗
8, ·8) , Z∗

8 = {1, 3, 5, 7}.
�atwo napisa¢ tabelk¦ Z∗

8:

·8 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

czyli dostajemy (porównuj¡c powy»sz¡ tabelk¦ z tabelk¡ grupy Kleina K4):

K4
∼= Z∗

8
∼= Aut(Z8).

Teraz wa»ne twierdzenie o homomor�zmach i rz¦dach elementów.

Twierdzenie 5.5. Niech f : G→ H b¦dzie homomor�zmem i g ∈ G. Wtedy mamy:

(1) f(eG) = eH ;
(2) f (g−1) = f(g)−1;
(3) nast¦puj¡ce uogólnienie (1) oraz (2):

∀n ∈ Z f (gn) = f(g)n;

(4) je±li f jest �1-1�, to:
ordG(g) = ordH(f(g));

(5) je±li ordG(g) jest sko«czony, to ordH(f(g)) jest sko«czony oraz:

ordH(f(g)) | ordG(g).

Dowód. Punkty (3) i (4) s¡ udowodnione na Konwersatorium. Dla dowodu (5), zaªó»my »e
ordG(g) = n, tak wi¦c gn = eG. Wtedy dostajemy:

f(g)n =︸︷︷︸
(3)

f (gn) = f (eG) =︸︷︷︸
(1)

eH .

Na Konwersatorium pokazujemy, »e z f(g)n = eH wynika:

ordH(f(g)) | n = ordG(g),

co ko«czy dowód. □

Historycznie, poj¦cie grupy wzi¦ªo si¦ z poj¦cia grupy przeksztaªce«, czyli (w naszej ter-
minologii) podgrupy SX dla pewnego zbioru X. Niedªugo zobaczymy, »e ka»d¡ grup¦ mo»emy
traktowa¢ jako grup¦ przeksztaªce«. Gªówny krok w tym kierunku to nast¦puj¡ce:

Twierdzenie 5.6 (Twierdzenie Cayley'a). Dla dowolnej grupy G istnieje monomor�zm:

α : G→ SG.

Szkic dowodu. We¹my g ∈ G i de�niujemy:

Fg : G→ G, Fg(x) = gx.

Dla ka»dego g ∈ G funkcja Fg jest bijekcj¡, poniewa» ªatwo zauwa»y¢, »e:

(Fg)
−1 = Fg−1 .

Mo»emy teraz zde�niowa¢ nasz¡ funkcj¦:

α : G→ SG, α(g) = Fg.

Nale»y teraz sprawdzi¢, »e:

∀ g, h ∈ G Fgh = Fg ◦ Fh,
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czyli α jest homomor�zmem oraz »e α jest �1-1� (co pomijamy). □

De�nicja 5.7. Zaªó»my, »e f : G→ H jest homomor�zmem. De�niujemy:

• j¡dro f jako:

ker(f) := {g ∈ G | f(g) = eH};
• obraz f jako:

im(f) := {f(g) ∈ H | g ∈ G}.
Czyli ker(f) = f−1(eH) (przeciwobraz) oraz im(f) = f(G) (obraz).

Przykªad 5.8. (1) Niech

r5 : Z→ Z5

b¦dzie funkcj¡ 5-tej reszty. Wtedy mamy:

ker(r5) = 5Z, im(f) = Z5 .

(2) Niech

f : C→ C, f(x+ yi) = x.

Wtedy mamy:

ker(f) = R i, im(f) = R .

Twierdzenie 5.9. Zaªó»my, »e f : G→ H jest homomor�zmem. Wtedy mamy:

(1) im(f) ⩽ H;
(2) je±li f jest monomor�zmem, to im(f) ∼= G.

Dowód. Dla dowodu (1) sprawdzamy de�nicj¦ bycia podgrup¡.

(i) U»ywaj¡c Twierdzenia 5.5(1) mamy eH = f(eG) ∈ im(f).
(ii) Dla dowolnych f(g1), f(g2) ∈ im(f) mamy:

f(g1)f(g2) = f(g1g2) ∈ im(f).

(iii) Je±li f(g) ∈ im(f), to mamy (u»ywaj¡c Twierdzenia 5.5(2)):

f(g)−1 = f
(
g−1

)
∈ im(f).

Czyli dostali±my, »e im(f) ⩽ H.
Dla dowodu (2), z (1) mamy »e im(f) ⩽ H, czyli im(f) jest grup¡. Je±li f jest monomor-

�zmem, to wtedy funkcja

f : G→ im(f)

jest izomor�zmem, czyli im(f) ∼= G. □

Wniosek 5.10. U»ywaj¡c Twierdzenia 5.9 widzimy, »e Twierdzenie Cayley'a mówi, »e ka»da
grupa G jest izomor�czna z pewn¡ podgrupa grupy bijekcji SG.

Okazuje si¦, »e j¡dro ma pewne dodatkowe wªasno±ci, które zobaczymy poni»ej.

Twierdzenie 5.11. Zaªó»my, »e f : G→ H jest homomor�zmem. Wtedy mamy:

(1) ker(f) ⩽ G;
35



(2) dla dowolnego g ∈ G mamy:

g ker(f) = ker(f)g,

czyli warstwy lewostronne ker(f) pokrywaj¡ si¦ z warstwami prawostronnymi ker(f).

Dowód. Dla dowodu (1) sprawdzamy de�nicj¦ bycia podgrup¡.

(i) U»ywaj¡c Twierdzenia 5.5(1) mamy f(eG) = eH , tak wi¦c eG ∈ ker(f).
(ii) Dla dowolnych a, b ∈ ker(f) mamy f(a) = f(b) = eH , tak wi¦c:

f(ab) = f(a)f(b) = eHeH = eH ,

czyli ab ∈ ker(f).
(iii) Je±li a ∈ ker(f), to f(a) = eH , st¡d (u»ywaj¡c Twierdzenia 5.5(2)) mamy :

f
(
a−1

)
= f(a)−1 = e−1

H = eH ,

tak wi¦c a−1 ∈ ker(f).

Czyli dostali±my, »e ker(f) ⩽ H.
Dla dowodu (2) we¹my g ∈ G. Poka»emy, »e:

g ker(f) = ker(f)g.

�⊆� We¹my dowolne a ∈ g ker(f). U»ywaj¡c Twierdzenia 4.6 dostajemy g−1a ∈ ker(f), tzn.
f(g−1a) = eH . Liczymy teraz:

f
(
ag−1

)
= f(gg−1︸︷︷︸

eG

ag−1) = f(g)f
(
g−1a

)
f
(
g−1

)
= f(g)eHf (g)

−1 = eH .

St¡d ag−1 ∈ ker(f), czyli (u»ywaj¡c znowu Twierdzenia 4.6) dostajemy a ∈ ker(f)g, tak wi¦c:

g ker(f) ⊆ ker(f)g.

�⊇� Analogicznie. □

Powy»sze wªasno±ci j¡dra motywuj¡ nast¦puj¡c¡ de�nicj¦.

De�nicja 5.12. Podgrup¦ N ⩽ G nazywamy dzielnikiem normalnym (lub podgrup¡ nor-
maln¡), co oznaczamy N P G, gdy:

∀ g ∈ G gN = Ng;

Intuicyjnie: dzielniki normalne to te podgrupy przez które mo»emy wydziela¢, o czym b¦dzie
mowa wkrótce.

Przykªad 5.13. Niech G b¦dzie grup¡ i H ⩽ G.

(1) Mamy �oczywiste� dzielniki normalne:

{e} P G, G P G,

poniewa»:

∀ g ∈ G g{e} = {e} = {e}g, gG = G = Gg.

(2) Je±li G jest przemienna, to H P G.
(3) Zauwa»yli±my, »e:

{id, (1, 2)} ⋪ S3.

(4) Ale np. mamy:

A3 = {id, (1, 2, 3), (1, 3, 2) ◁ S3.

Zauwa»my, »e [S3 : A3] = 2.

Twierdzenie 5.14. Je±li H ⩽ G oraz [G : H] = 2, to H ◁ G.
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Dowód. We¹my g ∈ G i rozwa»my dwa przypadki.

Przypadek 1: g ∈ H
Wtedy gH = H = Hg.

Przypadek 2: g /∈ H
Wtedy gH ̸= H ̸= Hg. Ale wiemy (Wniosek 4.5), »e G jest rozª¡czna sum¡ warstw i w naszej
sytuacji s¡ tylko dwie warstwy, bo [G : H] = 2. Czyli dostajemy gH = G \H (dopeªnienie H
w G) i podobnie Hg = G \H.

□

Teraz udowodnimy wynik, który pozwala szybko sprawdza¢, czy dana podgrupa jest dzielni-
kiem normalnym.

Twierdzenie 5.15. Je±li H ⩽ G, to mamy:

H P G ⇔ (∀g ∈ G) (∀h ∈ H) ghg−1 ∈ H.

Dowód. �⇒� Zaªó»my, »e H P G i we¹my dowolne g ∈ G, h ∈ H. Wtedy mamy:

gh ∈ gH =︸︷︷︸
HPG

Hg.

Poniewa» gh ∈ Hg, tak wi¦c u»ywaj¡c Twierdzenia 4.6 dostajemy ghg−1 ∈ H.
�⇐� We¹my dowolny g ∈ G. Mamy pokaza¢, »e gH = Hg. Dla dowodu inkluzji �gH ⊆ Hg�,
we¹my dowolne a ∈ gH. Wtedy istnieje h ∈ H, takie »e a = gh. Mno»¡c t¦ równo±¢ z prawej
przez g−1 otrzymujemy:

ag−1 = ghg−1 ∈ H

z zaªo»enia dowodzonej implikacji. U»ywaj¡c Twierdzenia 4.6 dostajemy a ∈ Hg. Inkluzj¦
�Hg ⊆ gH� pokazuje si¦ analogicznie. □

Przykªad 5.16. Niech:

SLn(R) := {A ∈ GLn(R) | det(A) = 1}.
�atwo zauwa»y¢, »e SLn(R) < GLn(R). Poka»emy, »e SLn(R) ◁GLn(R) u»ywaj¡c Twierdzenia
5.15. We¹my dowolne A ∈ GLn(R) oraz B ∈ SLn(R). Liczymy:

det
(
ABA−1

)
= det(A) det(B)︸ ︷︷ ︸

1

det(A)−1 = det(A) det(A)−1 = 1.

Czyli ABA−1 ∈ SLn(R) i z Twierdzenia 5.15 dostajemy SLn(R) ◁GLn(R).

Uwaga 5.17. Je±li f : G → H jest homomor�zmem, to im(f) ⩽ H ale im(f) nie musi by¢
dzielnikiem normalnym H. Np. mamy homomor�zm:

f : Z2 → S3, f(0) = id, f(1) = (1, 2)

i wtedy:
im(f) = {id, (1, 2)} ⋪ S3.
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Przykªad 5.18. Rozwa»my nast¦puj¡cy homomor�zm:

f : (R,+) → (C \{0}, ·), f(r) = e2rπi := cos (2rπ) + sin (2rπ) i.

Sprawd¹my, »e to jest faktycznie homomor�zm:

f(r + s) = e2(r+s)πi = e(2rπ+2sπ)i =︸︷︷︸
wzory de Moivre'a

e2rπie2sπi = f(r)f(s).

We¹my dowolne r ∈ R. Wtedy mamy:

e2rπi = 1 ⇐⇒ cos (2rπ) + sin (2rπ) i = 1

⇐⇒ cos (2rπ) = 0 oraz sin (2rπ) = 1

⇐⇒ r ∈ Z .
St¡d mamy:

ker(f) = Z.

Liczymy teraz:
im(f) = {z ∈ C | (∃r ∈ R) e2rπi = z}.

St¡d dla dowolnego z ∈ C mamy:

z ∈ im(f) ⇐⇒ (∃r ∈ R) z = cos (2rπ) + sin (2rπ) i

⇐⇒ |z| = 1

⇐⇒ z ∈ S1,

gdzie S1 jest okr¦giem jednostkowym. Czyli dostajemy:

im(f) = S1.
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Opiszemy teraz ogólny zwi¡zek j¡dra z monomor�zmami.

Twierdzenie 5.19. Niech f : G→ H b¦dzie homomor�zmem. Wtedy mamy:

f jest monomor�zmem (czyli f jest �1-1�) ⇔ ker(f) = {eG}.

Dowód. �⇒� Zaªó»my, »e f jest �1-1�. Mamy pokaza¢, »e ker(f) = {eG}. Inkluzja �{eG} ⊆
ker(f)� jest oczywista, tak wi¦c pokazujemy tylko inkluzj¦ �ker(f) ⊆ {eG}. We¹my dowolny
a ∈ ker(f). Wtedy mamy:

f(a) = eH = f(eG).

Poniewa» f jest �1-1�, otrzymujemy a = eG.
�⇐� Zaªó»my, »e ker(f) = {eG}. Mamy pokaza¢, »e f jest �1-1�. We¹my g1, g2 ∈ G i zaªó»my,
»e f(g1) = f(g2). Poka»emy, »e g1 = g2. Z tego, »e f(g1) = f(g2) dostajemy:

eH = f(g1)f(g2)
−1 = f

(
g1g

−1
2

)
.

St¡d mamy:
g1g

−1
2 ∈ ker(f) = {eG},

czyli g1g
−1
2 = eG i st¡d g1 = g2. □

Uwaga 5.20. Je±li chcemy sprawdzi¢, czy dany homomor�zm f jest monomor�zmem, to zaw-
sze powinni±my si¦ koncentrowa¢ na pokazywaniu, »e ker(f) = {e}. Ten sposób jest zawsze
szybszy od pokazywania bezpo±rednio, »e f jest �1-1�!

Przykªad 5.21. Rozwa»my homomor�zm α z Twierdzenia Cayley'a, czyli

α : G→ SG, α(g) = Fg,

gdzie Fg(x) = gx. We¹my g ∈ G i sprawd¹my kiedy g ∈ ker(α). Je±li g ∈ ker(α), to Fg = id,
czyli w szczególno±ci:

e = id(e) = Fg(e) = ge = g.

Dostajemy st¡d, »e ker(α) = {e}, czyli α jest faktycznie monomor�zmem.
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6. Grupa ilorazowa i produkt grup

Zaªó»my, »e G jest grup¡ i H P G. Czyli mamy:

∀ g ∈ G gH = Hg.

Wtedy:

G/H = {gH | g ∈ G} = {Hg | g ∈ G}.

Twierdzenie 6.1. Niech H P G. Wtedy mamy:

(1) Wzór

aH · bH := (ab)H

de�niuje dziaªanie w zbiorze G/H.
(2) (G/H, ·) jest grup¡.
(3) Funkcja

π : G→ G/H, π(g) = gH

jest epimor�zmem i zachodzi:

ker(π) = H.

Dowód. Dla dowodu (1) trzeba sprawdzi¢, »e powy»sze dziaªanie jest dobrze okre±lone, czyli »e
nie zale»y od wyboru reprezentantów warstw. Tzn. mamy pokaza¢, »e:

∀ a, a′, b, b′ ∈ G aH = a′H, bH = b′H =⇒ abH = a′b′H.

U»ywaj¡c Twierdzenia 4.6, powy»sze redukuje si¦ do pokazania:

∀ a, a′, b, b′ ∈ G a−1a′ ∈ H, b−1b′ ∈ H =⇒ (ab)−1a′b′ = b−1a−1a′b′ ∈ H.

Na potrzeby dowodu oznaczmy:

h := a−1a′ ∈ H.

Liczymy teraz:

b−1 a−1a′︸ ︷︷ ︸
h

b′ = b−1 hb′︸︷︷︸
∈Hb′=b′H

= b−1b′h′ dla pewnego h′ ∈ H.

Ale b−1b′ ∈ H, czyli b−1b′h′ ∈ H, z czego wynika »e:

abH = a′b′H,

co mieli±my pokaza¢.
Dla dowodu (2) sprawdzamy (do±¢ automatycznie) de�nicj¦ dziaªania grupowego.

(i) �¡czno±¢.
We¹my a, b, c ∈ G. Wtedy mamy:

(aH · bH) · cH = (ab)H · cH = ((ab)c)H = (a(bc))H = aH · (bc)H = aH · (bH · cH).

(ii) Element neutralny.
We¹my a ∈ G. Wtedy mamy:

aH ·H = aH · eH = aeH = aH, H · aH = eH · aH = eaH = aH.

Czyli H = eH jest elementem neutralnym.
(iii) Elementy odwrotne.

We¹my a ∈ G. Wtedy mamy:

aH · a−1H = aa−1H = H, a−1H · aH = a−1aH = H.

Czyli a−1H jest elementem odwrotnym do aH.
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Dla dowodu (3) sprawdzamy najpierw, »e funkcja π jest homomor�zmem. We¹my a, b ∈ G.
Wtedy mamy:

π(ab) = abH = aH · bH = π(a) · π(b),
czyli funkcja π jest homomor�zmem
Nast¦pnie sprawdzamy, »e π jest �na�, ale to jest oczywiste, bo dla ka»dego aH ∈ G/H, mamy
π(a) = aH.
Na koniec sprawdzamy, »e ker(π) = H. Liczymy:

ker(π) = {a ∈ G | π(a) = eG/H} = {a ∈ G | aH = H} = {a ∈ G | a ∈ H} = H,

czyli faktycznie ker(π) = H, co ko«czy dowód. □

De�nicja 6.2. (1) Grup¦ (G/H, ·) z Twierdzenia 6.1(2) nazywamy grup¡ ilorazow¡ G wzgl¦-
dem H.

(2) Homomor�zm π : G → G/H z Twierdzenia 6.1(3) nazywamy homomor�zmem ilorazo-
wym.

Przykªad 6.3. We¹my G = Z i H = 3Z. Wtedy mamy:

Z /3Z = {3Z, 1 + 3Z, 2 + 3Z}.
Mo»emy policzy¢ np.:

(2 + 3Z) + (2 + 3Z) = (2 +3 2) + 3Z = 1 + 3Z .

Dostajemy nast¦puj¡c¡ tabelk¦:

+ 3Z 1 + 3Z 2 + 3Z
3Z 3Z 1 + 3Z 2 + 3Z

1 + 3Z 1 + 3Z 2 + 3Z 3Z
2 + 3Z 2 + 3Z 3Z 1 + 3Z

Wida¢, »e dostajemy:
Z /3Z ∼= (Z3,+3)

oraz ogólnie:
Z /nZ ∼= (Zn,+n).

Udowodnimy teraz wa»ne twierdzenie, które pozwala nam zrozumie¢ grupy ilorazowe i
uogólnia ono obserwacje z Przykªadu 6.3.

Twierdzenie 6.4 (Zasadnicze Twierdzenie o Homomor�zmach Grup). Niech φ : G→ N b¦dzie
homomor�zmem grup. Wtedy mamy:

G/ ker(φ) ∼= im(φ),

czyli dziedzina wydzielona przez j¡dro jest izomor�czna z obrazem.
Dokªadniej: istnieje monomor�zm grup:

ψ : G/ ker(φ) → N, ψ (g ker(φ)) = φ(g),

taki »e im(ψ) = im(φ).
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Dowód. Oznaczmy dla wygody H := ker(φ). Poka»emy najpierw, »e ψ jest dobrze okre±lone
równaniem ψ(aH) = φ(a). We¹my a, b ∈ G, takie »e aH = bH. Mamy pokaza¢, »e φ(a) = φ(b).
Z aH = bH, wynika »e:

a−1b ∈ H = ker(φ),

st¡d dostajemy:

e = φ(a−1b) = φ(a)−1φ(b)

i ostatecznie φ(a) = φ(b), co mieli±my pokaza¢.
Poka»emy teraz, »e ψ to homomor�zm. We¹my aH, bH ∈ G/H. Wtedy mamy:

ψ(aH · bH) = ψ(abH) = φ(ab) = φ(a)φ(b) = ψ(aH)ψ(bH),

czyli ψ jest homomor�zmem.
Poka»emy teraz, »e ψ jest monomor�zmem. Wystarczy pokaza¢, »e ker(ψ) = {eG/H} (pami¦-

tamy, »e eG/H = H). We¹my dowolny gH ∈ ker(ψ). Wtedy mamy:

eN = ψ(gH) = φ(g),

czyli g ∈ ker(φ) = H, co daje gH = H, tak wi¦c ker(ψ) = {eG/H}.
Z de�nicji ψ mamy im(ψ) = im(φ) i dostajemy G/ ker(φ) ∼= im(φ). □

Przykªad 6.5. Niech G b¦dzie dowoln¡ grup¡.

(1) Mamy homomor�zm trywialny:

φ : G→ G, φ(g) = e.

Dostajemy, »e:

ker(φ) = G, im(φ) = {e}.
Z Zasadniczego Twierdzenia o Homomor�zmach Grup otrzymujemy:

G/G ∼= {e}.
(2) Mamy te»:

idG : G→ G, idG(g) = g.

Dostajemy, »e:

ker(φ) = {e}, im(φ) = G.

Z Zasadniczego Twierdzenia o Homomor�zmach Grup otrzymujemy:

G/{e} ∼= G.

(3) Niech n > 0 i we¹my homomor�zm n-tej reszty:

rn : Z→ Zn .

Wtedy mamy:

ker(f) = nZ, im(f) = Zn .

Czyli z Zasadniczego Twierdzenia o Homomor�zmach Grup otrzymujemy:

Z /nZ ∼= Zn,

jak w Przykªadzie 6.3.
(4) We¹my homomor�zm z Przykªadu 5.18:

f : (R,+) → (C \{0}, ·), f(r) = e2rπi := cos (2rπ) + sin (2rπ) i.

Zauwa»yli±my, »e:

ker(f) = Z, im(f) = S1 (okr¡g jednostkowy).

Czyli z Zasadniczego Twierdzenia o Homomor�zmach Grup otrzymujemy:

R /Z ∼= S1.
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(5) Niech n > 0 i rozwa»my homomor�zm zadany przez wyznacznik:

det : GLn(R) → (R \{0}, ·).
Wtedy mamy:

ker(det) = {A ∈ GLn(R) | det(A) = 1} = SLn(R).

Poniewa» im(det) = R \{0}, tak wi¦c z Zasadniczego Twierdzenia o Homomor�zmach
Grup otrzymujemy:

GLn(R)/SLn(R) ∼= (R \{0}, ·).

Zmierzamy teraz do kolejnej konstrukcji algebraicznej.

Przykªad 6.6. Rozwa»my dwa nast¦puj¡ce homomor�zmy:

α : Z2 → Z6, 0 7→ 0, 1 7→ 3;

β : Z3 → Z6, 0 7→ 0, 1 7→ 2, 2 7→ 4.

Poniewa» mamy:
Z6 = {0 +6 0, 0 +6 2, 0 +6 4, 1 +6 0, 1 +6 2, 1 +6 4},

tak wi¦c otrzymujemy bijekcj¦:

Z2×Z3 → Z6, (i, j) 7→ α(i) +6 β(j).

Chcemy aby bijekcja z Przykªadu 6.6 byªa izomor�zmem, tak wi¦c powinni±my zde�niowa¢
dziaªanie grupowe na produkcie Z2×Z3. Poni»ej robimy to ogólnie.

Twierdzenie 6.7. Niech G i H b¦d¡ grupami. De�niujemy nast¦puj¡ce dziaªanie w G×H:

(g, h) · (g′, h′) := (gg′, hh′),

gdzie na pierwszej wspóªrz¦dnej jest dziaªanie w G i na drugiej wspóªrz¦dnej jest dziaªanie w
H. Wtedy (G×H, ·) jest grup¡.

Dowód. Dla dowodu ª¡czno±ci · we¹my (g, h), (g′, h′), (g′′, h′′) ∈ G×H. Wtedy:

((g, h) · (g′, h′)) · (g′′, h′′) = (gg′, hh′) · (g′′, h′′) =
= ((gg′)g′′, (hh′)h′′) = (g(g′g′′), h(h′h′′)) = (g, h) · ((g′, h′) · (g′′, h′′)) ,

czyli dziaªanie · jest ª¡czne.
Podobnie ªatwo si¦ sprawdza (co pomijamy), »e element neutralny · to (eG, eH) oraz »e dla

ka»dego (g, h) ∈ G×H, element odwrotny to (g−1, h−1). □

De�nicja 6.8. Grup¦ z Twierdzenia 6.7 nazywamy produktem grup G,H i oznaczamy G×H.

Przykªad 6.9. (1) Rozwa»my grup¦:

Z2×Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}.
oraz jej tabelk¦:

Z2×Z2 (0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)
(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)
(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

Widzimy, »e:
Z2×Z2

∼= K4 (grupa Kleina).

(2) Rozwa»ana wcze±niej funkcja:

Z2×Z3 → Z6, (i, j) 7→ α(i) +6 β(j)

jest izomor�zmem i mamy:
Z2×Z3

∼= Z6 .
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Nast¦pny wynik zawiera oba punkty z powy»szego przykªadu jako szczególne przypadki i
daje ogólny test na to, czy dana grupa jest izomor�czna z produktem grup.

Twierdzenie 6.10 (Twierdzenie o produkcie wewn¦trznym). Niech G b¦dzie grup¡ i A,B b¦d¡
podgrupami G, takimi »e:

(1) A ∩B = {e};
(2) AB = G, tzn. dla ka»dego g ∈ G istniej¡ a ∈ A, b ∈ B, takie »e g = ab;
(3) dla ka»dych a ∈ A, b ∈ B mamy ab = ba.

Wtedy nast¦puj¡ca funkcja:

f : A×B → G, f(a, b) = ab

(zamiast �f((a, b))� piszemy tu �f(a, b)�) jest izomor�zmem, czyli A×B ∼= G.

Dowód. Sprawdzamy, czy f jest homomor�zmem. We¹my (a, b), (a′, b′) ∈ A×B. Liczymy:

f((a, b) · (a′, b′)) = f(aa′, bb′) = aa′bb′ =︸︷︷︸
a′b=ba′

aba′b′ = f(a, b)f(a′, b′),

czyli f jest homomor�zmem.
Sprawdzamy, czy f jest �1-1�. Wystarczy pokaza¢, »e ker(f) = {eA×B}, gdzie eA×B = (e, e).

We¹my (a, b) ∈ ker(f). Wtedy mamy:

e = f(a, b) = ab,

czyli dostajemy

A ∋ a−1 = b ∈ B.

St¡d (u»ywaj¡c (1)) mamy:

a−1 = b ∈ A ∩B = {e},
czyli faktycznie (a, b) = (e, e).
Sprawdzamy, czy f jest �na�. Z (2) dostajemy, »e dla ka»dego g ∈ G istniej¡ a ∈ A, b ∈ B,

takie »e:

g = ab = f(a, b),

czyli faktycznie f jest �na�. □

De�nicja 6.11. Je±li podgrupy A,B speªniaj¡ zaªo»enia Twierdzenia o produkcie wewn¦trz-
nym, to mówimy »e G jest produktem wewn¦trznym grup A,B.

Uwaga 6.12. (1) Twierdzenie o produkcie wewn¦trznym mówi, »e je±li G jest produktem
wewn¦trznym grup A,B, to wtedy:

G ∼= A×B.

(2) Je±li G jest produktem wewn¦trznym grup A,B oraz istniej¡ grupy H,N oraz izomor-
�zmy:

α : H → A, β : N → B,

to wtedy funkcja

f : H ×N → G, f(h, n) = α(h)β(n)

jest izomor�zmem i mamy:

G ∼= H ×N.

Przykªad 6.13. (1) Niech G b¦dzie grup¡ Kleina:

G = K4 = {id, S, S ′, Oπ}.
We¹my:

A := ⟨S⟩ = {id, S}, B := ⟨S ′⟩ = {id, S ′}.
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Wtedy mamy A ∩ B = {id}, AB = K4 (bo np. SS ′ = Oπ) oraz SS ′ = S ′S (bo caªa
grupa K4 jest przemienna). St¡d K4 jest produktem wewn¦trznym A i B. Poniewa»
A ∼= Z2

∼= B, tak wi¦c z Uwagi 6.12(2) dostajemy:

K4
∼= Z2×Z2 .

(2) Grupa Z6 jest produktem wewn¦trznym podgrup:

A := {0, 3} ∼= Z2, B := {0, 2, 4} ∼= Z3 .

z Uwagi 6.12(2) dostajemy:
Z6

∼= Z2×Z3 .
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7. Produkty grup cyklicznych i grupa kwaternionów

Nast¦pny wynik uogólnia fakt, »e Z6
∼= Z2×Z3.

Twierdzenie 7.1. Zaªó»my, »e k, l > 0 s¡ wzgl¦dnie pierwsze. Wtedy mamy:

Zkl
∼= Zk ×Zl .

Dowód. Niech n := kl. Przedstawimy Zn jako produkt wewn¦trzny podgrup A i B, takich »e:

A ∼= Zk, B ∼= Zl

(co wystarcza z Uwagi 6.12(2)). We¹my:

A := ⟨l⟩ = {0, l, 2l, . . . , (k − 1)l} ∼= Zk,

B := ⟨k⟩ = {0, k, 2k, . . . , (l − 1)k} ∼= Zl .

Pokazujemy, »e A ∩B = {0}. We¹my t ∈ A ∩B i poka»emy, »e t = 0. Poniewa» l | t i k | t, tak
wi¦c dostajemy:

NWW(l, k) | t.
Ale NWD(l, k) = 1, tak wi¦c NWW(l, k) = n. Czyli mamy n | t oraz t ∈ Zn, st¡d dostajemy
t = 0.
We¹my teraz dowolny t ∈ Zn. Znajdziemy a ∈ A, b ∈ B, takie »e a +n b = t. Rozwa»my

nast¦puj¡cy zbiór:
S := {a+n b | a ∈ A, b ∈ B}.

Mamy pokaza¢, »e S = Zn. Rozwa»my funkcj¦:

φ : A×B → S, φ(a, b) = a+n b.

Z de�nicji mamy, »e φ jest �na�. Poka»emy, »e φ jest �1-1�. We¹my (a, b), (a′, b′) ∈ A×B, takie
»e φ(a, b) = φ(a′, b′). Wtedy mamy:

a+n b = a′ +n b
′ ⇒ A ∋ a−n a

′ = b−′
n b ∈ B.

St¡d dostajemy:
a−n a

′, b′ −n b ∈ A ∩B = {0}.
Czyli mamy:

a−n a
′ = 0, b′ −n b = 0,

co w ko«cu daje (a, a′) = (b, b′), czyli φ jest �1-1�. Podsumowuj¡c, dostajemy »e powy»sza
funkcja φ : A×B → S jest bijekcj¡ oraz mamy:

|S| = |A×B| = |A||B| = kl = n = |Zn |.
St¡d S jest podzbiorem Zn mocy n = |Zn |, czyli faktycznie S = Zn, co mieli±my pokaza¢.
Oczywi±cie, mamy te» ostatni warunek z twierdzenia o produkcie wewn¦trznym, bo grupa

Zn jest przemienna, co ko«czy dowód. □

Uwaga 7.2. Cz¦±¢ �Zn = A +n B� powy»szego dowodu wynikaªa z cz¦±ci �A ∩ B = {0}� i z
faktu, »e:

|Zn | = n = kl = |A||B|.
Ogólnie mamy, »e je±li:

• H ⩽ G,K ⩽ G i G jest sko«czona;
• H ∩K = {e};
• |G| = |H||K|,

to wtedy G = HK, czyli dla ka»dego g ∈ G istniej¡ x ∈ H, y ∈ K, takie »e g = xy. Czyli ten
warunek otrzymujemy �za darmo�, je±li wiemy »e |G| = |H||K| oraz H ∩K = {e}.

Przyjrzymy si¦ teraz bli»ej produktom grup cyklicznych. Oczywi±cie, mo»emy bra¢ produkty
wi¦kszej ilo±ci grup, czyli dla grup G1, . . . , Gn mamy te» produkt grup G1 × . . .×Gn.

Twierdzenie 7.3. Niech k1, . . . , kn > 0. Wtedy nast¦puj¡ce warunki s¡ równowa»ne:
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(1) Grupa Zk1 × . . .× Zkn jest cykliczna.
(2) Liczby k1, . . . , kn s¡ parami wzgl¦dnie pierwsze, tzn. dla i ̸= j mamy NWD(ki, kj) = 1.

Dowód. (2) ⇒ (1)
Wiemy z Twierdzenia 7.1, »e:

NWD(k1, k2) = 1 ⇒ Zk1 ×Zk2
∼= Zk1k2 .

Z zaªo»enia mamy NWD(k1k2, k3) = 1 i st¡d znowu dostajemy:

Zk1k2k3
∼= Zk1k2 ×Zk3

∼= Zk1 ×Zk2 ×Zk3 .

Kontynuuj¡c tak dalej (prosta indukcja) otrzymujemy:

Zk1·...·kn
∼= Zk1 × . . .× Zkn ,

czyli grupa Zk1 × . . .× Zkn jest cykliczna.
(1) ⇒ (2)
Udowodnimy, »e negacja warunku (2) implikuje negacj¦ warunku (1). Zaªó»my, »e istniej¡ i ̸= j,
takie »e NWD(ki, kj) ̸= 1. Bez zmniejszenia ogólno±ci mo»emy przyj¡¢, »e i = 1 oraz j = 2.
Niech teraz:

k := NWW(k1, k2) < k1k2, l := kk3k4 . . . kn < k1k2 . . . kn.

Wtedy dla ka»dego i mamy ki | l. We¹my dowolny element:

(a1, . . . , an) ∈ Zk1 × . . .× Zkn .

Wtedy mamy:

l(a1, . . . , an) = (la1, . . . , lan) = (0, . . . , 0),

poniewa» dla ka»dego i mamy:

|Zki | = ki | l.
St¡d dla ka»dego α ∈ Zk1 × . . .× Zkn dostajemy:

ord(α) ⩽ l < k1 . . . kn = |Zk1 × . . .× Zkn |,

czyli grupa Zk1 × . . .× Zkn nie jest cykliczna. □

Przykªad 7.4. (1) Grupa Z6×Z7×Z25 jest cykliczna.
(2) Grupa Z6×Z8×Z1 nie jest cykliczna.

Zauwa»my, »e dla ka»dych k1, . . . , kn > 0 grupa Zk1 × . . .×Zkn jest sko«czona i przemienna.
Okazuje si¦, »e zachodzi te» nast¦puj¡ce twierdzenie odwrotne, które pozostawimy bez dowodu.

Twierdzenie 7.5. Niech A b¦dzie sko«czon¡ grupa przemienn¡. Wtedy istniej¡ k1, . . . , kn > 0,
takie »e:

A ∼= Zk1 × . . .× Zkn .

Czyli ka»da sko«czona grupa przemienna jest izomor�czna z produktem grup cyklicznych.

Chcemy teraz znale¹¢ sposób na sprawdzanie, czy dwie sko«czone grupy przemienne (zapisane
jako produkty grup cyklicznych) s¡ ze sob¡ izomor�czne.

Przykªad 7.6. (1) Oczywi±cie, je±li rz¦dy grup s¡ ró»ne, to grupy nie mog¡ by¢ izomor-
�czne, dlatego b¦dziemy rozwa»ali jedynie sytuacje, w których rz¦dy rozwa»anych grup
s¡ takie same.

(2) Z Twierdzenia 7.3, wiemy »e np.:

Z4 ≇ Z2×Z2, Z20 ≇ Z10×Z2 .
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(3) A czy np.:
Z6×Z105

∼= Z30×Z21?

Rozkªadamy na produkty u»ywaj¡c Twierdzenia 7.3:

Z6×Z105
∼= Z2×Z3×Z3×Z5×Z7,

Z30×Z21
∼= Z2×Z3×Z5×Z3×Z7 .

Czyli dostajemy, »e:
Z6×Z105

∼= Z30×Z21!

Okazuje si¦, »e sposób z Przykªadu 7.6(3) zawsze dziaªa, o czym mówi nast¦pny wynik. Potrze-
bujemy najpierw pewnej notacji. Niech n > 0 i G b¦dzie grup¡. Wtedy oznaczamy:

Gn := G× . . .×G︸ ︷︷ ︸
n razy

, G0 := {e}.

Twierdzenie 7.7. Niech A b¦dzie sko«czon¡ grup¡ przemienn¡.

(1) Istniej¡ k1, l1, . . . , kn, ln > 0, takie »e k1, . . . , kn to pot¦gi liczb pierwszych oraz

A ∼= (Zk1)
l1 × . . .× (Zkn)

ln .

(2) Niech k1, . . . , kn to parami ró»ne pot¦gi liczb pierwszych oraz l1, l
′
1, . . . , ln, l

′
n ∈ N. Wtedy

mamy:

(Zk1)
l1 × . . .× (Zkn)

ln ∼= (Zk1)
l′1 × . . .× (Zkn)

l′n ⇔ l1 = l′1, . . . , ln = l′n.

Dowód. Punkt (1) wynika z Twierdzenia 7.5 i Twierdzenia 7.3, poniewa» dla ró»nych liczb
pierwszych p1, . . . , pm oraz k1, . . . , km ∈ N mamy:

Z
p
k1
1 ·...·pkmm

∼= Z
p
k1
1
× . . .× Zpkmm

.

Punktu (2) nie b¦dziemy dowodzi¢. □

Uwaga 7.8. Podsumowuj¡c, je±li mamy dwie sko«czone grupy przemienne A i B, to aby
sprawdzi¢ czy A ∼= B, nale»y:

(1) rozªo»y¢ A i B na produkt grup postaci Zpl , gdzie p jest liczb¡ pierwsz¡;
(2) policzy¢ ile razy wyst¦puje ka»de Zpl w rozkªadzie A oraz w rozkªadzie B i porówna¢

te ilo±ci wyst¡pie«.

Przykªad 7.9. Mamy, »e:

Z2
2×Z3

4×Z2
8×Z5

3×Z7
9 ≇ Z4

2×Z2
4×Z2

8×Z5
3×Z7

9,

poniewa»:
(2, 3, 2, 5, 7) ̸= (4, 2, 2, 5, 7).

Poznali±my ju» wiele przykªadów grup maªych rz¦dów. Okazuje, si¦ »e je±li chodzi o grupy
rz¦du co najwy»ej 8, to jest jeszcze tylko jedna grupa której nie znamy: grupa kwaternionów.
Na pocz¡tek zauwa»my, »e macierze o wspóªczynnikach zespolonych te» mo»na mno»y¢ (po-

dobnie jak macierze o wspóªczynnikach rzeczywistych) i »e wtedy mamy grup¦ GLn(C): grup¦
macierzy n na n o wspóªczynnikach zespolonych i niezerowym wyznaczniku (z dziaªaniem mno-
»enia macierzy). Wyró»niamy trzy macierze z GL2(C):

i :=

[
i 0
0 −i

]
, j :=

[
0 1
−1 0

]
, k :=

[
0 i
i 0

]
.

Niech teraz:
Q8 := {I,−I, i,−i, j,−j,k,−k}.

Wtedy ªatwo sprawdzi¢, »e:

ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j,

i2 = j2 = k2 = −I, (−I)2 = I.
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Sprawdzamy przykªadowe dwie równo±ci:

ij =

[
i 0
0 −i

] [
0 1
−1 0

]
=

[
0 i
i 0

]
= k,

i2 =

[
i 0
0 −i

] [
i 0
0 −i

]
=

[
i2 0
0 (−i)2

]
=

[
−1 0
0 −1

]
= −I.

Czyli Q8 < GL2(C) i Q8 nazywamy grup¡ kwaternionów. Poni»ej tabelka Q8:

Q8 I −I i −i j −j k −k
I I −I i −i j −j k −k
−I −I I −i i −j j −k k
i i −i −I I k −k −j j
−i −i i I −I −k k j −j
j j −j −k k −I I i −i
−j −j j k −k I −I −i i
k k −k j −j −i i −I I
−k −k k −j j i −i I −I

Wtedy te» mamy:

• elementy rz¦du 4 w Q8 to i,−i, j,−j,k,−k;
• element rz¦du 2 w Q8 to −I;
• element rz¦du 1 w Q8 to I.
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8. Klasyfikacja grup maªych rz¦dów i automorfizmy wewn¦trzne

Na razie wiemy, »e ka»da grupa cykliczna rz¦du n jest izomor�czna z Zn. Poni»ej omówimy
klasy�kacj¦ (z dokªadno±ci¡ do izomor�zmu) grup rz¦du co najwy»ej 8. Na pocz¡tek pierwsze
twierdzenie klasy�kacyjne.

Twierdzenie 8.1. Niech G b¦dzie grup¡ rz¦du p, gdzie p jest liczb¡ pierwsz¡. Wtedy mamy:

G ∼= Zp .

Dowód. Poniewa» rz¡d G jest liczb¡ pierwsz¡, tak wi¦c |G| ⩾ 2, czyli istnieje a ∈ G \ {e}.
Wtedy ord(a) > 1. Z Twierdzenia Lagrange'a mamy:

ord(a) | p = |G|.

Poniewa» ord(a) > 1 i liczba p jest pierwsza, dostajemy »e:

ord(a) = p = |G|.

Czyli G = ⟨a⟩ i st¡d G ∼= Zp. □

Teraz klasy�kujemy grupy rz¦du co najwy»ej 8. Niech |G| = n ⩽ 8. Rozwa»amy przypadki.

n = 1
Wtedy G = {e} jest trywialna i np. G ∼= Z1.

n = 2
G ∼= Z2 z Twierdzenia 8.1.

n = 3
G ∼= Z3 z Twierdzenia 8.1.

n = 4
Poka»emy, »e G ∼= Z4 lub G ∼= Z2×Z2.

Dowód. Zaªó»my, »e G ≇ Z4. Poka»emy, »e G ∼= Z2×Z2. Poniewa» G ≇ Z4, tak wi¦c:

∀ g ∈ G ord(g) ̸= 4.

Z Twierdzenia Lagrange'a (poniewa» |G| = 4) dostajemy:

∀ g ∈ G g2 = e.

Na ¢wiczeniach pokazali±my, »e w tej sytuacji G jest grup¡ przemienn¡.
We¹my teraz a ∈ G oraz b ∈ G \ {a, e}. De�niujemy:

A := ⟨a⟩ = {e, a}, B := ⟨b⟩ = {e, b}.

Mamy teraz (u»ywaj¡c przemienno±ci G):

A ∩B = {e}, AB = G, ∀a ∈ A ∀b ∈ B ab = ba.

Poniewa» A ∼= Z2
∼= B, tak wi¦c z Uwagi 6.12(2) dostajemy, »e G ∼= Z2×Z2. □

Uwaga 8.2. Mo»na pokaza¢, »e je±li |G| = p2 i p jest liczb¡ pierwsz¡, to:

G ∼= Zp2 lub G ∼= Zp ×Zp .

n = 5
G ∼= Z5 z Twierdzenia 8.1.

n = 6
Naszkicujemy dowód tego, »e G ∼= Z6 lub G ∼= S3.
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Idea dowodu. Rozwa»amy dwa przypadki, które b¦d¡ miaªy liczne podprzypadki.

Przypadek 1: G przemienna.
Poka»emy, »e G ∼= Z6. We¹my a ∈ G \ {e}.

Przypadek 1a: ord(a) = 6.
Wtedy mamy:

G = ⟨a⟩ ∼= Z6 .

Przypadek 1b: ord(a) = 3.
Zde�niujmy:

A := ⟨a⟩ ∼= Z3

i we¹my b ∈ G \ A. Rozwa»amy teraz trzy �podpodprzypadki�.

• Je±li ord(b) = 6, to j.w. G ∼= Z6.
• Je±li ord(b) = 2, to bierzemy:

B := ⟨b⟩ ∼= Z2

i wtedy ªatwo zauwa»y¢, »e:

A ∩B = {e}, AB = G, ∀a ∈ A ∀b ∈ B ab = ba.

Poniewa» A ∼= Z3 i B ∼= Z2, tak wi¦c z Uwagi 6.12(2) i Twierdzenia 7.1 dostajemy, »e

G ∼= Z2×Z3
∼= Z6 .

• Udowodnimy teraz, »e ord(b) ̸= 3 (ostatni �podpodprzypadek�). Zaªó»my, »e ord(b) = 3
i dojdziemy do sprzeczno±ci. Dla B := ⟨b⟩ mamy »e b ∈ B \ A ∩B st¡d:

A ∩B ⫋ B i |A ∩B| | |B| = 3 ⇒ |A ∩B| = 1 ⇒ A ∩B = {e}.
Wtedy mo»na pokaza¢, »e:

|{ab | a ∈ A, b ∈ B}| = 9 > 6 = |G|,
co daje sprzeczno±¢.

Przypadek 1c: ord(a) = 2.
Argument podobny do tego z Przypadku 1b.

Przypadek 2: G nie jest przemienna.

Uzasadnimy, »e G ∼= S3. Je±li dla ka»dego a ∈ G mamy, »e a2 = e, to wtedy j.w. G jest prze-
mienna, sprzeczno±¢. St¡d istnieje a ∈ G, taki »e ord(a) = 3. Niech H := ⟨a⟩ i we¹my b ∈ G\H.
Jak w Przypadku 1 otrzymujemy, »e ord(b) = 2. De�niujemy:

b′ := ab, b′′ := ba.

Wtedy b′ ̸= b′′, bo w przeciwnym wypadku G byªaby przemienna. Czyli mamy, »e:

G = {e, a, a2, b, b′, b′′}
i mo»na pokaza¢, »e nast¦puj¡ca funkcja:

f : G→ S3, f(e) = id, f(a) = (1, 2, 3), f(a2) = (1, 3, 2), f(b) = (1, 2), f(b′) = (1, 3), f(b′′) = (2, 3)

jest izomor�zmem. □

n = 7
G ∼= Z7 z Twierdzenia 8.1.

n = 8
Wtedy mamy, »e G jest izomor�czna z jedn¡ z nast¦puj¡cych grup:

Q8, D4, Z8, Z4×Z2, Z2×Z2×Z2,
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czego ju» nie pokazujemy (to jest najtrudniejsze!).

Potrzebujemy jeszcze jednej de�nicji.

De�nicja 8.3. Niech G b¦dzie grup¡. Wtedy

Z(G) := {g ∈ G | ∀x ∈ G gx = xg} (centrum grupy G).

�atwo zauwa»y¢, »e Z(G) P G.

Przykªad 8.4. (1) Z(Q8) = {I,−I}.
(2) Z(D3) = {id}.
(3) Z(D4) = {id, Oπ}.
(4) Grupa G jest przemienna wtedy i tylko wtedy, gdy Z(G) = G.

Rozwa»my teraz nast¦puj¡cy motywuj¡cy przykªad, który doprowadzi nas do poj¦cia auto-
mor�zmów wewn¦trznych. We¹my niestandardow¡ baz¦ przestrzeni liniowej R2, np.:{[

1
0

]
,

[
1
1

]}
.

Dla funkcji liniowej f : R2 → R2 o macierzy A, tzn.:

A =

[
a b
c d

]
,

gdzie:

f

([
1
0

])
=

[
a
b

]
oraz f

([
0
1

])
=

[
c
d

]
,

chcemy policzy¢ macierz f w powy»szej bazie niestandardowej{[
1
0

]
,

[
1
1

]}
.

Z algebry liniowej wiemy, »e macierz f w tej nowej bazie to[
1 1
0 1

] [
a b
c d

] [
1 1
0 1

]−1

.

Oznaczmy:

B :=

[
1 1
0 1

]
.

Przy ustalonym B, dostajemy przeksztaªcenie zamiany bazy:

φB : A 7→ BAB−1.

Je±li funkcja f jest odwracalna, to mamy A ∈ GL2(R) i dostajemy:

φB : GL2(R) → GL2(R), φB(A) = BAB−1.

Zamieniamy teraz GL2(R) na dowoln¡ grup¦ G i macierz B na dowolny element g ∈ G.

Twierdzenie 8.5. Niech G b¦dzie grup¡ i ustalmy g ∈ G. De�niujemy nast¦puj¡c¡ funkcj¦:

φg : G→ G, φg(x) = gxg−1.

Wtedy φg jest automor�zmem grupy G.

Dowód. Niech x, y ∈ G. Liczymy:

φg(xy) = gxyg−1 = gx g−1g︸︷︷︸
e

yg−1 = φg(x)φg(y),

czyli φg jest homomor�zmem. Mamy te»:

φg−1 (φg(x)) = φg−1

(
gxg−1

)
= g−1gxg−1

(
g−1

)−1
= x.
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Tak wi¦c mamy:
φg−1 ◦ φg = idG .

Podobnie otrzymujemy:
φg ◦ φg−1 = idG .

St¡d φg : G → G jest bijekcj¡. Poniewa» φg jest te» homomor�zmem, tak wi¦c φg jest auto-
mor�zmem. □

De�nicja 8.6. Je±li G jest grup¡ oraz g ∈ G, to automor�zm postaci φg z Twierdzenia 8.5
nazywamy automor�zmem wewn¦trznym grupy G wyznaczonym przez element g.

Twierdzenie 8.7. Niech G b¦dzie grup¡. De�niujemy nast¦puj¡c¡ funkcj¦:

φ : G→ Aut(G), φ(g) = φg,

gdzie φg jest automor�zmem wewn¦trznym z Twierdzenia 8.5. Wtedy funkcja φ jest homomor-
�zmem grup.

Dowód. We¹my g, g′ ∈ G. Mamy pokaza¢, »e:

φ(gg′)︸ ︷︷ ︸
φgg′

= φ(g)︸︷︷︸
φg

◦φ(g′)︸ ︷︷ ︸
φg′

.

Aby to sprawdzi¢, we¹my dowolne x ∈ G. Liczymy:

φgg′(x) = gg′x(gg′)−1 = gg′x (g′)
−1
g−1 = gφg′(x)g

−1 = φg (φg′(x)) = (φg ◦ φg′) (x).

Czyli faktycznie mamy: φgg′ = φg ◦ φg′ . □

De�nicja 8.8. Obraz homomor�zmu φ z Twierdzenia 8.7, czyli podgrup¦ Aut(G) skªadaj¡ca
si¦ z automor�zmów wewn¦trznych grupy G, oznaczamy przez Inn(G).

Twierdzenie 8.9. Mamy:
Inn(G) ∼= G/Z(G).

Dowód. Z Twierdzenia 8.7 funkcja
φ : G→ Aut(G)

jest homomor�zmem. Z Zasadniczego Twierdzenia o Homomor�zmach Grup otrzymujemy:

G/ ker(φ) ∼= im(φ) = Inn(G).

Czyli wystarczy pokaza¢, »e ker(φ) = Z(G). Liczymy:

ker(φ) = {g ∈ G | φg = idG}
= {g ∈ G | ∀x ∈ G φg(x) = x}
= {g ∈ G | ∀x ∈ G gxg−1 = x}
= {g ∈ G | ∀x ∈ G gx = xg}
= Z(G),

co nale»aªo pokaza¢. □

Przykªad 8.10. (1) Je±li G = GLn(R) i B ∈ GLn(R), to wiemy »e automor�zm wew-
n¦trzny φB odpowiada zamianie bazy. Mo»na pokaza¢, »e:

Z(GLn(R)) = {rI | r ∈ R \{0}} (macierze skalarne).

(2) Rozwa»my G = S4 i popatrzmy na:

φ(1,2,3)((1, 2, 3, 4)) = (1, 2, 3)(1, 2, 3, 4)(1, 2, 3)−1 = (1, 2, 3)(1, 2, 3, 4)(1, 3, 2) =

= (1, 4, 2, 3) = (2, 3, 1, 4) = (σ(1), σ(2), σ(3), σ(4))

dla σ = (1, 2, 3). Tak jest zawsze, czyli dla ka»dej σ ∈ Sn oraz dla ka»dego cyklu
(k1, . . . , kl) ∈ Sn mamy:

σ(k1, . . . , kl)σ
−1 = (σ(k1), . . . , σ(kl)).
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Czyli automor�zm wewn¦trzny w Sn te» mo»na traktowa¢ jako �zamian¦ bazy� (b¡d¹
te» �zamian¦ no±nika�).

(3) Grupa G jest przemienna wtedy i tylko wtedy, gdy ka»dy automor�zm wewn¦trzny w
G jest identyczno±ci¡.

De�nicja 8.11. Niech G b¦dzie grup¡ i x, x′ ∈ G. Mówimy, »e x i x′ s¡ sprz¦»one, gdy istnieje
g ∈ G, taki »e:

gxg−1 = g′.

�atwo pokaza¢, »e relacja sprz¦»enia w G jest relacj¡ równowa»no±ci.

De�nicja 8.12. Klasy abstrakcji relacji sprz¦»enia w G nazywamy klasami sprz¦»ono±ci.

Przykªad 8.13. (1) Grupa G jest przemienna wtedy i tylko wtedy, gdy klasy sprz¦»ono±ci
w G to singletony.

(2) Opiszemy klasy sprz¦»ono±ci w grupie Sn. Z Przykªadu 8.10(2) np. transpozycje tworz¡
klas¦ sprz¦»ono±ci.
Podobnie: dla ustalonego k ⩽ n, cykle dªugo±ci k tworz¡ klas¦ sprz¦»ono±ci.
Ogólnie: dla ka»dych σ, τ ∈ Sn mamy, »e σ i τ s¡ sprz¦»one wtedy i tylko wtedy, gdy σ
i τ maj¡ ten sam typ rozkªadu na cykle rozª¡czne.

(3) Je±li G = GLn(R) i B ∈ GLn(R), to wiemy »e automor�zm wewn¦trzny φB odpowiada
zamianie bazy. W GLn(R) klasy sprz¦»ono±ci s¡ wyznaczone przez odwracalne funkcje
liniowe

f : Rn → Rn,

tzn., dla ustalonej f jak wy»ej, wszystkie macierze f w ró»nych bazach Rn daj¡ klas¦
sprz¦»ono±ci w GLn(R).

To koniec teorii grup na tym wykªadzie, teraz zaczyna si¦:
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TEORIA PIER�CIENI
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9. Pier±cienie, elementy odwracalne i dziedziny

Rozwa»my teraz dwa dziaªania na ustalonym zbiorze.

Przykªad 9.1. (1) Mamy dziaªania dodawania (+) i mno»enia (·) na zbiorachN,Z,Q,R,C.
(2) Mamy dziaªania dodawania i mno»enia macierzy na zbiorze Mn(R) (macierze n na n o

wspóªczynnikach z R).
(3) Dla dowolnego zbioru X, mamy dziaªania sumy (∪) i przekroju (∩) na zbiorze P(X)

(zbiór wszystkich podzbiorów zbioru X).

Ustalmy zbiór R z dwoma dziaªaniami, które oznaczamy przez + i ·.

De�nicja 9.2. (1) Trójk¦ (R,+, ·) nazywamy pier±cieniem, gdy:
(i) (R,+) jest grup¡ przemienn¡.
(ii) Dziaªanie · jest ª¡czne.
(iii) Dziaªanie · jest rozdzielne wzgl¦dem dziaªania+, tzn. dla ka»dych x, y, z ∈ Rmamy:

(x+ y) · z = (x · z) + (y · z), z · (x+ y) = (z · x) + (z · y).

(2) Je±li (R,+, ·) jest pier±cieniem i dziaªanie · jest przemienne, to (R,+, ·) nazywamy
pier±cieniem przemiennym.

(3) Je±li (R,+, ·) jest pier±cieniem i dziaªanie · ma element neutralny, to (R,+, ·) nazywamy
pier±cieniem z jedynk¡.

Notacja 9.3. (1) Je±li (R,+, ·) jest pier±cieniem, to element neutralny dziaªania + ozna-
czamy przez OR lub po prostu przez 0.

(2) Je±li (R,+, ·) jest pier±cieniem z jedynk¡, to element neutralny dziaªania · oznaczamy
przez 1R lub po prostu przez 1 (z �Szybkiego Faktu� w De�nicji 1.7(2) wiemy, »e element
neutralny jest jedyny).

(3) Zamiast �pier±cie« (R,+, ·)� cz¦sto piszemy �pier±cie« R� (domy±laj¡c si¦ dziaªa«).

Przykªad 9.4. (1) (N,+, ·) nie jest pier±cieniem, poniewa» (N,+) nie jest grup¡.
(2) (Z,+, ·), (Q,+, ·), (R,+, ·), (C,+, ·) s¡ pier±cieniami przemiennymi z jedynk¡.
(3) (Mn(R),+, ·) jest pier±cieniem z jedynk¡ (1Mn(R) = I).

Je±li n ⩾ 2, to (Mn(R),+, ·) nie jest pier±cieniem przemiennym.
(4) Je±li X ̸= ∅, to (P(X),∪,∩) nie jest pier±cieniem, poniewa» (P(X),∪) nie jest grup¡.

Podobnie: (P(X),∩,∪) nie jest pier±cieniem, poniewa» (P(X),∩) nie jest grup¡.
Wci¡» mamy, »e:

• ∪ jest rozdzielne wzgl¦dem ∩,
• ∩ jest rozdzielne wzgl¦dem ∪.

Notacja 9.5. Niech (R,+, ·) b¦dzie pier±cieniem.

(1) (R,+) to grupa addytywna pier±cienia R.
(2) Je±li a ∈ R, to elementem przeciwnym do a nazywany element odwrotny do a w grupie

(R,+) i oznaczamy ten element przeciwny przez −a.
(3) Dla a, b ∈ R de�niujemy:

a− b := a+ (−b).
(4) Dla a, b ∈ R zamiast �a · b� cz¦sto piszemy �ab�.
(5) Mno»enie wykonujemy przed dodawaniem, tzn. dla a, b, c ∈ R zapis �ab + c� oznacza

�(a · b) + c�.
(6) Dla n > 0 i a ∈ R mamy:

n · a := a+ . . .+ a︸ ︷︷ ︸
n razy

, 0 · a := 0R, (−n) · a := −(n · a).

St¡d dla ka»dego n ∈ Z i dla ka»dego a ∈ R mamy zde�niowane n · a ∈ R.
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(7) Dla n > 0 i a ∈ R mamy:

an := a · . . . · a︸ ︷︷ ︸
n razy

.

Je±li R jest pier±cieniem z jedynk¡, to:

a0 := 1R.

Fakt 9.6. Je±li (R,+, ·) jest pier±cieniem i a, b, c ∈ R, to wtedy mamy:

(i) 0R · a = 0R = 0R · a;
(ii) −(−a) = a;
(iii) (−a) · b = −(a · b) = a · (−b);
(iv) (−a) · (−b) = a · b;
(v) a · (b− c) = a · b− a · c, (b− c) · a = b · a− c · a;
(vi) je±li R jest pier±cieniem z jedynk¡, to (−1R) · a = −a = a · (−1R).

Dowód. (i) Mamy:

0R · a = (0R + 0R) · a =︸︷︷︸
rozdzielno±¢

0R · a+ 0R · a.

Odejmuj¡c stronami 0R ·a, dostajemy 0R ·a = 0R. Podobnie pokazuje si¦, »e a ·0R = 0R.
(ii) Wiemy, »e w dowolnej grupie element odwrotny do elementu odwrotnego to wyj±ciowy

element, co stosujemy do grupy (R,+).
(iii) Mamy:

(−a) · b+ a · b = (−a+ a) · b = 0R · b =︸︷︷︸
(i)

0R.

St¡d dostajemy (−a) · b = −(a · b). Podobnie pokazuje si¦, »e a · (−b) = −(a · b).
(iv) Mamy:

(−a) · (−b) =︸︷︷︸
(iii)

− (a · (−b)) =︸︷︷︸
(iii)

− (− (a · b)) =︸︷︷︸
(ii)

a · b.

(v) Mamy:

a · (b− c) = a · ((b+ (−c)) = a · b+ a · (−c) =︸︷︷︸
(iii)

a · b− a · c.

Podobnie pokazuje si¦, »e (b− c) · a = b · a− c · a.
(vi) Mamy:

(−1R) · a+ a = (−1R) · a+ 1R · a = (−1R + 1R) · a = 0R · a =︸︷︷︸
(i)

0R.

St¡d dostajemy, »e −a = (−1R) · a. Podobnie pokazuje si¦, »e −a = (−1R) · a.
□

Prawie zawsze zachodzi 0R ̸= 1R o czym mówi nast¦puj¡cy wynik.

Fakt 9.7. Je±li R jest pier±cieniem z jedynk¡ i 0R = 1R, to R jest pier±cieniem zerowym, tzn.:

R = {0R}, 0R + 0R = 0R, 0R · 0R = 0R.

Dowód. We¹my dowolny a ∈ R. Wtedy mamy:

a = a · 1R = a · 0R =︸︷︷︸
9.6(i)

0R,

czyli R = {0R}. □

Przykªad 9.8. (1) Dla ka»dego n > 1, (nZ,+, ·) jest pier±cieniem przemiennym (bez je-
dynki!).
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(2) Zobaczymy, »e (Zn,+n, ·n) jest pier±cieniem przemiennym z jedynk¡. Wszystko ju»
sprawdzili±my wcze±niej poza rozdzielno±ci¡ ·n wzgl¦dem +n. We¹my a, b, c ∈ Zn. Wtedy
mamy:

(a+n b) ·n c = rn(a+ b) ·n c = rn (rn(a+ b)c) = rn((a+ b)c) =

= rn(ac+ bc) = rn(ac) +n rn(bc) = a ·n c+n b ·n c.
Pier±cie« (Zn,+n, ·n) nazywamy pier±cieniem reszt modulo n.

(3) Je±li R jest pier±cieniem przemiennym z jedynk¡ (jak np. Zn,Z,Q,R,C), to mamy
pier±cie« macierzyMn(R) (z jedynk¡) o wspóªczynnikach z R, gdzie dziaªania pochodz¡
z pier±cienia R podobnie jak dziaªania w pier±cieniu macierzy Mn(R) pochodz¡ od
dziaªa« w pier±cieniu liczb rzeczywistych R. Dla przykªadu rozwa»my pier±cie«M2(Z3):[

a b
c d

]
+

[
a′ b′

c′ d′

]
=

[
a+3 a

′ b+3 b
′

c+3 c
′ d+3 d

′

]
,[

a b
c d

]
·
[
a′ b′

c′ d′

]
=

[
a ·3 a′ +3 b ·3 c′ a ·3 b′ +3 b ·3 d′
c ·3 a′ +3 d ·3 c′ c ·3 b′ +3 d ·3 d′

]
.

(4) Niech X b¦dzie zbiorem i R b¦dzie pier±cieniem. Przez RX oznaczamy zbiór wszystkich
funkcji X → R. Wtedy RX staje si¦ pier±cieniem z nast¦puj¡cymi dziaªaniami. Dla
f, g ∈ RX oraz x ∈ X de�niujemy:

(f + g)(x) := f(x) +R g(x), (f · g)(x) := f(x) ·R g(x)

(dodawanie i mno»enie funkcji).
Je±li R jest pier±cieniem przemiennym, to RX jest te» pier±cieniem przemiennym.
Je±li R jest pier±cieniem z jedynk¡, to RX jest te» pier±cieniem z jedynk¡, gdzie 1RX jest
funkcj¡ staª¡ o warto±ci 1R.

(5) De�niujemy:

C(R) := {f ∈ RR | f jest ci¡gªa}.
Wtedy C(R) ⊂ RR i C(R) jest pier±cieniem (przemiennym z jedynk¡) z dziaªaniami
dodawania i mno»enia funkcji, poniewa» (mi¦dzy innymi) suma/iloczyn funkcji ci¡gªych
jest funkcj¡ ci¡gª¡.

(6) Niech:

Z[i] := {n+mi ∈ C | n,m ∈ Z}.
Dla a+ bi, c+ di ∈ Z[i] mamy:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i ∈ Z[i],

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i ∈ Z[i].
St¡d Z[i] jest pier±cieniem zwanym pier±cieniem Gaussa.

W danym pier±cieniu R wyró»nimy teraz pewne specjalne elementy.

De�nicja 9.9. Niech R b¦dzie pier±cieniem z jedynk¡ i a ∈ R.

(1) Element a nazywamy elementem odwracalnym pier±cienia R, gdy istnieje b ∈ R, taki »e:

ab = 1 = ba.

(2) Przez R∗ oznaczamy zbiór wszystkich elementów odwracalnych pier±cienia R.

Twierdzenie 9.10. Niech R b¦dzie pier±cieniem z jedynk¡. Wtedy mamy:

(1) dla ka»dych a, b ∈ R∗

ab ∈ R∗,

(2) (R∗, ·) jest grup¡.
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Dowód. (1) We¹my a, b ∈ R∗. Czyli istniej¡ a′, b′ ∈ R, takie »e:

aa′ = a′a = 1 = bb′ = b′b.

Wtedy mamy:

(ab) (b′a′) = a bb′︸︷︷︸
1

a′ = aa′ = 1 = b′b = b′ a′a︸︷︷︸
1

b = (b′a′) ab.

St¡d ab ∈ R∗, co mieli±my pokaza¢.
(2) Dziaªanie · jest ª¡czne na R, czyli jest te» ª¡czne na R∗. Jedynka pier±cienia R jest te»

elementem neutralnym · na R∗. Je±li a ∈ R∗, to istnieje b ∈ R, taki »e:

ab = 1 = ba.

Wtedy b ∈ R∗ i b jest elementem odwrotnym do a w (R∗, ·).
□

Wniosek 9.11. Je±li a ∈ R∗, to istnieje jedyny b ∈ R∗, taki »e ab = 1 = ba. Oznaczamy
wtedy:

a−1 := b.

Dowód. Wiemy, »e jest taka wªasno±¢ grup (jedyno±¢ elementu odwrotnego). □

De�nicja 9.12. Niech R b¦dzie pier±cieniem z jedynk¡. Grup¦ (R∗, ·) nazywamy grup¡ ele-
mentów odwracalnych (lub grup¡ multyplikatywn¡) pier±cienia R.

Uwaga 9.13. Niech R b¦dzie pier±cieniem.

(1) Wiemy, »e:
0 ∈ R∗ ⇐⇒ R = {0}.

(2) Mamy grup¦ addytywn¡ (R,+).
(3) Je±li R jest pier±cieniem z jedynk¡, to mamy te» grup¦ multyplikatywn¡ (R∗, ·).
(4) Je±li R nie jest pier±cieniem zerowym, to (R, ·) nie jest grup¡ (0 nie ma elementu

odwrotnego)!
(5) Je±li R nie jest pier±cieniem zerowym, to + nie jest nawet dziaªaniem na R∗ (1,−1 ∈ R∗

ale 1 + (−1) = 0 /∈ R∗)!

Przykªad 9.14. (1) Mamy Z∗ = {1,−1}, czyli Z∗ ∼= (Z2,+2).
(2) Mamy R∗ = R \{0}. Podobnie Q∗ = Q \{0} oraz C∗ = C \{0}
(3) Dla n > 1 mamy:

(Zn)
∗ = {k ∈ Zn | NWD(k, n) = 1} = �stare Z∗

n� .

W szczególno±ci, je±li liczba p jest pierwsza, to mamy:

Z∗
p = Zp \{0}.

(4) Udowodnimy, »e:
Z[i]∗ = {1,−1, i,−i}.

�⊇� oczywiste: (−1)(−1) = 1 = i(−i).
�⊆� We¹my a+ bi ∈ Z[i]∗, tzn. a, b ∈ Z oraz istniej¡ c, d ∈ Z, takie »e:

(a+ bi)(c+ di) = 1.

Nakªadamy na ostatni¡ równo±¢ | · |2 i korzystamy z multyplikatywno±ci | · |2:
|(a+ bi)(c+ di)|2 = |1|2,
|(a+ bi)|2|(c+ di)|2 = 1,

(a2 + b2)︸ ︷︷ ︸
∈Z

(c2 + d2)︸ ︷︷ ︸
∈Z

= 1.

St¡d mamy:
a2 + b2 ∈ Z∗ = {−1, 1} oraz a2 + b2 ⩾ 0.
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Czyli dostajemy, »e:
a2 + b2 = 1 oraz a, b ∈ Z .

Tak wi¦c mamy:

(a = ±1 i b = 0) lub (a = 0 i b = ±1).

St¡d dostajemy cztery mo»liwo±ci, które dokªadnie daj¡, »e a+ bi ∈ {1,−1, i,−i}.
(5) Z de�nicji grupy GLn(R) dostajemy, »e:

Mn(R)
∗ = GLn(R).

(6) Niech R b¦dzie pier±cieniem przemiennym z jedynk¡ i X b¦dzie zbiorem. Wtedy mamy:(
RX

)∗
=

{
f ∈ RX | ∀x ∈ X f(x) ∈ R∗} = (R∗)X .

Teraz zajmiemy si¦ elementami zupeªnie innego typu (ni» elementy odwracalne).

De�nicja 9.15. Niech R b¦dzie pier±cieniem przemiennym i a ∈ R. Mówimy, »e a jest dzielni-
kiem zera, gdy:

(i) a ̸= 0,
(ii) istnieje b ∈ R \ {0}, taki »e ab = 0.

Twierdzenie 9.16. Niech R b¦dzie pier±cieniem przemiennym z jedynk¡ i a ∈ R∗. Wtedy a
nie jest dzielnikiem zera.

Dowód. Zaªó»my nie wprost, »e a ∈ R∗ i »e a jest dzielnikiem zera, tzn. istnieje b ∈ R \ {0},
taki »e ab = 0. Mno»¡c obustronnie ostatni¡ równo±¢ przez a−1 dostajemy:

b = a−1ab = a−1 · 0 = 0.

St¡d b = 0, co daje sprzeczno±¢. □

De�nicja 9.17. Niezerowy pier±cie« przemienny z jedynk¡ w którym nie ma dzielników zera
nazywamy dziedzin¡.

Przykªad 9.18. (1) Pier±cienie Z,Z[i],Q,R,C s¡ dziedzinami.
(2) Pier±cie« Z10 nie jest dziedzin¡, poniewa» 2, 5 ∈ Z10 \{0} oraz 2 ·10 5 = 0.
(3) Je±li p jest liczb¡ pierwsz¡, to pier±cie« Zp jest dziedzin¡, bo wiemy »e ka»dy niezerowy

element Zp jest odwracalny, czyli (u»ywaj¡c Twierdzenia 9.16) ten»e niezerowy element
Zp nie mo»e by¢ dzielnikiem zera.

Nast¦pny wynik zawiera implikacj¦ odwrotn¡ do tej w Przykªadzie 9.18(3).

Twierdzenie 9.19. Niech n > 1. Wtedy mamy:

Zn jest dziedzin¡ ⇔ n jest liczb¡ pierwsz¡.

Dowód. Implikacja �⇐� to dokªadnie Przykªad 9.18(3).
Implikacj¦ �⇒� pokazujemy przez kontrapozycj¦, tzn. zakªadamy »e n nie jest liczb¡ pierwsz¡
i pokazujemy, »e pier±cie« Zn nie jest dziedzin¡. Skoro n nie jest liczb¡ pierwsz¡, to istniej¡
k, l > 1, takie »e n = kl. Wtedy k, l ∈ Zn \{0} oraz

k ·n l = 0,

czyli faktycznie pier±cie« Zn nie jest dziedzin¡. □

Nast¦pny wynik uogólnia Twierdzenie 9.19.

Twierdzenie 9.20. Niech R b¦dzie sko«czonym pier±cieniem przemiennym z jedynk¡ oraz a ∈
R \ {0}. Wtedy nast¦puj¡ce warunki s¡ równowa»ne.

(1) a ∈ R∗,
(2) a nie jest dzielnikiem zera,
(3) istnieje m ⩾ 1, takie »e am = 1.
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Dowód. Implikacja �(1) ⇒ (2)� zachodzi dla dowolnych pier±cieni przemiennych z jedynk¡ na
mocy Twierdzenia 9.16.
Dla dowodu implikacji �(2) ⇒ (3)�, u»ywaj¡c zasady szu�adkowej oraz sko«czono±ci R, dosta-
jemy »e istniej¡ n,m > 0, takie »e:

an+m = an.

St¡d mamy:
an(am − 1) = 0 ⇒ aan−1(am − 1) = 0.

Poniewa» R jest dziedzin¡ oraz a ̸= 0, ostatnia równo±¢ implikuje:

an−1(am − 1) = 0.

Podobnie dostajemy:
an−2(am − 1) = 0

oraz poprzez indukcj¦ mamy:
am − 1 = 0.

Czyli am = 1, co nale»aªo pokaza¢.
Dla dowodu implikacji �(3) ⇒ (1)�, zauwa»my »e:

am = 1 ⇒ aam−1 = 1,

czyli a ∈ R∗. □

W poprzednim dowodzie pojawiªa si¦:

Zasada skracania dla dziedzin.

Je±li R jest dziedzin¡, a, b, c ∈ R, a ̸= 0 i ab = ac, to wtedy b = c.

Dowód. Poniewa» ab = ac, tak wi¦c dostajemy:

a(b− c) = 0.

Poniewa» a ̸= 0 i R jest dziedzin¡, dostajemy »e b− c = 0, czyli b = c. □

Uwaga 9.21. W powy»szej zasadzie wystarczy zaªo»enie, »e a ̸= 0 i a nie jest dzielnikiem zera.
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10. Ciaªa, homomorfizmy pier±cieni i pier±cienie wielomianów

Teraz zobaczymy kolejn¡ de�nicj¦, która wyró»nia �najlepsze� pier±cienie, takie jak Q,R,C.

De�nicja 10.1. Ciaªo K to pier±cie« przemienny z jedynk¡, taki »e:

K∗ = K \ {0}
(niezerowe elementy s¡ odwracalne).

Przykªad 10.2. (1) Pier±cienie Q,R,C s¡ ciaªami.
(2) Je±li p jest liczb¡ pierwsz¡, to pier±cie« Zp jest ciaªem.
(3) Wiemy, »e pier±cie« Z4 nie jest ciaªem. Ale wci¡» istnieje ciaªo K = {0, 1, a, b} mocy 4.

Napiszemy tabelki + i · w tym ciele.

+ 0 1 a b
0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

· 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a

Wtedy mamy:

(K,+) ∼= K4︸︷︷︸
grupa Kleina

∼= (Z2,+2)× (Z2,+2), K∗ ∼= (Z3,+3).

Twierdzenie 10.3. Niech R b¦dzie pier±cieniem przemiennym z jedynk¡. Wtedy mamy:

(1) je±li R jest ciaªem, to R jest dziedzin¡;
(2) je±li R jest sko«czony i jest dziedzin¡, to R jest ciaªem.

Dowód. (1) Niech R b¦dzie ciaªem i a ∈ R\{0}. Wtedy a ∈ R∗, czyli (na mocy Twierdzenia
9.16) a nie jest dziennikiem zera. St¡d w R nie ma dzielników zera, tzn. R jest dziedzin¡.

(2) Zaªó»my, »e R jest sko«czony i »e jest dziedzin¡. We¹my a ∈ R \ {0}. Poniewa» R
jest dziedzin¡, tak wi¦c a nie jest dzielnikiem zera. Z Twierdzenia 9.20 (implikacja
�(2) ⇒ (1)�) otrzymujemy, »e a ∈ R∗. St¡d R jest ciaªem.

□

Wniosek 10.4. Niech n ⩾ 2. Wtedy nast¦puj¡ce warunki s¡ równowa»ne:

(1) liczba n jest pierwsza,
(2) pier±cie« Zn jest dziedzin¡,
(3) pier±cie« Zn jest ciaªem.

Przykªad 10.5. Zaªo»enie sko«czono±ci jest niezb¦dne w Twierdzeniu 10.3(2), bo np. pier±cie«
Z jest dziedzin¡, ale nie jest ciaªem.

Podobnie jak dla grup, mamy te» poj¦cie homomor�zmów pier±cieni.

De�nicja 10.6. Niech R i S b¦d¡ pier±cieniami.

(1) Funkcja f : R → S jest homomor�zmem pier±cieni, gdy dla ka»dych x, y ∈ R mamy:

f(x+R y) = f(x) +S f(y), f(x ·R y) = f(x) ·S f(y).
(2) Je±li R, S s¡ pier±cieniami z jedynk¡, to dodatkowo wymagamy, »e:

f (1R) = 1S.

Przykªad 10.7. (1) Funkcja rn : Z→ Zn jest homomor�zmem pier±cieni, bo dla ka»dych
x, y ∈ Z mamy:

rn(x+ y) = rn(x) +n rn(y), rn(x · y) = rn(x) ·n rn(y), rn(1) = 1.

(2) Naturalne funkcje inkluzji:

Z→ Q, Q→ R, R→ C

s¡ homomor�zmami pier±cieni.
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Uwaga 10.8. Podobnie jak w przypadku grup, mamy poj¦cie izomor�zmu pier±cieni, tzn. bi-
jektywnego homomor�zmu pier±cieni. Je±li istnieje izomor�zm pier±cieni R → S, to mówimy »e
pier±cienie R i S s¡ izomor�czne i piszemy R ∼= S. Podobnie jak w przypadku grup, izomor-
�czne pier±cienie maj¡ te same wªasno±ci algebraiczne, tzn. np. je±li R jest dziedzin¡ i R ∼= S,
to wtedy S jest te» dziedzin¡.

Podobnie jak dla grup mamy poj¦cie produktu pier±cieni.

De�nicja 10.9. Niech R i S b¦d¡ pier±cieniami. De�niujemy dziaªania + i · na R× S:

(r, s) + (r′, s′) := (r +R r
′, s+S s

′), (r, s) · (r′, s′) := (r ·R r′, s ·S s′).
Wtedy trójka (R× S,+, ·) jest pier±cieniem zwanym produktem pier±cieni R i S, np. mamy:

0R×S = (0R, 0S).

Twierdzenie 10.10. Niech R, S b¦d¡ pier±cieniami.

(1) Je±li R, S s¡ pier±cieniami z jedynk¡, to R× S jest pier±cieniem z jedynk¡.
(2) Je±li R, S s¡ pier±cieniami przemiennymi, to R× S jest pier±cieniem przemiennym.
(3) Mamy:

(R× S)∗ = R∗ × S∗.

Dowód. �atwe dowody punktów (1) i (2) pomijamy. Dla dowodu (3) we¹my (r, s) ∈ R × S.
Wtedy mamy:

(r, s) ∈ (R× S)∗ ⇔ ∃ (r′, s′) ∈ R× S (r, s) · (r′, s′) = (1R, 1S) = (r′, s′) · (r, s)
⇔ ∃r′ ∈ R ∃s′ ∈ S rr′ = 1R = r′r, ss′ = 1S = s′s

⇔ (r, s) ∈ R∗ × S∗.

Czyli faktycznie: (R× S)∗ = R∗ × S∗. □

Uwaga 10.11. Produkt pier±cieni R × S prawie nigdy nie jest dziedzin¡ (chyba, »e np. R
jest dziedzin¡ i S = {0}), bo mamy:

(r, 0) · (0, s) = (0, 0).

Twierdzenie 10.12. Zaªó»my, »e liczby n,m > 1 s¡ wzgl¦dnie pierwsze. Wtedy nast¦puj¡ca
funkcja:

f : Zmn → Zm ×Zn, f(x) = (rm(x), rn(x))

jest izomor�zmem pier±cieni.

Dowód. Wiemy, »e je±li k | l, to wtedy funkcja

rk : (Zl,+l) → (Zk,+k)

jest homomor�zmem grup, tzn.

∀x, y ∈ Zl rk (x+l y) = rk(x) +k rk(y).

Podobnie mo»na pokaza¢, »e:

∀x, y ∈ Zl rk (x ·l y) = rk(x) ·k rk(y).
Czyli funkcja rk : Zl → Zk jest homomor�zmem pier±cieni (gdy k | l). W szczególno±ci,

funkcje:
rn : Zmn → Zn, rm : Zmn → Zm

s¡ homomor�zmami pier±cieni. We¹my x, y ∈ Zmn. Wtedy mamy:

f (x+mn y) = (rm (x+mn y) , rn (x+mn y))

= (rm(x) +m rm(y), rn(x) +n rn(y))

= (rm(x), rn(x)) + (rm(y), rn(y))

= f(x) + f(y).
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Podobnie pokazuje si¦, »e:
f (x ·mn y) = f(x) · f(y).

Czyli funkcja f jest homomor�zmem pier±cieni. Pozostaje pokaza¢, »e f jest bijekcj¡. Mamy:

|Zmn | = mn = |Zm ×Zn |,
czyli wystarczy pokaza¢, »e f jest �1-1�. Na mocy Twierdzenia 5.19 (traktuj¡c f jako homomor-
�zm grup addytywnych), wystarczy pokaza¢, »e ker(f) = {0}. Mamy:

ker(f) = {x ∈ Zmn | f(x) = 0Zm ×Zn} .
Dla ka»dego x ∈ ker(f) mamy:

(0, 0) = 0Zm ×Zn = f(x) = (rm(x), rn(x)) .

St¡d dostajemy rm(x) = 0 oraz rn(x) = 0, czyli:

m | x oraz n | x.
Poniewa» m i n s¡ wzgl¦dnie pierwsze, otrzymujemy »e mn | x, tak wi¦c x = 0, poniewa»
x ∈ Zmn. St¡d ker(f) = {0}, co nale»aªo pokaza¢. □

De�niujemy ogólnie j¡dro homomor�zmów pier±cieni w ten sam sposób, jak byªo ono u»yte
w powy»szym dowodzie.

De�nicja 10.13. Je±li f : R → S jest homomor�zmem pier±cieni, to j¡dro f de�niujemy jako:

ker(f) := {x ∈ R | f(x) = 0S}.

Kolejna de�nicja jest zwi¡zana z pier±cieniami reszt.

De�nicja 10.14. Funkcja Eulera, oznaczana:

φ : N>1 → N>0

jest zde�niowana w nast¦puj¡cy sposób:

φ(n) := |{k ∈ {1, 2, . . . , n− 1} : NWD(k, n) = 1}|.

Uwaga 10.15. Wiemy, »e:

Z∗
n = {k ∈ Zn | NWD(k, n) = 1}.

St¡d mamy:
φ(n) = |Z∗

n |.

Powy»sza uwaga ma zwi¡zek z nast¦puj¡cym twierdzeniem, które uogólnia Maªe Twierdzenie
Fermata.

Twierdzenie 10.16 (Twierdzenie Eulera). Niech k, n > 0 b¦d¡ wzgl¦dnie pierwsze. Wtedy
mamy:

nφ(k) ≡ 1 (mod k).

Dowód. Wystarczy pokaza¢, »e:
rk(n)

φ(k) = 1

w grupie Z∗
k.

Element rk(n) nale»y do Z∗
k, poniewa»:

NWD(k, n) = 1 ⇒ NWD(k, rk(n)) = 1.

Poniewa» |Z∗
k | = φ(k), tak wi¦c na mocy Wniosku 4.14 dostajemy, »e rk(n)

φ(k) = 1 (w grupie
Z∗

k), co nale»aªo pokaza¢. □

Uwaga 10.17. Poniewa» dla liczby pierwszej p mamy:

φ(p) = |Z∗
p | = p− 1,

tak wi¦c faktycznie Twierdzenie Eulera uogólnia Maªe Twierdzenie Fermata.
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Teraz chcemy policzy¢ warto±¢ φ(n) dla dowolnego n > 1. Okazuje si¦, »e jest to mo»liwe
je±li tylko umiemy rozªo»y¢ n na czynniki pierwsze. Potrzebujemy dwóch lematów.

Lemat 10.18. Je±li p jest liczb¡ pierwsz¡ i m ⩾ 1, to wtedy:

φ (pm) = pm − pm−1.

Dowód. Liczba k ∈ N nie jest wzgl¦dnie pierwsza z pm wtedy i tylko wtedy, gdy k jest wielo-
krotno±ci¡ p. Wielokrotno±ci p w zniorze Zpm = {0, 1, . . . , pm − 1} to dokªadnie:

0 · p, 1 · p, 2 · p, . . . ,
(
pm−1 − 1

)
· p

i jest ich pm−1. St¡d mamy:

φ (pm) = |Z∗
pm | = pm − pm−1,

co nale»aªo pokaza¢. □

Lemat 10.19. Je±li k, l > 1 s¡ wzgl¦dnie pierwsze, to wtedy:

φ(kl) = φ(k)φ(l).

Dowód. Wiemy, »e:

φ (kl) = |Z∗
kl |.

Poniewa» k i 1 s¡ wzgl¦dnie pierwsze, to z Twierdzenia 10.12 dostajemy, »e:

Zkl
∼= Zk ×Zl

(izomor�zm pier±cieni). St¡d mamy, »e:

Z∗
kl
∼= (Zk ×Zl)

∗ = Z∗
k ×Z∗

l ,

gdzie równo±¢ wynika z Twierdzenia 10.10(3). Czyli mamy:

φ (kl) = |Z∗
kl | = |Z∗

k ×Z∗
l | = |Z∗

k | · |Z∗
l | = φ(k)φ(l),

co nale»aªo pokaza¢. □

Twierdzenie 10.20. Zaªó»my, »e

n = pk11 · . . . · pkll ,

gdzie p1, . . . , pl to parami ró»ne liczby pierwsze i k1, . . . , kl > 0. Wtedy mamy:

φ(n) =
(
pk11 − pk1−1

1

)
· . . . ·

(
pkll − pkl−1

l

)
.

Dowód. Liczby pk11 , . . . , p
kl
l s¡ wzgl¦dnie pierwsze. U»ywaj¡c Lematu 12.6 (i prostej indukcji)

dostajemy:

φ(n) = φ
(
pk11 · . . . · pkll

)
= φ

(
pk11

)
· . . . · φ

(
pkll

)
.

Z Lematu 12.5 dostajemy, »e dla ka»dego i ⩽ l mamy:

φ
(
pkii

)
= pkii − pki−1

i ,

co daje tez¦. □

Przykªad 10.21. Obliczmy φ(100) i φ(315).

φ(100) = φ
(
22 · 52

)
=

(
22 − 21

) (
52 − 51

)
= 2 · 20 = 40,

φ(315) = φ
(
32 · 5 · 7

)
=

(
32 − 31

)
(5− 1)(7− 1) = 6 · 4 · 6 = 144.
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Niech R b¦dzie pier±cieniem przemiennym z jedynk¡. Chcemy zde�niowa¢ poj¦cie wielo-
mianu o wspóªczynnikach z R. W analizie, wielomian (o wspóªczynnikach rzeczywistych) jest
rozumiany jako funkcja f : R→ R postaci:

f(x) = a0 + a1x+ . . .+ anx
n

dla pewnego n ∈ N i pewnych a0, a1, . . . , an ∈ R.
Jednak np. nad ciaªem sko«czonym Z2 mamy trzy ró»ne wielomiany:

f(x) = 1 + x, h(x) = 1 + x2, g(x) = 1 + x3

daj¡ce te same funkcje:

f(0) = 1, f(1) = 1+21 = 0, h(0) = 1, h(1) = 1+21·21 = 0, g(0) = 1, g(1) = 1+21·21·21 = 0.

Czyli f, g, h powy»ej to te same funkcje, ale ró»ne wielomiany! To jest dobry moment, aby
wreszcie formalnie zde�niowa¢ czym jest wielomian.

De�nicja 10.22. Wielomian o wspóªczynnikach z pier±cienia przemiennego z jedynk¡ R de�-
niujemy jako niesko«czony ci¡g (a0, a1, a2, . . .) elementów R (czyli dla ka»dego i mamy ai ∈ R),
taki »e:

∃n ∀k ⩾ n ak = 0,

tzn. nasz ci¡g jest postaci:
(a0, a1, a2, . . . , an, 0, 0, . . .).

Taki wielomian (czyli powy»szy ci¡g) oznaczamy przez:

a0 + a1X + . . .+ anX
n lub przez

n∑
i=0

aiX
i.

Uwaga 10.23. Pokrótce: wielomian jest zde�niowany jako ci¡g jego wspóªczynników.

Poni»ej kolejne de�nicje zwi¡zane z wielomianami.

De�nicja 10.24. Niech f = a0 + a1X + . . .+ anX
n b¦dzie wielomianem.

(1) Element a0 nazywamy wyrazem wolnym wielomianu f .
(2) Wielomian (0, 0, . . .) nazywamy wielomianem zerowym.
(3) Wielomian postaci (a0, 0, 0, . . .) nazywamy wielomianem staªym.
(4) Je±li an ̸= 0, to:

(i) liczb¦ n nazywamy stopniem wielomianu f ;
(ii) wspóªczynnik an nazywamy wspóªczynnikiem wiod¡cym wielomianu f ;
(iii) je±li an = 1, to mówimy »e f jest wielomianem unormowanym;
(iv) wielomian zerowy nie ma stopnia.

Przykªad 10.25. Niech R = Z. Wtedy

3 + 5X + 1X2

to unormowany wielomian stopnia 2 o wyrazie wolnym równym 3. Powy»szy wielomian zapisu-
jemy po prostu jako 3 + 5X +X2.

De�nicja 10.26. Zbiór wielomianów o wspóªczynnikach z pier±cienia przemiennego z jedynk¡
R oznaczamy przez R[X].

Wiemy, »e wielomiany o wspóªczynnikach z R nie s¡ funkcjami R → R, ale wci¡» takie
wielomiany wyznaczaj¡ funkcje R → R.

De�nicja 10.27. Niech
f = a0 + a1X + . . .+ anX

n ∈ R[X].

Wielomian f wyznacza nast¦puj¡c¡ funkcj¦ wielomianow¡:

F : R → R, F (r) := a0 + a1r + . . .+ anr
n.
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Uwaga 10.28. Ka»da funkcja wielomianowa jest elementem pier±cienia funkcji RR jak w
Przykªadzie 9.8(4) (dla X = R).

Teraz chcemy aby sam zbiór wielomianów R[X] staª si¦ pier±cieniem. Czyli de�niujemy dzia-
ªania +, · na zbiorze R[X] w �sensowny sposób�, czyli tak aby byªy zgodne z dziaªaniami w
pier±cieniu funkcji RR.

De�nicja 10.29. We¹my

f = (a0, a1, a2, . . .) ∈ R[X], g = (b0, b1, b2, . . .) ∈ R[X].

De�niujemy:
f + g := (a0 + b0, a1 + b1, a2 + b2, . . .),

f · g := (c0, c1, c2, . . .),

gdzie dla ka»dego k ∈ N mamy:

ck := a0bk + a1bk−1 + . . .+ ak−1b1 + akb0 =
k∑

i=0

aibk−i =
∑
i+j=k

aibj.

Przykªad 10.30. Niech:

f = 1 +X ∈ Z[X], g = 1 + 2X +X2 ∈ Z[X].

Wtedy mamy:
f + g = (1 +X) +

(
1 + 2X +X2

)
= 2 + 3X +X2,

f ·g = (1+X)·
(
1 + 2X +X2

)
= 1·1+(1·2+1·1)X+(1·1+1·2)X2+(1·1)X3 = 1+3X+3X2+X3.

Trzeba jeszcze si¦ upewni¢, »e zbiór wielomianów jest zamkni¦ty na dziaªania z De�nicji 10.29,
tzn. »e otrzymane w tej de�nicji ci¡gi s¡ faktycznie wielomianami. Do tego sªu»y nast¦puj¡cy
wynik.

Twierdzenie 10.31. Niech f, g ∈ R[X]. Wtedy f + g, f · g ∈ R[X] oraz je±li

f + g ̸= 0 ̸= f · g,
to mamy:

deg(f + g) ⩽ max (deg(f), deg(g)) , deg(f · g) ⩽ deg(f) + deg(g).

Dowód. Niech:

f = a0 + a1X + . . . anX
n, g = b0 + b1X + . . .+ bmX

m,

gdzie an ̸= 0 ̸= bm, tzn.:
deg(f) = n, deg(g) = m.

Bez zmniejszenia ogólno±ci mo»emy przyj¡¢, »e n ⩾ m, czyli zachodzi:

n = max (deg(f), deg(g)) .

Wtedy mamy:

f + g = (a0 + b0) + (a1 + b1)X + . . .+ (am + bm)X
m + am+1X

m+1 + . . .+ anX
n,

czyli faktycznie:
deg(f + g) ⩽ n = max (deg(f), deg(g)) .

Podobnie mamy:
fg = a0b0 + (a1b0 + a0b1)X + . . .+ ambmX

n+m,

czyli deg(f · g) ⩽ deg(f) + deg(g). □

St¡d dziaªania z De�nicji 10.29 s¡ dziaªaniami na zbiorze R[X].

Twierdzenie 10.32. Je±li R jest pier±cieniem przemiennym z jedynk¡, to R[X] jest te» pier±-
cieniem przemiennym z jedynk¡.

67



Dowód. Wprost z de�nicji dziaªania +, · na R[X] s¡ przemienne. �atwo zauwa»y¢, »e (R[X],+)
jest grup¡, gdzie 0R[X] to wielomian zerowy. Wida¢ te», »e elementem neutralnym · jest wie-
lomian staªy o wyrazie wolnym równym 1. Pozostaje do pokazania rozdzielno±¢ · wzgl¦dem +
oraz ª¡czno±¢ ·. We¹my f, g, h ∈ R[X], takie »e:

f =
∑
i

aiX
i, g =

∑
j

bjX
j, h =

∑
k

ckX
k.

rozdzielno±¢ · wzgl¦dem +

Mamy (f + g) · h =
∑

l dlX
l, gdzie:

dl =
l∑

i=0

(ai + bi)cl−i =
l∑

i=0

aicl−i︸ ︷︷ ︸
d′l

+
l∑

i=0

bicl−i︸ ︷︷ ︸
d′′l

.

Ale zachodzi:

f · h =
∑
i

d′iX
i, g · h =

∑
i

d′′iX
i.

Czyli faktycznie:

(f + g) · h = f · h+ g · h.
ª¡czno±¢ ·
Mo»na policzy¢, »e (f · g) · h =

∑
l dlX

l, gdzie:

dl =
∑

i+j+k=l

aibjck.

Podobnie dostajemy f · (g · h) =
∑

l dlX
l, co daje ª¡czno±¢ ·. □

Zobaczymy teraz co si¦ dzieje w sytuacji gdy R jest dziedzin¡.

Twierdzenie 10.33. Zaªó»my, »e R jest dziedzin¡ i f, g ∈ R[X] \ {0}. Wtedy zachodzi:

(1) deg(fg) = deg(f) + deg(g) (w szczególno±ci: fg ∈ R[X] \ {0});
(2) R[X] jest dziedzin¡.

Dowód. Niech:

f = a0 + a1X + . . .+ anX
n, g = b0 + b1X + . . .+ bmX

m,

gdzie an ̸= 0 ̸= bn. Wtedy mamy:

deg(f) = n, deg(g) = m.

Wiemy, »e:

fg = a0b0 + (a1b0 + a0b1)X + . . .+ ambmX
n+m.

Poniewa» R jest dziedzin¡ oraz an ̸= 0 ̸= bn, tak wi¦c anbn ̸= 0 oraz deg(fg) = n+m, co daje
punkt (1).
Punkt (2) wynika natychmiast z (1). □

Uwaga 10.34. Mo»na poda¢ (¢wiczenia) przykªad np. f, g ∈ Z4[X], takich »e:

deg(fg) < deg(f) + deg(g).

De�nicja 10.35. Niech R b¦dzie pier±cieniem przemiennym z jedynk¡, f ∈ R[X] oraz r ∈ R.

(i) Przez f(r) oznaczamy warto±¢ na r funkcji wielomianowej pochodz¡cej od f .
(ii) De�niujemy:

evr : R[X] → R, evr(f) := f(r)

i funkcj¦ evr nazywamy funkcj¡ ewaluacji (w r).
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Uwaga 10.36. (1) Dziaªania dodawania i mno»enia wielomianów sa tak zde�niowane aby
dla ka»dego r ∈ R funkcja evr : R[X] → R byªa homomor�zmem pier±cieni, tzn. mamy:

∀ f, g ∈ R[X] (f + g)(r)︸ ︷︷ ︸
dodawanie w R[X]

= f(r) + g(r)︸ ︷︷ ︸
dodawanie w R

.

Podobnie dla mno»enia.
(2) Caªa �du»a� funkcja

Ψ : R[X] → RR, Ψ(f) = F,

gdzie F jest funkcj¡ wielomianow¡ wyznaczon¡ przez f , jest te» homomor�zmem pier-
±cieni.

(3) Mamy te» nast¦puj¡cy monomor�zm pier±cieni:

α : R → R[X], α(r) = (r, 0, 0, . . .),

gdzie (r, 0, 0, . . .) jest wielomianem staªym o wyrazie wolnym r.

Poni»ej de�niujemy poj¦cie analogiczne do poj¦cia podgrupy.

De�nicja 10.37. Niech R b¦dzie pier±cieniem i S ⊆ R. Podzbiór S nazywamy podpier±cieniem
R, gdy:

(i) S jest podgrup¡ (R,+);
(ii) dla ka»dego x, y ∈ S mamy:

x · y ∈ S.

Je±li R jest pier±cieniem z jedynk¡, to S nazywamy podpier±cieniem z jedynk¡, gdy S dodatkowo
speªnia:

(iii) 1R ∈ S.

Uwaga 10.38. Tak jak w przypadku grup i podgrup mamy:

(1) je±li S jest podpier±cieniem R, to S jest pier±cieniem z dziaªaniami z R obci¦tymi do S;
(2) je±li S jest podpier±cieniem z jedynk¡ R, to S jest pier±cieniem z jedynk¡ z dziaªaniami

z R obci¦tymi do S.

Przykªad 10.39. (1) Z jest podpier±cieniem z jedynk¡ Q, Q jest podpier±cieniem z jedynk¡
R i R jest podpier±cieniem z jedynk¡ C.

(2) 2Z jest podpier±cieniem Z, ale nie jest podpier±cieniem z jedynk¡.
(3) Teraz do±¢ nietypowy przykªad: R×{0} jest podpier±cieniem R×R, ale nie jest pod-

pier±cieniem z jedynk¡. Pomimo tego, R×{0} jest pier±cieniem z jedynk¡! Mamy:

1R×{0} = (1, 0) ̸= (1, 1) = 1R×R.

Równie» pier±cie« zerowy jest zawsze podpier±cieniem i je±li jest podzbiorem wªa±ci-
wym, to nie jest podpier±cieniem z jedynk¡. Jednak sam w sobie pier±cie« zerowy jest
pier±cieniem z jedynk¡, która te» jest zerem tego pier±cienia.

(4) Mn(Q) jest podpier±cieniem z jedynk¡ Mn(R) i Mn(R) jest podpier±cieniem z jedynk¡
Mn(C).

(5) Z2 nie jest podpier±cieniem Z4.
(6) Z[i] jest podpier±cieniem C.

Uwaga 10.40. Je±li f : R1 → R2 jest homomor�zmem pier±cieni, to f(R1) jest podpier±cieniem
R2. Je±li f jest monomor�zmem, to mamy:

R1
∼= f(R1).

Przykªad 10.41. Rozwa»my monomor�zm α : R → R[X] z Uwagi 10.36(3). Czyli mamy:

R ∼= α(R),
69



gdzie α(R) jest podpier±cieniem R skªadaj¡cym si¦ z wielomianów staªych. Cz¦sto uto»sa-

miamy R z powy»szym α(R) i piszemy R ⊂ R[X] uznaj¡c R za podpier±cie« pier±cienia
wielomianów R[X].

De�nicja 10.42. Pier±cie« wielomianów dwóch zmiennych to:

R[X, Y ] := R[X][Y ].

Analogicznie przez prost¡ indukcj¦ mo»na zde�niowa¢ pier±cie« wielomianów n zmiennych dla
dowolnego n > 0:

R[X1, . . . , Xn] := R[X1, . . . , Xn−1][Xn].
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11. Ciaªo uªamków i pier±cienie euklidesowe

Wiemy, »e z dziedziny Z mo»na dosta¢ ciaªo Q, tzn.:

(i) Z jest podpier±cieniem Q;
(ii) Dla ka»dego x ∈ Q istniej¡ m,n ∈ Z, takie »e:

x =
n

m
.

Chcemy zrobi¢ co± podobnego dla dowolnej dziedziny R, tzn. chcemy otrzyma¢ ciaªo K, takie
»e (i)�(ii) powy»ej b¦d¡ speªnione dla �R� zamiast �Z� oraz �K� zamiast �Q�.
Ustalmy dziedzin¦ R. De�niujemy nast¦puj¡c¡ relacj¦ ∼ na zbiorze R× (R \ {0}):

(r1, s1) ∼ (r2, s2) ⇔ r1s2 = r2s1.

Twierdzenie 11.1. Powy»sza relacja ∼ jest relacj¡ równowa»no±ci.

Dowód. Zwrotno±¢ i symetryczno±¢ relacji ∼ s¡ oczywiste. Dla dowodu tranzytywno±ci we¹my
r1, r2, r3 ∈ R oraz s1, s2, s3 ∈ R \ {0}, takie »e:

(r1, s1) ∼ (r2, s2), (r2, s2) ∼ (r3, s3).

Poka»emy, »e (r1, s1) ∼ (r3, s3). Z zaªo»enia mamy, »e:

r1s2 = r2s1, r2s3 = r3s2.

Mno»¡c pierwsz¡ z tych równo±ci obustronnie przez s3 dostajemy (u»ywaj¡c drugiej równo±ci):

r1s2s3 = s1r2s3 = s1r3s2.

Czyli mamy:
r1s3s2 = r3s1s2.

U»ywaj¡c Prawa Skracania dla Dziedzin (i zaªo»enia: s2 ̸= 0), mamy »e r1s3 = r3s1, czyli
(r1, s1) ∼ (r3, s3), co mieli±my pokaza¢. □

De�nicja 11.2. Je±li R i ∼ s¡ j.w., to dla (r, s) ∈ R × (R \ {0}) klas¦ abstrakcji [(r, s)]∼
nazywamy uªamkiem o liczniku r oraz mianowniku s i oznaczamy j¡ przez:

r

s
:= [(r, s)]∼.

Wida¢, »e faktycznie ciaªo Q powstaje z dziedziny Z w opisany powy»ej sposób. De�niujemy
teraz dziaªania + i · na zbiorze uªamków pochodz¡cych od naszej ustalonej dziedziny R:

r1
s1

· r2
s2

:=
r1r2
s1s2

,
r1
s1

+
r2
s2

:=
r1s2 + r2s1

s1s2
.

Twierdzenie 11.3. (1) Powy»sze dziaªania s¡ dobrze okre±lone, tzn. nie zale»¡ od wyboru
liczników i mianowników.

(2) Zbiór uªamków z powy»szymi dziaªaniami jest ciaªem, które oznaczamy przez K.
(3) Nast¦puj¡ca funkcja:

φ : R → K, φ(r) =
r

1
jest monomor�zmem pier±cieni.

Dowód. (1) We¹my r1, r
′
1, r2, r

′
2 ∈ R oraz s1, s

′
1, s2, s

′
2 ∈ R \ {0}, takie »e:

r1
s1

=
r′1
s′1
,

r2
s2

=
r′2
s′2
.

Czyli mamy:
r1s

′
1 = r′1s1, r2s

′
2 = r′2s2.

Wtedy dostajemy:

r1r2s
′
1s

′
2 = r′1r

′
2s1s2 ⇒ r1r2

s1s2
=
r′1r

′
2

s′1s
′
2

,
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czyli mno»enie uªamków jest dobrze okre±lone.
Z dodawaniem jest trudniej, co nie powinno dziwi¢ w przypadku uªamków. Liczymy:

0 = (r1s
′
1 − r′1s1)︸ ︷︷ ︸

0

s2s
′
2 − (r2s

′
2 − r′2s2)︸ ︷︷ ︸

0

s1s
′
1

= r1s2s
′
1s

′
2 − r′1s

′
2s1s2 − r2s1s

′
1s

′
2 + r′2s

′
1s1s2

= (r1s2 + r2s1) s
′
1s

′
2 − (r′1s

′
2 + r′2s

′
1) s1s2.

St¡d dostajemy:
r1s2 − r2s1

s1s2
=
r′1s

′
2 − r′2s

′
1

s′1s
′
2

,

czyli dodawanie uªamków jest równie» dobrze okre±lone.
(2) Warunki z De�nicji 9.2 ªatwo si¦ sprawdza. Zobaczmy np. ª¡czno±¢ dodawania:(

r1
s1

+
r2
s2

)
+
r3
s3

=
r1s2 + r2s1

s1s2
+
r3
s3

=
(r1s2 + r2s1) s3 + r3s1s2

s1s2s3

=
r1s2s3 + r2s1s3 + r3s1s2

s1s2s3
.

Podobnie sprawdza si¦, »e:

r1
s1

+

(
r2
s2

+
r3
s3

)
=
r1s2s3 + r2s1s3 + r3s1s2

s1s2s3
.

Mamy te»:

OK =
0

1
, 1K =

1

1
.

Udowodnimy teraz, »e K jest ciaªem. We¹my:
r

s
∈ K \ {0K}.

Mamy:
r

s
̸= 0K =

0

1
,

st¡d dostajemy:
r = r · 1 ̸= 0 · s = 0.

Czyli r ̸= 0 i st¡d:

s

r
∈ K oraz

r

s
· s
r
=

1

1
= 1K ,

czyli K jest ciaªem.
(3) We¹my funkcj¦:

φ : R → K, φ(r) =
r

1
.

Mamy wtedy:

φ (r1 + r2) =
r1 + r2

1
=
r1
1
+
r2
1

= φ (r1) + φ (r2) ,

φ (r1r2) =
r1r2
1

=
r1
1
· r2
1

= φ (r1) + ·φ (r2) ,

φ(1) =
1

1
= 1K ,

czyli φ jest homomor�zmem pier±cieni.
Aby sprawdzi¢, »e φ jest monomor�zmem liczymy j¡dro:

ker(φ) =

{
r ∈ R | r

1
= 0K =

1

1

}
= {r ∈ R | r · 1 = 0 · 1} = {0}.
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St¡d ker(φ) = {0}, czyli φ jest monomor�zmem.
□

De�nicja 11.4. Ciaªo K z Twierdzenia 11.3 nazywamy ciaªem uªamków R.

Uwaga 11.5. Cz¦sto uto»samiamy R z φ(R) (z Twierdzenia 11.3(3)) i piszemy R ⊆ K.

Przykªad 11.6. Je±li F jest ciaªem to przez F (X) oznaczamy ciaªo uªamków pier±cienia wielo-
mianów F [X], które to ciaªo nazywamy ciaªem funkcji wymiernych (o wspóªczynnikach z ciaªa
F ).

Zmierzamy teraz do ogólnego poj¦cia dzielenia z reszt¡ w pier±cieniach. Na pocz¡tek, sfor-
malizujmy poj¦cia dzielenia z reszt¡ w pier±cieniu Z.

Dla ka»dych a ∈ Z, b ∈ Z \{0} istniej¡ q, r ∈ Z, takie »e:

a = b q︸︷︷︸
iloraz

+ r︸︷︷︸
reszta

oraz |r| < |b|.

Czyli w celu sformalizowania poj¦cia dzielenia z reszt¡ w pier±cieniu Z istotna byªa funkcja
warto±ci bezwzgl¦dnej:

| · | : Z→ N .

Teraz ogólna de�nicja.

De�nicja 11.7. Pier±cie« R jest euklidesowy, gdy R jest dziedzin¡ oraz istnieje funkcja

δ : R \ {0} → N,

zwana norm¡ euklidesow¡, taka »e:
dla ka»dych a ∈ R, b ∈ R \ {0} istniej¡ q, r ∈ R speªniaj¡ce:

a = bq + r oraz (δ(r) < δ(b) lub r = 0) .

Przykªad 11.8. Poniewa» dla ka»dego n ∈ Z mamy:

|n| = 0 ⇔ n = 0,

tak wi¦c funkcja
| · | : Z \{0} → N

jest norm¡ euklidesow¡ na pier±cieniu Z i pier±cie« Z jest euklidesowy.

Zobaczymy jeszcze dwa przykªady pier±cieni euklidesowych.

Twierdzenie 11.9. Pier±cie« Gaussa Z[i] jest euklidesowy z nast¦puj¡c¡ norm¡ euklidesow¡:

δ : Z[i] \ {0} → N, δ(n+mi) := |n+mi|2 = n2 +m2.

Dowód. We¹my:
a = a1 + a2i ∈ Z[i], b = b1 + b2i ∈ Z[i] \ {0}.

Na pocz¡tek dzielimy a przez b w ciele C, czyli bierzemy α, β ∈ R, takie »e:

α + βi =
a

b

(na konwersatorium zobaczymy, »e α, β ∈ Q). Teraz we¹my q1, q2 ∈ Z, takie »e:

|α− q1| ⩽
1

2
, |β − q2| ⩽

1

2
.

De�niujemy:
q := q1 + q2i ∈ Z[i], r := a− bq ∈ Z[i].

Oczywi±cie zachodzi warunek a = bq + r, tak wi¦c musimy tylko sprawdzi¢, czy |r|2 < |b|2
(poniewa» dla ka»dego z ∈ C mamy |z| = 0 ⇔ z = 0, wi¦c, podobnie jak w przypadku
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pier±cienia Z, nie musimy si¦ przejmowa¢ bardziej skomplikowanym warunkiem). Zauwa»my,
»e:

|r|2 < |b|2 ⇔ |r|2

|b|2
< 1 ⇔

∣∣∣r
b

∣∣∣2 < 1.

Sprawdzimy ten ostatni warunek. Mamy, »e:

r = a− bq ⇒ r

b
=
a

b
− q.

St¡d dostajemy: ∣∣∣r
b

∣∣∣2 = ∣∣∣a
b
− q

∣∣∣2
= |(α + βi)− (q1 + q2i) |2

= | (α− q1) + (β − q2) i|2

= (α− q1)
2 + (β − q2)

2

⩽

(
1

2

)2

+

(
1

2

)2

=
1

2
< 1,

co nale»aªo pokaza¢. □

Wiemy ju», »e pier±cienie Z oraz Z[i] s¡ euklidesowe. Zobaczymy teraz jeszcze jeden typ
przykªadów pier±cieni euklidesowych. Wielomiany mo»na dzieli¢ z reszt¡, tzn. mamy poni»sze.

Dla ka»dych F ∈ R[X], H ∈ R[X] \ {0} istniej¡ Q,R ∈ R, takie »e:

F = HQ+R oraz (deg(R) < deg(H) lub R = 0) .

Powy»sze pozostaje prawd¡, gdy zast¡pimy R przez dowolne ciaªo (dowód pomijamy, bo jest
analogiczny jak w przypadku ciaªa R).

Twierdzenie 11.10. Niech K b¦dzie ciaªem. Wtedy pier±cie« wielomianów K[X] jest euklide-
sowy, gdzie norm¡ euklidesow¡ jest funkcja stopnia wielomianu:

deg : K[X] \ {0} → N .

Zajmiemy si¦ teraz najwi¦kszym wspólnym dzielnikiem (NWD). Aby wyznaczy¢NWD(n,m)
dla n,m > 0 u»ywamy dzielenia z reszt¡ w algorytmie Euklidesa.

Przykªad 11.11. Zastosujemy algorytm Euklidesa dla n = 854 i m = 350.

Krok 1 Dzielimy z reszt¡ 854 przez 350:

854 = 350 · 2 + 154.

Krok 2 Dzielimy z reszt¡ 350 przez 154:

350 = 154 · 2 + 42.

Krok 3 Dzielimy z reszt¡ 154 przez 42:

154 = 42 · 3 + 28.

Krok 4 Dzielimy z reszt¡ 42 przez 28:

42 = 28 · 1 + 14.

Krok 5 Dzielimy z reszt¡ 28 przez 14:

28 = 14 · 2 + 0.

Ostatnia reszta to 0, czyli w tym momencie algorytm si¦ zatrzymuje i dostajemy:

NWD(854, 350) = 14.
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Analizuj¡c powy»szy przykªad, ogólna procedura znajdowania NWD(n,m) dla n,m > 0 jest
nast¦puj¡ca:

• dzielimy z reszt¡ n przez m:

n = mq1 + r1, |r1| < |m|;

• dzielimy z reszt¡ m przez r1:

m = r1q2 + r2, |r2| < |r1|;

• dzielimy z reszt¡ r1 przez r2:

r1 = r2q3 + r3, |r2| < |r3|

i tak dalej... W ko«cu dostajemy nast¦puj¡c¡ sytuacj¦:

rk−1 = rkqk+1 + 0, rk ̸= 0.

Wtedy algorytm Euklidesa daje, »e:

NWD(n,m) = rk.

Mo»emy powy»sz¡ procedur¦ przeprowadzi¢ w dowolnym pier±cieniu euklidesowym, ale aby wie-
dzie¢ do czego ta procedura ma prowadzi¢ musimy najpierw zde�niowa¢ poj¦cie najwi¦kszego
wspólnego dzielnika (w dowolnym pier±cieniu przemiennym z jedynk¡). Na pocz¡tek zde�niu-
jemy poj¦cie dzielnika.

De�nicja 11.12. Niech R b¦dzie pier±cieniem przemiennym z jedynk¡ oraz x, y ∈ R.

(1) Mówimy, »e x dzieli y (w pier±cieniu R), co oznaczamy x | y, gdy istnieje r ∈ R, taki »e
y = rx.

(2) Mówimy, »e x jest stowarzyszony z y (w pier±cieniu R), co oznaczamy x ∼ y, gdy x | y
oraz y | x.

Przykªad 11.13. (1) Je±li x, y ∈ Z, to mamy:

x ∼ y ⇔ x = y lub x = −y.

(2) Je±li F,W ∈ R[X], to mamy:

F ∼ W ⇔ ∃r ∈ R \{0} F = rW.

Analogicznie, je±li zamiast R mamy dowolne ciaªo.

Uwaga 11.14. �atwo zauwa»y¢, »e:

(i) relacja podzielno±ci | jest zwrotna i przechodnia, tzn.

x | x oraz x | y i y | z ⇒ x | z;

(ii) relacja stowarzyszenia ∼ jest relacj¡ równowa»no±ci.

De�nicja 11.15. Niech R b¦dzie pier±cieniem przemiennym z jedynk¡ oraz x, y, z ∈ R. Mó-
wimy, »e z jest najwi¦kszym wspólnym dzielnikiem (n.w.d.) x i y (w pier±cieniu R), gdy:

(i) z | x i z | y;
(ii) dla ka»dego z′ ∈ R mamy:

z′ | x oraz z′ | y ⇒ z′ | z.

Uwaga 11.16. (1) W De�nicji 11.15:
• punkt (i), mówi »e z jest wspólnym dzielnikiem x i y;
• punkt (ii), mówi »e z dzieli ka»dy wspólny dzielnik x i y.

(2) Sªowo �najwi¦kszy� w De�nicji 11.15 odnosi si¦ do relacji podzielno±ci |, a nie do innych
mo»liwych relacji na R. Np. nie odnosi si¦ ono do relacji porz¡dku ⩽ na Z!
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(3) Dla R = Z mamy zawsze dwa najwi¦ksze wspólne dzielniki (w sensie De�nicji 11.15),
np. najwi¦ksze wspólne dzielniki 4 i 6 to 2 oraz −2. Je±li z tych dwóch najwi¦kszych
wspólnych dzielników, wybierzemy ten dodatni, to otrzymujemy �klasyczny� najwi¦kszy
wspólny dzielnik (oznaczany NWD), który jest te» najwi¦kszy w sensie relacji porz¡dku
⩽ na Z.

(4) Jak wida¢ w punkcie (3), n.w.d. nie jest wyznaczony jednoznacznie, tzn. mamy:
(i) je±li z oraz z′ s¡ n.w.d. x i y, to z ∼ z′;
(ii) je±li z jest n.w.d. x i y oraz z ∼ z′, to z′ jest równie» n.w.d. x i y.

(5) S¡ przykªady pier±cieni i elementów w nich, dla których n.w.d. nie istnieje.

Zobaczymy teraz, »e w pier±cieniach euklidesowych n.w.d. istniej¡ i »e mo»na je wyznacza¢
u»ywaj¡c algorytmu Euklidesa.

Twierdzenie 11.17. Niech
δ : R \ {0} → N

b¦dzie norm¡ euklidesow¡ w dziedzinie R oraz a, b ∈ R \ {0}. Bierzemy teraz qi, ri ∈ R, takie »e

a = bq1 + r1 δ(r1) < δ(b),

b = r1q2 + r2 δ(r2) < δ(r1),

r1 = r2q2 + r3 δ(r3) < δ(r2)

i tak dalej ... Ta procedura musi si¦ urwa¢ po sko«czenie wielu krokach, tzn. dla pewnego k > 0
mamy (przyjmuj¡c r0 := b, r−1 := a):

rk−2 = rk−1qk + rk δ(rk) < δ(rk−1),

rk−1 = rkqk+1 tzn. rk | rk−1.

Wtedy rk jest n.w.d. a i b.

Dowód. Mamy pokaza¢, »e:

(i) rk | a oraz rk | b,
(ii) dla ka»dego d ∈ R zachodzi:

d | a oraz d | b ⇒ d | rk.
Dla dowodu (i) zauwa»my, »e:

rk−1 = rkqk+1 ⇒ rk | rk−1.

Tak wi¦c, u»ywaj¡c nast¦puj¡cej oczywistej implikacji:

x | y oraz x | z ⇒ x | y ± z

dostajemy, »e:

rk−2 = rk−1qk + rk oraz rk | rk−1 ⇒ rk | rk−2.

Post¦puj¡c tak dalej (indukcyjnie) otrzymujemy:

rk | rk−1, rk | rk−2, . . . , rk | r1, rk | r0︸︷︷︸
b

, rk | r−1︸︷︷︸
a

,

co pokazuje (i).
Dla dowodu (ii) zaªó»my, »e d | a oraz d | b. Wtedy mamy:

a = bq1 + r1 ⇒ r1 = a− bq1 ⇒︸︷︷︸
d|a,d|b

d | r1,

b = r1q2 + r2 ⇒ r2 = b− r1q2 ⇒︸︷︷︸
d|b,d|r1

d | r2

i tak dalej ... Indukcyjnie dostajemy, »e d | rk, co nale»aªo pokaza¢. □
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Przykªad 11.18. (1) We¹my R = Z[i]. Wtedy norma euklidesowa to:

δ : Z[i] \ {0} → N, δ(n+mi) := |n+mi|2 = n2 +m2.

Wyznaczymy n.w.d. a = −24 + 2i oraz b = −1 + 13i.

Krok 1 Dzielimy z reszt¡ −24 + 2i przez −1 + 13i.

−24 + 2i︸ ︷︷ ︸
a

= (−1 + 13i)︸ ︷︷ ︸
b

· 2i︸︷︷︸
q1

+2 + 4i︸ ︷︷ ︸
r1

(procedura dzielenia z reszt¡ w pier±cieniu Z[i] byªa opisana w dowodzie Twierdzenia
11.9). Upewniamy si¦, »e na pewno podzielili±my z reszt¡, poniewa» mamy:

20 = 22 + 42 = δ(2 + 4i) < δ(−1 + 13i) = (−1)2 + 132 = 170.

Krok 2 Dzielimy z reszt¡ −1 + 13i przez 2 + 4i.

−1 + 13i︸ ︷︷ ︸
b

= (2 + 4i)︸ ︷︷ ︸
r1

· (2 + i)︸ ︷︷ ︸
q2

+−1 + 3i︸ ︷︷ ︸
r2

.

Upewniamy si¦, »e na pewno podzielili±my z reszt¡:

10 = (−1)2 + 32 = δ(−1 + 3i) < δ(2 + 4i) = 20.

Krok 3 Dzielimy z reszt¡ 2 + 4i przez −1 + 3i.

2 + 4i︸ ︷︷ ︸
r1

= (−1 + 3i)︸ ︷︷ ︸
r2

· (1− i)︸ ︷︷ ︸
q3

+ 0︸︷︷︸
r3

.

Czyli ostatnia niezerowa reszta r2 = −1 + 3i jest n.w.d. −24 + 2i,−1 + 13i.
(2) We¹my R = Q[X]. Wtedy norma euklidesowa to:

δ : Q[X] \ {0} → N, δ(F ) := deg(F ).

Wyznaczymy n.w.d. a = X2 + 7X + 6 oraz b = X2 − 5X − 6.

Krok 1 Dzielimy z reszt¡ X2 + 7X + 6 przez X2 − 5X − 6.

X2 + 7X + 6︸ ︷︷ ︸
a

= (X2 − 5X − 6)︸ ︷︷ ︸
b

· 1︸︷︷︸
q1

+12X + 12︸ ︷︷ ︸
r1

.

Upewniamy si¦, »e na pewno podzielili±my z reszt¡:

1 = deg(12X + 12) < δ(X2 − 5X − 6) = 2.

Krok 2 Dzielimy z reszt¡ X2 − 5X − 6 przez 12X + 12.

X2 − 5X − 6︸ ︷︷ ︸
b

= (12X + 12)︸ ︷︷ ︸
r1

·
(

1

12
X − 1

2

)
︸ ︷︷ ︸

q2

+ 0︸︷︷︸
r2

.

Czyli ostatnia niezerowa reszta r1 = 12X + 12 jest n.w.d. X2 + 7X + 6, X2 − 5X − 6.
Poniewa» 12X + 12 ∼ X + 1 (Przykªad 11.13(2)), tak wi¦c X + 1 jest równie» n.w.d.
X2 + 7X + 6, X2 − 5X − 6, na mocy Uwagi 11.16(4(ii)), i ten»e X + 1 jest w pewnym
sensie �najªadniejszym� n.w.d. X2 + 7X + 6, X2 − 5X − 6.

Teraz ogólna obserwacja.

Twierdzenie 11.19. Niech R b¦dzie dziedzin¡ oraz r, r′ ∈ R \ {0}. Wtedy mamy:

r ∼ r′ ⇔ ∃u ∈ R r′ = ur.
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Dowód. �⇐� (ta implikacja jest prawdziwa w dowolnym pier±cieniu przemiennym z jedynk¡)
Zaªó»my, »e r′ = ur, gdzie u ∈ R∗. Wtedy mamy, »e r | r′. Ponadto mamy r = u−1r′ (u ∈ R),
czyli mamy te» r′ | r. St¡d dostajemy r ∼ r′, co nale»aªo pokaza¢.
�⇒� (tu u»ywamy zaªo»enia, »e R jest dziedzin¡)
Poniewa» r ∼ r′, tak wi¦c r | r′ oraz r′ | r, czyli istniej¡ a, b ∈ R, takie »e:

r′ = ar oraz r = br′,

co daje:
r = bar.

Poniewa» (z zaªo»enia) r ̸= 0, z Prawa Skracania dla Dziedzin dostajemy, »e:

1 = ba.

Czyli a ∈ R∗ oraz r′ = ar, co nale»aªo pokaza¢. □

Wniosek 11.20. Je±li R jest dziedzin¡, a, b, r ∈ R oraz r to n.w.d. a, b, to dowolny n.w.d.

a, b jest postaci ur dla pewnego u ∈ R∗.

Przykªad 11.21. Wiemy, »e:
Z[i]∗ = {1,−1, i,−i}

i wiemy te», »e −1 + 3i to n.w.d. −24 + 2i,−1 + 13i. St¡d pozostaªe n.w.d. −24 + 2i,−1 + 13i
to:

−(−1 + 3i) = 1− 3i, i(−1 + 3i) = −3− i, (−i)(−1 + 3i) = 3 + i.

Wracamy do oblicze« prowadz¡cych do NWD(350, 824). Mamy:

854 = 350 · 2 + 154, 350 = 154 · 2 + 42, 154 = 42 · 3 + 28,

42 = 28 + 14, 28 = 14 · 2, NWD(350, 824) = 14.

Teraz �cofamy si¦�:
14 = −28 + 42 oraz 28 = 154− 42 · 3

implikuje:
14 = 42− (154− 3 · 42) = 154 + 4 · 42.

Ostatnia równo±¢ wraz z równo±ci¡ 42 = 350− 2 · 154 implikuje:

14 = −154 + 4 · (350− 2 · 154) = 4 · 350− 9 · 154.
Ostatnia równo±¢ wraz z równo±ci¡ 154 = 854− 2 · 350 implikuje:

14 = 4 · 350− 9 · (854− 2 · 350) = 22 · 350 + (−9) · 854.

St¡d zapisali±my 14 (czyli NWD(350, 824)) jako �Z-liniow¡ kombinacj¦� liczb 350 i 824. Podob-
nie mo»emy zrobi¢ w dowolnym pier±cieniu euklidesowym zast¦puj¡c NWD przez n.w.d.

Twierdzenie 11.22 (Rozszerzony algorytm Euklidesa). Niech R b¦dzie pier±cieniem euklide-
sowym, x, y, r ∈ R oraz r to n.w.d. x, y. Wtedy istniej¡ a, b ∈ R, takie »e:

r = ax+ by.

Idea dowodu. �Odwracamy� algorytm Euklidesa jak w przykªadzie powy»ej. □

Dualnie do poj¦cia najwi¦kszego wspólnego dzielnika mo»emy te» zde�niowa¢ poj¦cie najm-

niejszej wspólnej wielokrotno±ci.

De�nicja 11.23. Niech R b¦dzie pier±cieniem przemiennym z jedynk¡ oraz x, y, z ∈ R. Mó-
wimy, »e z jest najmniejsz¡ wspóln¡ wielokrotno±ci¡ x i y (w pier±cieniu R), gdy:

(i) x | z i y | z;
(ii) dla ka»dego z′ ∈ R mamy:

x | z′ oraz y | z′ ⇒ z | z′.
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Uwaga 11.24. Podobnie jak dla najwi¦kszego wspólnego dzielnika, najmniejsza wspólna wie-
lokrotno±¢ jest wyznaczona z dokªadno±ci¡ do relacji stowarzyszenia oraz najmniejsza wspólna
wielokrotno±¢ mo»e nie istnie¢.

Przykªad 11.25. Wiemy, »e dla m,n > 0 mamy:

NWD(m,n) · NWW(m,n) = m · n.
St¡d np. dostajemy:

NWW(350, 854) =
350 · 854

NWD(350, 854)
=

196420

14
= 14030.

Podobnie jest w dowolnym pier±cieniu euklidesowym (dowód pomijamy).

Twierdzenie 11.26. Niech R b¦dzie pier±cieniem euklidesowym oraz x, y ∈ R. Wtedy najm-
niejsza wspólna wielokrotno±¢ x, y istnieje i jest postaci:

xy

r
,

gdzie r to n.w.d. x, y.

Przykªad 11.27. Z Twierdzenia 11.26 najmniejsza wspólna wielokrotno±¢ wielomianów:

X2 + 7X + 6, X2 − 5X − 6

w pier±cieniu Q[X] to (u»ywaj¡c Przykªadu 11.18(2)):

(X2 + 7X + 6) · (X2 − 5X − 6)

X + 1
= X3 − 2X2 + 29X − 30.

Dowód nast¦pnego wyniku stosuje teori¦ pier±cieni euklidesowych.

Twierdzenie 11.28 (Twierdzenie Bézout). Zaªó»my, »e K jest ciaªem, F ∈ K[X] oraz α ∈ K.
Wtedy mamy:

F (α) = 0 ⇔ (X − α) | F.

Dowód. �⇐�
Poniewa» (X − α) | F , tak wi¦c istnieje Q ∈ K[X], taki »e:

F = (X − α)Q.

Wtedy mamy:

F (α) = ((X − α)Q) (α) = (α− α)Q(α) = 0 ·Q(α) = 0.

�⇒�
Zaªó»my, »e F (α) = 0. Dzielimy z reszt¡ F przez X − α w pier±cieniu euklidesowym K[X] i
otrzymujemy Q,R ∈ K[X], takie »e:

F = (X − α)Q+R, oraz R = 0 lub deg(R) < deg(X − α) = 1.

Je±li R = 0, to (X − α) | F , co nale»aªo pokaza¢.
Zaªó»my, »e R ̸= 0 i dojdziemy do sprzeczno±ci, która zako«czy dowód. Mamy, »e:

deg(R) < 1 ⇒ deg(R) = 0 ⇒ R ∈ K \ {0}.
Wtedy mamy:

0 = F (α) = ((X − α)Q+R) (α) = R ̸= 0,

sprzeczno±¢. □

De�nicja 11.29. Niech R b¦dzie pier±cieniem przemiennym z jedynk¡, F ∈ R[X] i r ∈ R.
Mówimy, »e r jest pierwiastkiem F , gdy

F (r) = 0.
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Przykªad 11.30. We¹my:

F := 1 +X +X2 +X3 ∈ Q[X].

Wtedy mamy F (−1) = 0, czyli z Twierdzenia Bézout dostajemy:

X + 1 | 1 +X +X2 +X3.

Wida¢ te», »e:

1 +X +X2 +X3 = (1 +X) +X2(1 +X) = (1 +X)
(
1 +X2

)
,

czyli faktycznie X + 1 | 1 +X +X2 +X3.
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12. Jednoznaczno±¢ rozkªadu

Mamy nast¦puj¡ce klasyczne twierdzenie:

Twierdzenie 12.1 (Podstawowe Twierdzenie Arytmetyki). Ka»da liczba naturalna n > 1 jest
iloczynem liczb pierwszych. Skªadniki tego iloczynu s¡ jedyne z dokªadno±ci¡ do kolejno±ci.

Chcemy to twierdzenie uogólni¢ do przypadku dowolnych pier±cieni euklidesowych. Na po-
cz¡tek potrzebujemy ogólnego odpowiednika liczb pierwszych.

De�nicja 12.2. Niech R b¦dzie dziedzin¡ i p ∈ R\(R∗∪{0}). Mówimy, »e p jest nierozkªadalny,
gdy:

∀ a, b ∈ R p = a · b ⇒ a ∈ R∗ lub b ∈ R∗.

Uwaga 12.3. Ka»dy element x ∈ R ma �rozkªad�:

x = x · 1
i ogólniej dla dowolnego u ∈ R∗ mamy te» �rozkªad�:

x = xu−1 · u.
Element x jest nierozkªadalny, gdy takie trywialne rozkªady jak powy»ej to jedyne rozkªady x
na iloczyny elementów R.

Przykªad 12.4. We¹my n ∈ Z. Wtedy mamy:

n jest nierozkªadalny ⇔ n = p lub n = −p, gdzie p to liczba pierwsza.

Dla dowodu twierdzenia uogólniaj¡cego Podstawowe Twierdzenie Arytmetyki do dowolnego
pier±cienia euklidesowego potrzebujemy trzech lematów.

Lemat 12.5. Zaªó»my, »e:

• R jest pier±cieniem euklidesowym;
• x, y, z ∈ R;
• 1 to n.w.d. x, y;
• x | yz.

Wtedy x | z.

Dowód. Z tego, »e R jest pier±cieniem euklidesowym oraz 1 to n.w.d. x, y otrzymujemy (na
mocy Twierdzenia 11.22), »e istniej¡ s, t ∈ R, takie »e:

1 = sx+ ty.

Mno»¡c ostatni¡ równo±¢ obustronnie przez z otrzymujemy:

z = sxz + tyz.

Poniewa» x | yz, tak wi¦c x | tyz. Czyli mamy:

x | sxz oraz x | tyz ⇒ x | sxz + tyz = z,

co nale»aªo pokaza¢. □

Kolejny wynik mówi o drugiej wªasno±ci (pierwsza jest zawarta w De�nicji 12.2), która wy-
ró»nia liczby pierwsze.

Lemat 12.6. Zaªó»my, »e:

• R jest pier±cieniem euklidesowym;
• a, b, p ∈ R;
• p jest nierozkªadalny;
• p | ab.

Wtedy p | a lub p | b.
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Dowód. Niech d ∈ R b¦dzie n.w.d. a, p. W szczególno±ci d | p, czyli istnieje h ∈ R, taki »e
p = dh. Mamy wtedy:

p = dh oraz p jest nierozkªadalny ⇒ d ∈ R∗ lub h ∈ R∗.

Rozwa»amy dwa przypadki.

Przypadek 1: d ∈ R∗.
Poniewa» d ∈ R∗, tak wi¦c d ∼ 1 (przypominam, »e ∼ to relacja stowarzyszenia). Czyli mamy:

d to n.w.d. a, p oraz d ∼ 1 ⇒ 1 to n.w.d. a, p.

Z Lematu 12.5 (dla x = p, y = a, z = b) otrzymujemy, »e p | b, co wystarczaªo pokaza¢.

Przypadek 2: h ∈ R∗.
Poniewa» p = dh oraz h ∈ R∗, tak wi¦c d = ph−1, czyli p | a. Wtedy mamy:

p | d oraz d | a ⇒ p | a,
co równie» wystarczaªo pokaza¢. □

Kolejny wynik mówi, »e w pier±cieniu euklidesowym nie istnieje niesko«czony i istotnie zst¦-
puj¡cy ci¡g w sensie relacji podzielno±ci. Dowód b¦dzie szkicowy.

Lemat 12.7. Niech
δ : R \ {0} → N

b¦dzie norm¡ euklidesow¡ na R. Wtedy nie istnieje niesko«czony ci¡g a0, a1, a2, . . . ∈ R, taki
»e:

∀n ∈ N an ≁ an+1 oraz an+1 | an.

Szkic dowodu. Zaªó»my nie wprost, »e powy»szy ci¡g istnieje. De�niujemy:

I := {r0a0 + r1a1 + . . .+ rnan | n ∈ N, r0, r1, . . . , rn ∈ R} ⊆ R.

We¹my g ∈ I \ {0}, taki »e δ(g) jest minimalna. Wtedy mamy:

∃N ∈ N ∃a0, a1, . . . , aN ∈ R g = r0a0 + r1a1 + . . .+ rNaN .

Dziel¡c z reszt¡ w pier±cieniu euklidesowym R oraz u»ywaj¡c minimalno±ci δ(g) otrzymujemy:

∀n ∈ N g | an
(u»yjemy tylko tego, »e g | aN+1).
Z drugiej strony mamy, »e:

aN | a0, aN | a1, . . . , aN | aN ⇒ aN | g = r0a0 + r1a1 + . . .+ rNaN .

Tak wi¦c dostajemy:

aN | g oraz g | aN+1 ⇒ aN | aN+1.

Poniewa» z zaªo»enia mamy, »e aN+1 | aN , tak wi¦c dostajemy aN ∼ aN+1, co daje sprzeczno±¢
z zaªo»eniem i ko«czy dowód. □

Teraz ju» mo»emy sformuªowa¢ i udowodni¢ (szkicowo) twierdzenie o jednoznaczno±ci roz-
kªadu w pier±cieniach euklidesowych.

Twierdzenie 12.8. Zaªó»my, »e R jest pier±cieniem euklidesowym i a ∈ R\ (R∗∪{0}). Wtedy
istniej¡ elementy nierozkªadalne p1, . . . , pn ∈ R, takie »e:

a = p1 · . . . · pn
oraz rozkªad ten jest jednoznaczny z dokªadno±ci¡ do kolejno±ci czynników i stowarzyszenia,
tzn. je±li mamy elementy nierozkªadalne q1, . . . , qm ∈ R, takie »e a = q1 · . . . · qm, to wtedy:

(i) n = m,
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(ii) istnieje σ ∈ Sn, taka »e:

p1 ∼ qσ(1), . . . , pn ∼ qσ(n).

Szkic dowodu. Istnienie rozkªadu
Je±li a nie ma takiego rozkªadu, to (nieco przewrotnie) element a jest rozkªadalny i to w taki
sposób, »e:

∃a0, a1 ∈ R \R∗ : a = a0a1

i np. a1 nie ma takiego rozkªadu, tzn.

∃a10, a11 ∈ R \R∗ : a1 = a10a11

i np. a11 nie ma takiego rozkªadu, tzn.

∃a110, a111 ∈ R \R∗ : a11 = a110a111...

Wtedy mamy:

a1 | a, a11 | a1, a111 | a11, . . . a1 ≁ a, a11 ≁ a1, a111 ≁ a11, . . .

co przeczy Lematowi 12.7 i pokazuje istnienie rozkªadu.
Jednoznaczno±¢ rozkªadu
Zaªó»my, »e:

p1 · . . . · pn = q1 · . . . · qm,
gdzie wszystkie elementy pi, qj ∈ R s¡ nierozkªadalne. Wtedy dzi¦ki Lematowi 12.6 i prostej
indukcji dostajemy:

p1 | q1 · . . . · qm ⇒ ∃i p1 | qi.

St¡d istnieje t ∈ R, taki »e qi = p1t. Poniewa» qi jest nierozkªadalny, tak wi¦c:

qi = p1t ⇒ p1 ∈ R∗ lub t ∈ R∗.

Ale p1 jest nierozkªadalny, tak wi¦c p1 /∈ R∗, czyli mamy, »e t ∈ R∗. St¡d dostajemy, »e p1 ∼ qi.
De�niujemy teraz σ(1) := i, wydzielamy obie strony równo±ci

p1 · . . . · pn = q1 · . . . · qm

przez p1 i indukcyjnie ko«czymy dowód. □

Przykªad 12.9. Twierdzenie 12.8 specjalizuje si¦ do nast¦puj¡cych sytuacji.

(1) R = Z: Podstawowe Twierdzenie Arytmetyki.
(2) R = K[X], gdzie K jest ciaªem: jednoznaczno±¢ rozkªadu na wielomiany nierozkªadalne.
(3) R = Z[i]: jednoznaczno±¢ rozkªadu w pier±cieniu Gaussa.

Uwaga 12.10 (Uwaga historyczna: zwi¡zek z Wielkim Twierdzeniem Fermata). Wielkie Twier-
dzenie Fermata (WTF) mo»na sformuªowa¢ w nast¦puj¡cy sposób. Niech p > 2 b¦dzie liczb¡
pierwsz¡. Wtedy równanie:

Xp + Y p = Zp

nie ma nietrywialnych rozwi¡za« caªkowitych.
W XIX wieku pojawiªy si¦ �dowody� WTF u»ywaj¡ce rozkªadów w pier±cieniu Z[ζp], gdzie

ζp ∈ C \{1}, takim »e ζpp = 1 i Z[ζp] jest najmniejszym podpier±cieniem z jedynk¡ C zawieraj¡-
cym ζp. Powy»sze �dowody� byªyby dobre, gdyby pier±cienie Z[ζp] miaªy wªasno±¢ jednoznacz-
nego rozkªadu, np. gdyby pier±cienie Z[ζp] byªy euklidesowe. Jednak okazaªo si¦, »e je±li p ⩾ 23,
to wtedy pier±cie« Z[ζp] nie ma wªasno±ci jednoznacznego rozkªadu.
Poprawny dowód WTF zostaª podany dopiero w 1994 roku przez Andrew Wilesa.
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Przykªad 12.11. Uzasadnimy szkicowo, »e pier±cie«

Z
[√

−3
]
:=

{
n+m

√
−3 | n,m ∈ Z

}
nie ma wªasno±ci jednoznacznego rozkªadu. Rozwa»my nast¦puj¡ce dwa rozkªady elementu 4
w pier±cieniu Z[

√
−3]:

2 · 2 =
(
1 +

√
−3

)
·
(
1−

√
−3

)
.

Aby udowodni¢, »e wªasno±¢ jednoznacznego rozkªadu nie zachodzi nale»y pokaza¢, »e:

(i) elementy
2, 1 +

√
−3, 1−

√
−3

s¡ nierozkªadalne w pier±cieniu Z
[√

−3
]
;

(ii) mamy:
1 +

√
−3 ≁ 2 ≁ 1−

√
−3

w pier±cieniu Z
[√

−3
]
.

Aby pokaza¢ powy»sze (i) oraz (ii) u»ywamy nast¦puj¡cej funkcji �normy� (nie jest to norma
euklidesowa!):

d : Z
[√

−3
]
→ N, d

(
n+m

√
−3

)
= n2 + 3m2.

Mamy nast¦puj¡ce wªasno±ci funkcji d, których dowody pomijamy (x, y ∈ Z
[√

−3
]
):

(1) d(xy) = d(x)d(y);
(2) x ∈ Z

[√
−3

]∗ ⇔ d(x) = 1.

Poniewa» mamy:
d(x) = 1 ⇔ x = ±1,

tak wi¦c z (2) otrzymujemy, »e:

Z
[√

−3
]∗

= {−1, 1}.
St¡d dostajemy od razu (ii) u»ywaj¡c Twierdzenia 11.19.
Je±li chodzi o (i), to dla przykªadu poka»emy »e 2 jest elementem nierozkªadalnym w pier-

±cieniu Z
[√

−3
]
. We¹my x, y ∈ Z

[√
−3

]
, takie »e 2 = xy. Mamy pokaza¢, »e:

x ∈ Z
[√

−3
]∗

lub y ∈ Z
[√

−3
]∗
.

U»ywaj¡c (1) liczymy:
4 = d(2) = d(xy) = d(x)d(y).

Czyli mamy:

d(x), d(y) ∈ N oraz d(x)d(y) = 4 ⇒ d(x) = 1 lub d(y) = 1 lub d(x) = 2 = d(y).

Zauwa»my, »e dla ka»dych n,m ∈ N mamy:

n2 + 3m2 ̸= 2 ⇒ d(x) = 1 lub d(y) = 1.

Ponownie z (3) powy»ej otrzymujemy, »e x ∈ Z
[√

−3
]∗

lub y ∈ Z
[√

−3
]∗
, co nale»aªo pokaza¢.
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13. Rozkªadalno±¢ wielomianów

Zauwa»my najpierw nast¦puj¡c¡ prost¡ wªasno±¢ pier±cieni wielomianów.

Fakt 13.1. Niech S b¦dzie dziedzin¡. Wtedy mamy:

S[X]∗ = S∗.

Dowód. Dowodzona równo±¢ wynika natychmiast z Twierdzenia 10.33(1). □

Dla wygody wprowadzamy nast¦puj¡c¡ de�nicj¦.

De�nicja 13.2. Niech R b¦dzie pier±cieniem przemiennym z jedynk¡ i r ∈ R. Mówimy, »e r
jest rozkªadalny, gdy:

(i) r ̸= 0 oraz r /∈ R∗,
(ii) r nie jest nierozkªadalny, tzn. istniej¡ x, y ∈ R \R∗, takie »e:

r = xy.

Niech K b¦dzie ciaªem. Z Faktu 13.1, wiemy »e:

K[X]∗ = K∗ = K \ {0}.
Czyli dla F ∈ K[X] warunek (i) z De�nicji 13.2 jest równowa»ny temu, »e F ∈ K[X] \K, tzn.
F nie jest wielomianem staªym, czyli deg(F ) ⩾ 1.
Teraz b¦dzie seria twierdze« o rozkªadalno±ci wielomianów. Ustalmy K j.w. oraz F ∈ K[X].

Twierdzenie 13.3. Je±li deg(F ) > 1 i F ma pierwiastek, to wtedy F jest rozkªadalny.

Dowód. Niech a ∈ K, takie »e F (a) = 0. Z Twierdzenia Bezout (X − a) | F , czyli istnieje
W ∈ K[X], taki »e:

F = (X − a)W.

Wtedy mamy:

2 ⩽ deg(F ) = deg((X − a)W ) = deg(X − a) + deg(W ) = 1 + deg(W ).

St¡d deg(W ) ⩾ 1, czyli W /∈ K[X]∗. Podobnie X − a /∈ K[X]∗, st¡d F jest rozkªadalny. □

Uwaga 13.4. F i K j.w.

(1) Je±li deg(F ) = 1, to oczywi±cie F jest nierozkªadalny.
(2) Odwrotna implikacja do tej w Twierdzeniu 13.3 nie jest prawdziwa, bo np.

F := (X2 + 1)(X2 + 2) ∈ R[X]

jest rozkªadalny w R[X], ale wci¡» nie ma pierwiastków w R.

Twierdzenie 13.5. Zaªó»my, »e deg(F ) ∈ {2, 3}. Wtedy mamy:

F jest nierozkªadalny ⇔ F nie ma pierwiastków.

Dowód. Obie implikacje poka»emy poprzez kontrapozycj¦.
�⇒� Ta implikacja jest prawdziwa nawet przy zaªo»eniu deg(F ) > 1 u»ywaj¡c Twierdzenia
13.3.
�⇐� Zaªó»my, »e F jest rozkªadalny i »e deg(F ) ∈ {2, 3}. Poka»emy, »e F ma pierwiastek.
Poniewa» F jest rozkªadalny, tak wi¦c istniej¡ H,W ∈ K[X], takie »e:

deg(H) > 0 oraz deg(W ) > 0 oraz F = HW.

St¡d dostajemy:

{2, 3} ∋ deg(F ) = deg(H) + deg(W ) > 0 oraz deg(H) ⩾ 1 oraz deg(W ) ⩾ 1.

Czyli ostatecznie:

deg(H) = 1 lub deg(W ) = 1.
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Poniewa» K jest ciaªem, tak wi¦c dostajemy »e:

H ma pierwiastek w K lub W ma pierwiastek w K.

St¡d F = HW ma równie» pierwiastek w K, co nale»aªo pokaza¢. □

Przykªad 13.6. Nast¦puj¡cy wielomian:

F = 1 +X2 +X3 ∈ Z2[X]

jest nierozkªadalny z Twierdzenia 13.5, poniewa» deg(F ) = 3 oraz:

F (0) = 1 ̸= 0, F (1) = 1 +2 1 +2 1 = 1 ̸= 0,

czyli F nie ma pierwiastków (w Z2).

Dowody dwóch kolejnych twierdze« pomijamy. Dowód pierwszego z nich jest do±¢ trudny i
(standardowy dowód) ma charakter analityczny. Dowód drugiego z tych twierdze« jest ªatwiej-
szy.

Twierdzenie 13.7 (Gauss 1799, Zasadnicze Twierdzenie Algebry (liczb zespolonych)). Je±li
F ∈ C[X] \ C, to F ma pierwiastek w C (tzn. C jest ciaªem �algebraicznie domkni¦tym�).

Twierdzenie 13.8. Je±li W ∈ R[X] oraz a, b ∈ R s¡ takie, »e:

z := a+ bi /∈ R oraz W (z) = 0,

to W (z̄) = 0, gdzie z̄ = a− bi, oraz nast¦puj¡cy wielomian o wspóªczynnikach rzeczywistych:

(X − z)(X − z̄) = X2 − 2aX +
(
a2 + b2

)
dzieli W w R[X].

Wniosek 13.9. (1) Niech W ∈ C[X]. Wtedy mamy:

W jest nierozkªadalny ⇔ deg(W ) = 1.

(2) Niech W ∈ R[X]. Wtedy nast¦puj¡ce warunki s¡ równowa»ne:
(i) W jest nierozkªadalny;
(ii) deg(W ) = 1 lub deg(W ) = 2 oraz ∆ := b2 − 4ac < 0.

Dowód. Punkt (1) wynika od razu z Twierdze« 13.3 i 13.7.
Dla dowodu punktu (2) pokazujemy dwie implikacje.

�⇐� Je±li deg(W ) = 1, to wiemy »e W jest nierozkªadalny.
Je±li W = aX2 + bX + c i ∆ < 0, to wiemy (szkoªa ±rednia), »e W nie ma pierwiastków. Z
Twierdzenia 13.5 wynika (poniewa» deg(W ) = 2), »e W jest nierozkªadalny.
�⇒� Zaªó»my, »e W jest nierozkªadalny. Wtedy z Twierdzenia 13.3 dostajemy, »e deg(W ) = 1
lub W nie ma pierwiastków. Mo»emy zaªo»y¢, »e deg(W ) > 1, czyli dostajemy, »e W nie ma
pierwiastków rzeczywistych. Z Twierdzenia 13.7 dostajemy, »e W ma pierwiastek zespolony
z ∈ C \R. Z Twierdzenia 13.8 wiemy, »e:

H := (X − z)(X − z̄) ∈ R[X] oraz H | W (w R[X]).

Czyli istnieje T ∈ R[X], taki »e W = HT . Mamy teraz:

W jest nierozkªadalny oraz W = HT oraz deg(H) = 2 > 0 ⇒ deg(T ) = 0.

St¡d

deg(W ) = deg(HT ) = deg(H) + deg(T ) = 2 + 0 = 2

do czego d¡»yli±my. Poniewa» W nie ma pierwiastków, tak wi¦c (ponownie szkoªa ±rednia)
∆ < 0, co nale»aªo pokaza¢. □

Zobaczymy teraz jakie liczby wymierne mog¡ by¢ pierwiastkami wielomianów o wspóªczyn-
nikach caªkowitych.
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Twierdzenie 13.10 (Twierdzenie o pierwiastkach wymiernych). Niech:

W = anX
n + . . .+ a1X + a0 ∈ Z[X]

oraz k, l ∈ Z b¦d¡ wzgl¦dnie pierwsze, takie »e W (k/l) = 0. Wtedy k | a0 oraz l | an (w
pier±cieniu Z).

Dowód. Mamy, »e:

0 = W

(
k

l

)
= an

kn

ln
+ . . .+ a1

k

l
+ a0.

Mno»¡c ostatni¡ równo±¢ obustronnie przez ln dostajemy:

0 = ank
n + an−1lk

n−1 + . . .+ a1kl
n−1 + a0l

n,

k
(
ank

n−1 + an−1lk
n−2 + . . .+ a1l

n−1
)
= −a0ln.

Ostatnia równo±¢ implikuje, »e k | a0ln.
Poniewa» k, l s¡ wzgl¦dnie pierwsze, tak wi¦c równie» k, ln s¡ wzgl¦dnie pierwsze. Czyli mamy:

NWD(k, ln) = 1 oraz k | a0ln ⇒ k | a0,

co mieli±my pokaza¢. Analogicznie pokazuje si¦, »e l | an. □

Przykªad 13.11. Niech:

W = 2X3 +X2 + 4X + 2 ∈ Z[X].

Z Twierdzenia o pierwiastkach wymiernych, jedyne mo»liwe pierwiastki wymierne W to:

2, −2, 1, −1,
1

2
, −1

2
.

�atwo sprawdzi¢, »e W (−1/2) = 0. W szczególno±ci W jest wielomianem rozkªadalnym w
pier±cieniu Q[X]. Wci¡» nie wiemy czy ten wielomian jest rozkªadalny w pier±cieniu Z[X].
W tym celu stosuje si¦ nast¦puj¡cy wynik, którego dowód pomijamy.

Twierdzenie 13.12 (Lemat Gaussa). Niech:

W = anX
n + . . .+ a1X + a0 ∈ Z[X] \ Z .

Wtedy nast¦puj¡ce warunki s¡ równowa»ne.

(1) W jest wielomianem nierozkªadalnym w pier±cieniu Z[X].
(2) W jest wielomianem nierozkªadalnym w pier±cieniu Q[X] oraz »adna liczba pierwsza

nie dzieli wszystkich wspóªczynników a0, a1, . . . , an.

W szczególno±ci dla wielomianów z Z[X] mamy:

nierozkªadalny w Z[X] ⇒ nierozkªadalny w Q[X],

rozkªadalny w Q[X] ⇒ rozkªadalny w Z[X].

Tak wi¦c, wielomian W z Przykªadu 13.11 jest rozkªadalny w Z[X].
Teraz ostatnie kryterium, które jest bardzo u»yteczne (je±li si¦ stosuje).

Twierdzenie 13.13 (Kryterium Eisensteina). Niech:

W = anX
n + . . .+ a1X + a0 ∈ Z[X]

i zaªó»my, »e istnieje liczba pierwsza p, taka »e:

(i) p | a0, p | a1, . . . , p | an−1;
(ii) p ∤ an;
(iii) p2 ∤ a0.

Wtedy wielomian W jest nierozkªadalny w pier±cieniu Q[X].
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Dowód. Dziel¡c przezNWD(a0, a1, . . . , an) (w pier±cieniuZ[X]) mo»emy przyj¡¢, »e a0, a1, . . . , an
nie maj¡ »adnego wspólnego dzielnika pierwszego.
Zaªó»my nie wprost, »e W jest rozkªadalny w pier±cieniu Q[X]. Z Lematu Gaussa dostajemy,

»eW jest rozkªadalny w pier±cieniu Z[X]. We¹my wi¦c G,H ∈ Z[X]\Z[X]∗, takie »eW = GH.
Poniewa» a0, a1, . . . , an nie maj¡ »adnego wspólnego dzielnika pierwszego, tak wi¦c dostajemy
»e deg(G) > 0 oraz deg(H) > 0. Niech:

G = bdX
d + . . .+ b1X + b0, H = cnX

n + . . .+ c1X + c0, bd ̸= 0 ̸= d, cm ̸= 0 ̸= m.

Poniewa» W = GH, tak wi¦c dostajemy a0 = b0c0. Czyli mamy:

a0 = b0c0 i p | a0 i p2 ∤ a0 ⇒ (p ∤ b0 i p | c0) lub (p ∤ c0 i p | b0) .
Przyjmijmy, »e p ∤ b0 i p | c0 (je±li p ∤ c0 i p | b0, to dowód jest analogiczny).
We¹my teraz:

r := min{i ⩽ m | p ∤ ci}.
Wtedy mamy:

p | c0 oraz p ∤ cm ⇒ 0 < r ⩽ m < n(= d+m).

Z minimalno±ci r otrzymujemy, »e:

p | c0, p | c1, . . . , p | cr−1, p ∤ cr.
W szczególno±ci:

p | b1cr−1 + . . .+ br−1c1 + brc0.

U»ywaj¡c tego, »e p jest liczb¡ pierwsz¡ dostajemy:

p ∤ cr oraz p ∤ b0 ⇒ p ∤ b0cr.
�¡cznie otrzymujemy:

p | b1cr−1+. . .+br−1c1+brc0 oraz p ∤ b0cr ⇒ p ∤ ar = b0cr+b1cr−1+. . .+br−1c1+brc0,

co daje sprzeczno±¢, poniewa» r < n. □

Przykªad 13.14. (1) We¹my:

W = 3X4 + 15X2 + 10, p = 5.

Wtedy mamy:
(i) 5 | 10, 5 | 15;
(ii) 5 ∤ 3;
(iii) 52 ∤ 10.
Czyli z Kryterium Eisensteina, W jest nierozkªadalny w pier±cieniu Q[X].
Z Lematu Gaussa (poniewa» wspóªczynniki W nie maj¡ »adnego wspólnego dzielnika
pierwszego), W jest nierozkªadalny w pier±cieniu Z[X].

(2) We¹my:
W = X6 +X5 +X4 +X3 +X2 +X + 1.

Zauwa»my, »e ogólnie (dla dowolnych wielomianów o wspóªczynnikach z dowolnych pier-
±cieni przemiennych z jedynk¡) mamy:

W jest nierozkªadalny ⇔ W (X + 1) jest nierozkªadalny.

U»ywaj¡c przedstawienia:

W =
X7 − 1

X − 1
mo»emy policzy¢, »e:

W (X + 1) = X6 +

(
7

6

)
X5 +

(
7

5

)
X4 +

(
7

4

)
X3 +

(
7

3

)
X2 +

(
7

2

)
X +

(
7

1

)
.

Wtedy dla p = 7 z Kryterium Eisensteina otrzymujemy, »e wielomian W (X + 1) jest
nierozkªadalny w pier±cieniu Q[X]. St¡d wielomian W jest nierozkªadalny w pier±cieniu
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Q[X]. Z Lematu Gaussa dostajemy te», »e wielomiany W i W (X +1) s¡ nierozkªadalne
w pier±cieniu Z[X].
Podobnie dla ka»dej liczby pierwszej p, wielomian:

Xp−1 + . . .+X + 1

jest nierozkªadalny w pier±cieniu Q[X] oraz w pier±cieniu Z[X].

Uwaga 13.15. Lemat Gaussa i Kryterium Eisensteina zachodz¡

• ogólniej: dla dowolnego pier±cienia euklidesowego R zamiast Z oraz ciaªa uªamków K
pier±cienia R zamiast Q;

• jeszcze ogólniej: dla dowolnej dziedziny z wªasno±ci¡ jednoznacznego rozkªadu R
(i ciaªa uªamków K).
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14. Chi«skie twierdzenie o resztach i ideaªy

Sunzi Suanjing, czyli �podr¦cznik arytmetyczny Mistrza Sun� to traktat matematyczny na-
pisany pomi¦dzy trzecim a pi¡tym wiekiem naszej ery. Rozdziaª trzeci tego» traktatu zawiera
nast¦puj¡cy akapit:

Mamy pewne rzeczy, których ilo±¢ jest nieznana. Je±li liczymy te rzeczy po trzy, to zostan¡
dwie; je±li liczymy te rzeczy po pi¦¢, to zostan¡ trzy i je±li liczymy te rzeczy po siedem, to zo-
stan¡ dwie. Ile jest tych rzeczy?

Mistrz Sun otrzymaª rozwi¡zanie: x = 23.
Powy»sze pytanie jest równowa»ne pytaniu o rozwi¡zanie nast¦puj¡cego ukªadu kongruencji:

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

Nast¦puj¡ce twierdzenie wyja±nia te rozwa»ania.

Twierdzenie 14.1 (Chi«skie Twierdzenie o Resztach). We¹my n1, . . . , nk > 1 parami wzgl¦dnie
pierwsze i niech:

N := n1 · . . . · nk.

Wtedy dla dowolnych a1, . . . , ak ∈ Z istnieje x ∈ Z, które jest rozwi¡zaniem nast¦puj¡cego
ukªadu kongruencji:

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

. . .

x ≡ ak (mod nk)

Ponadto, je±li x′ ∈ Z jest równie» rozwi¡zaniem tego ukªadu kongruencji, to mamy:

x ≡ x′ (mod N).

Dowód. Pokazujemy najpierw (nieco nietypowo) jedyno±¢ (czyli cz¦±¢ �Ponadto...�) rozwi¡za-
nia rozwa»anego ukªadu kongruencji, w sytuacji gdy jeszcze nie wiemy czy jakiekolwiek rozwi¡-
zania istniej¡. Jedyno±ci tej u»yjemy pó¹niej do dowodu istnienia rozwi¡zania.
Je±li x oraz x′ s¡ rozwi¡zaniami rozwa»anego ukªadu kongruencji, to mamy:

x ≡ a1 (mod n1), x′ ≡ a1 (mod n1),

czyli dostajemy:

x ≡ x′ (mod n1) ⇒ n1 | x− x′.

Podobnie otrzymujemy:

n1 | x− x′, n2 | x− x′, . . . , nk | x− x′.

Poniewa» n1, . . . , nk > 1 s¡ parami wzgl¦dnie pierwsze, otrzymujemy »e:

N = n1 · . . . · nk | x− x′,

co znaczy, »e x ≡ x′ (mod N).
Dla dowodu istnienia rozwi¡zania rozwa»anego ukªadu kongruencji bierzemy nast¦puj¡c¡

funkcj¦:

φ : ZN → Zn1 × . . .× Znk
, φ(x) = (rn1(x), . . . , rnk

(x)) .

Z udowodnionej jedyno±ci powy»ej, funkcja φ jest �1-1�. Zauwa»my, »e:

|ZN | = N = n1 · . . . · nk = |Zn1 × . . .× Znk
|.
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Czyli funkcja φ jest funkcj¡ ró»nowarto±ciow¡ pomi¦dzy dwoma sko«czonymi zbiorami tej samej
mocy, tak wi¦c φ jest równie» �na�. W szczególno±ci, istnieje x ∈ ZN taki »e:

rn1(x) = rn1(a1), rn2(x) = rn2(a2), . . . , rnk
(x) = rnk

(ak),

czyli x jest rozwi¡zaniem rozwa»anego ukªadu kongruencji. □

Uwaga 14.2. Powy»szy dowód nie jest konstruktywny, tzn. nie podaje sposobu jak zna-

le¹¢ powy»sze rozwi¡zanie x. Nietrudno jest jednak poda¢ taki sposób. Je±li chcemy rozwi¡za¢
nast¦puj¡cy ukªadu kongruencji:

x ≡ a1 (mod n1), x ≡ a2 (mod n2),

gdzie NWD(n1, n2) = 1 (czyli k = 2), to (poniewa» NWD(n1, n2) = 1) u»ywaj¡c Twierdzenia
11.22 dostajemy m1,m2 ∈ Z, takie »e:

m1n1 +m2n2 = 1.

Wtedy nasze rozwi¡zanie to:
x := a1m2n2 + a2m1n1,

poniewa» liczymy, »e:

x = a1m2n2 + a2m1n1 = a1 (1−m1n1) + a2m1n1 = a1 + (a2 − a1)m1n1 ≡ a1 (mod n1).

Podobnie dostajemy, »e:
x ≡ a2 (mod n2).

Istniej¡ te» analogiczne wzory w sytuacji, gdy k > 2 i znaª je ju» Mistrz Sun.

Poj¦cie kongruencji mo»na uogólni¢ do dowolnego pier±cienia przemiennego z jedynk¡ (podob-
nie mo»na te» uogólni¢ Chi«skie Twierdzenie o Resztach) u»ywaj¡c poj¦cia ideaªu. Intuicyjnie:
ideaªy w teorii pier±cieni graj¡ rol¦ dzielników normalnych w teorii grup.

De�nicja 14.3. Niech R b¦dzie pier±cieniem przemiennym z jedynk¡ oraz I ⊆ R. Wtedy I
nazywamy ideaªem pier±cienia R, co oznaczamy I P R, je±li:

(i) I ⩽ (R,+);
(ii) zachodzi

∀ r ∈ R ∀ x ∈ I rx ∈ I.

Czyli I jest podgrup¡ grupy addytywnej pier±cienia R oraz I jest zamkni¦ty na mno»enie przez
elementy R.

Przykªad 14.4. (1) Zawsze mamy ideaª zerowy:

{0} P R,

oraz ideaª niewªa±ciwy:
R P R.

(2) Mamy
2Z ◁Z

i ogólniej dla dowolnego n ∈ Z:
nZ P Z .

(3) Niech:
I := {F ∈ R[X] | F (i) = 0}

(np. X2 + 1 ∈ I). Wtedy ªatwo pokaza¢, »e I ◁R[X].
(4) Niech:

I := {anXn + . . .+ a1X + a0 ∈ Z[X] : 2 | a0}.
Wtedy nietrudno zauwa»y¢, »e I ◁R[X].
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Uwaga 14.5. (1) Je±li I P R oraz 1 ∈ I, to I = R, poniewa» dla ka»dego r ∈ R mamy:

r = r · 1 ∈ I.

Czyli ideaª:
(i) zawsze jest podpier±cieniem;
(ii) prawie nigdy nie jest podpier±cieniem z jedynk¡.

(2) Je±li I ∩ R∗ ̸= ∅, to równie» I = R, poniewa» je±li u ∈ I ∩ R∗, to dla ka»dego r ∈ R
mamy:

r = ru−1 · u ∈ I.

De�nicja 14.6. Niech R b¦dzie pier±cieniem przemiennym z jedynk¡ oraz x1, . . . , xn ∈ R.
Przez (x1, . . . , xn) oznaczamy ideaª generowany przez x1, . . . , xn, tzn.:

(x1, . . . , xn) := {r1x1 + . . .+ rnxn | r1, . . . , rn ∈ R}

(wszystkie �R-liniowe kombinacje� elementów x1, . . . , xn).

Uwaga 14.7. �atwo zauwa»y¢, »e:

(i) (x1, . . . , xn) jest faktycznie ideaªem pier±cienia R;
(ii) (x1, . . . , xn) jest najmniejszym ideaªem pier±cieniaR zawieraj¡cym elementy x1, . . . , xn.

De�nicja 14.8. Ideaª I P R nazywamy gªównym, gdy istnieje x ∈ I, taki »e:

I = (x).

Uwaga 14.9. Ideaªy gªówne to dokªadnie te ideaªy, które mog¡ by¢ generowane przez jeden
element.

Przykªad 14.10. (1) Mamy:

{0} = (0), R = (1),

czyli s¡ to ideaªy gªówne.
(2) Mamy:

nZ = (n),

czyli s¡ te» to ideaªy gªówne.
(3) Wkrótce (Przykªad 14.13(2)) zauwa»ymy, »e

{F ∈ R[X] | F (i) = 0} =
(
X2 + 1

)
,

czyli to jest te» ideaª gªówny.
(4) Mo»na pokaza¢, »e:

{anXn + . . .+ a1X + a0 ∈ Z[X] : 2 | a0} = (2, X)

oraz »e ideaª (2, X) ◁ Z[X] nie jest ideaªem gªównym.

De�nicja 14.11. Dziedzin¦ R, w której ka»dy ideaª jest gªówny nazywamy dziedzin¡ ideaªów
gªównych.

Teraz ogólny wynik, który np. daje Przykªad 14.13(2).

Twierdzenie 14.12. Ka»dy pier±cie« euklidesowy R jest dziedzin¡ ideaªów gªównych.
Dokªadniej, je±li I jest niezerowym ideaªem R oraz

δ : R \ {0} → N

jest norm¡ euklidesow¡ na R, to mamy I = (a), gdzie:

δ(a) = min{δ(x) | x ∈ I \ {0}}.
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Dowód. Niech R, δ, I, a b¦d¡ j.w. Pokazujemy, »e:

I = (a).

�⊇� Dowolny element ideaªu (a) ma posta¢ qa dla pewnego q ∈ R. Poniewa» a ∈ I oraz I jest
ideaªem R, tak wi¦c qa ∈ I, czyli dostajemy I ⊇ (a).
�⊆� We¹my dowolny x ∈ I. Chcemy pokaza¢, »e x ∈ (a), tzn. »e a | x w R. Aby to pokaza¢
post¦pujemy jak zwykle w pier±cieniach euklidesowych, tzn. dzielimy z reszt¡ x przez a dostaj¡c
q, r ∈ R, takie »e:

x = aq + r oraz (δ(r) < δ(a) lub r = 0) .

Je±li r = 0, to a | x i twierdzenie jest udowodnione.
Je±li r ̸= 0, to δ(r) < δ(a) i d¡»ymy do otrzymania sprzeczno±ci. Mamy:

r = x︸︷︷︸
∈I

− a︸︷︷︸
∈I

q︸︷︷︸
∈R

∈ I.

Ale r ̸= 0 oraz δ(r) < δ(a), co przeczy minimalno±ci δ(a). □

Przykªad 14.13. (1) W ideale nZ P Z element n (je±li n ̸= 0) jest niezerowym elementem
o najmniejszej warto±ci bezwzgl¦dnej (norma euklidesowa na Z), tak wi¦c z Twierdzenia
14.12 mamy:

nZ = (n),

co jest te» oczywiste bez u»ywania Twierdzenia 14.12.
(2) Je±li K jest ciaªem, to K[X] jest pier±cieniem euklidesowym, gdzie norm¡ euklidesow¡

jest stopie« wielomianu. St¡d, je±li I jest niezerowym ideaªem wK[X], to mamy I = (F ),
gdzie:

deg(F ) = min{deg(W ) | W ∈ I \ {0}}.
W szczególno±ci, je±li K = R oraz

I := {F ∈ R[X] | F (i) = 0},
to X2+1 jest wielomianem najmniejszego stopnia z I (w I nie ma wielomianów stopnia
1, poniewa» i /∈ C), tak wi¦c mamy:

{F ∈ R[X] | F (i) = 0} =
(
X2 + 1

)
.

(3) W pier±cieniu Z[X] mamy ideaª (2, X), który nie jest ideaªem gªównym. Czyli Z[X]
nie jest dziedzin¡ ideaªów gªównych. U»ywaj¡c Twierdzenia 14.12 dostajemy, »e Z[X]
nie jest pier±cieniem euklidesowym.
Na ¢wiczeniach zauwa»yli±my, »e stopie« nie jest norm¡ euklidesow¡ na pier±cieniu

Z[X]. Teraz widzimy, »e na pier±cieniu Z[X] nie istnieje »adna norma euklidesowa.

Uwaga 14.14. Wiemy, »e pier±cie« euklidesowy ma wªasno±¢ jednoznacznego rozkªadu (Twier-
dzenie 12.8). Mo»na pokaza¢ ogólniejsze twierdzenie (w praktyce jest to ten sam dowód, co
dowód Twierdzenia 12.8) mówi¡ce, »e ka»da dziedzina ideaªów gªównych ma wªasno±¢ jedno-
znacznego rozkªadu.

Je±li mamy dzielnik normalny N w grupie G, to mo»emy skonstruowa¢ grup¦ ilorazow¡ G/N .
Zobaczymy teraz, »e podobnie jest w przypadku ideaªów w pier±cieniach.

De�nicja 14.15. Niech I P R. Wtedy R/I de�niujemy jako zbiór warstw addytywnych I w
R, tzn.:

R/I := {r + I | r ∈ R}.

Twierdzenie 14.16. Niech I P R. De�niujemy dziaªania +, · na zbiorze R/I:

(a+ I) + (b+ I) := a+ b+ I, (a+ I) · (b+ I) := ab+ I.

Wtedy mamy:

(1) powy»sze dziaªania s¡ dobrze okre±lone;
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(2) (R/I,+, ·) jest pier±cieniem przemiennym z jedynk¡ zwanym pier±cieniem ilorazowym;
(3) funkcja

π : R → R/I, π(r) = r + I

jest homomor�zmem pier±cieni, który jest �na� oraz ker(π) = I.

Szkic dowodu. Poka»emy tylko, »e mno»enie jest dobrze okre±lone, co jest tu najtrudniejsze (ale
wci¡» ªatwe). We¹my a, a′, b, b′ ∈ R, takie »e:

a+ I = a′ + I, b+ I = b′ + I.

Mamy pokaza¢, »e ab+ I = a′b′ + I.
Z zaªo»enia mamy:

a− a′ ∈ I oraz b− b′ ∈ I ⇒ (a− a′)b ∈ I oraz (b− b′)a ∈ I.

Czyli dostajemy, »e:
ab− a′b′ = ab− a′b︸ ︷︷ ︸

(a−a′)b

+ ba′ − b′a′︸ ︷︷ ︸
(b−b′)a

∈ I.

St¡d dostajemy, »e ab+ I = a′b′ + I, co nale»aªo pokaza¢. □

Przykªad 14.17. (1) Warstwy i kongruencje
Niech I = nZ P Z oraz a, b ∈ Z. Wtedy mamy:

n | a− b ⇔ a ≡ b (mod n) ⇔ a− b ∈ nZ ⇔ a+ nZ = b+ nZ .

Uogólniamy (notacyjnie) równowa»no±¢:

a ≡ b (mod n) ⇔ a+ nZ = b+ nZ

do dowolnego pier±cienia przemiennego z jedynk¡ R oraz dowolnego I P R. Dla ka»dego
a, b ∈ R piszemy:

a ≡ b (mod I),

je±li a+ I = b+ I (czyli b− a ∈ I) i mówimy wtedy, »e a przystaje do b modulo I.
(2) Pier±cienie ilorazowe

�atwo zauwa»y¢, »e mamy nast¦puj¡cy izomor�zm pier±cieni (n > 0):

Z /nZ ∼= Zn .

Niedªugo b¦dzie ogólne twierdzenie na ten temat (Twierdzenie 14.19).

Zobaczymy teraz, »e ideaªy maj¡ kolejn¡ cech¦ dzielników normalnych, tzn. »e s¡ to dokªadnie
j¡dra homomor�zmów pier±cieni.

Twierdzenie 14.18. Niech f : R → S b¦dzie homomor�zmem pier±cieni przemiennych z
jedynk¡. Wtedy:

(1) ker(f) P R,
(2) im(f) jest podpier±cieniem z jedynk¡ pier±cienia R.

Dowód. Sprawdzimy tylko, »e ker(f) jest zamkni¦ty na mno»enie przez elementy R. We¹my
x ∈ ker(f) oraz r ∈ R. Wtedy mamy:

f(x) = 0 ⇒ f(rx) = f(r)f(x) = f(r) · 0 = 0.

Czyli rx ∈ ker(f), co nale»aªo sprawdzi¢. □

Nast¦pne twierdzenie jest analogiczne do Zasadniczego Twierdzenia o Homomor�zmach Grup.
Analogiczny dowód pomijamy.

Twierdzenie 14.19 (Zasadnicze Twierdzenie o Homomor�zmach Pier±cieni). Niech f : R → S
b¦dzie homomor�zmem pier±cieni przemiennych z jedynk¡. Wtedy mamy nast¦puj¡cy izomor-
�zm pier±cieni:

R/ ker(f) ∼= im(f).
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Przykªad 14.20. (1) Funkcja n-tej reszty rn : Z → Zn jest homomor�zmem pier±cieni i
mamy:

ker(f) = nZ, im(f) = Zn .

Czyli z Zasadniczego Twierdzenia o Homomor�zmach Pier±cieni otrzymujemy:

Z /nZ ∼= Zn .

(2) Rozwa»my nast¦puj¡c¡ funkcj¦ ewaluacji:

evi : R[X] → C, evi(F ) = F (i).

Poniewa» i /∈ R, tak wi¦c powy»sza funkcja nie jest specjalnym przypadkiem funkcji
ewaluacji z De�nicji 10.35, ale wci¡» ta funkcja jest homomor�zmem pier±cieni analo-
gicznie do Uwagi 10.36(1). Mamy:

ker (evi) = {F ∈ R[X] | F (i) = 0} =
(
X2 + 1

)
.

�atwo zauwa»y¢, »e im(evi) = C (evi(aX + b) = ai + b), tak wi¦c z Zasadniczego
Twierdzenia o Homomor�zmach Pier±cieni otrzymujemy:

R[X]/(X2 + 1) ∼= C .
(3) Rozwa»my nast¦puj¡c¡ funkcj¦ ewaluacji:

ev√2 : Q[X] → Q[
√
2], ev√2(F ) = F

(√
2
)
.

Podobnie jak w punkcie (2) powy»ej, mamy im(ev√2) = Q[
√
2]. Mamy te»:

ker
(
ev√2

)
=

{
F ∈ Q[X] | F

(√
2
)
= 0

}
◁Q[X].

Dzi¦ki Twierdzeniu 14.12 wiemy, »e:

ker
(
ev√2

)
= (F ),

gdzie F ∈ ker(ev√2) jest wielomianem minimalnego stopnia. Poniewa»
√
2 /∈ Q, tak

wi¦c w ker(ev√2) nie ma wielomianów stopnia 1 i dostajemy:

ker
(
ev√2

)
=

(
X2 − 2

)
.

Z Zasadniczego Twierdzenia o Homomor�zmach Pier±cieni otrzymujemy:

Q[X]/(X2 − 2) ∼= Q[
√
2].

(4) Niech:

Z [1/2] :=
{ n

2m
∈ Q | n ∈ Z, m ∈ N

}
b¦dzie najmniejszym podpier±cieniem Q zawieraj¡cym Z oraz 1/2. Rozwa»my nast¦pu-
j¡c¡ funkcj¦ ewaluacji:

ev1/2 : Z[X] → Z[1/2], ev1/2(F ) = F (1/2) .

Wtedy mo»na pokaza¢, »e:

ker
(
ev1/2

)
= (2X − 1), im(f) = Z[1/2].

Czyli z Zasadniczego Twierdzenia o Homomor�zmach Pier±cieni otrzymujemy:

Z[X]/(2X − 1) ∼= Z[1/2].
(5) Rozwa»my:

r7 : Z14 → Z7 .

Poniewa» 7 | 14, tak wi¦c jest to homomor�zm pier±cieni. Mamy:

ker (r7) = {0, 7}, im (r7) = Z7 .

Czyli z Zasadniczego Twierdzenia o Homomor�zmach Pier±cieni otrzymujemy:

Z14 /{0, 7} ∼= Z7 .
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W powy»szych przykªadach pojawiªy si¦ pier±cienie typu R[X]/(W ) dla W ∈ R[X]. Przyj-
rzymy si¦ bli»ej tej sytuacji gdy R = K jest ciaªem. Dowód nast¦puj¡cego twierdzenia pomi-
jamy.

Twierdzenie 14.21. Niech K b¦dzie ciaªem oraz W ∈ K[X], takim »e deg(W ) = n > 0.
Wtedy ka»dy element α ∈ K[X]/(W ) ma jednoznaczne przedstawienie jako:

α = a0 + a1X + . . .+ an−1X
n−1 + (W )

dla pewnych (dla tego ustalonego α jedynych!) a0, a1, . . . , an−1 ∈ K.

Uwaga 14.22. Niech K i W b¦d¡ jak w Twierdzeniu 14.21.

(1) Przedstawienie α jak w Twierdzeniu 14.21 nazywamy przedstawieniem w postaci nor-
malnej.

(2) Twierdzenie 14.21 mo»na wyrazi¢ mówi¡c, »e K[X]/(W ) jest przestrzeni¡ liniow¡ nad
ciaªem K o wymiarze n i bazie:{

1 + (W ), X + (W ), . . . , Xn−1 + (W )
}
.

Przykªad 14.23. Niech

W := 1 +X +X2 +X3 +X4 ∈ Q[X]

i rozwa»my pier±cie« R := Q[X]/(W ). We¹my:

α := X2 + 1 + (W ) ∈ R, β := X3 + 5X2 + 1 + (W ) ∈ R.

Przedstawimy αβ ∈ R w postaci normalnej. Posta¢ �nienormalna� to:

αβ =
(
X2 + 1

) (
X3 + 5X2 + 1

)
+ (W ) = X5 + 5X4 +X3 + 6X2 + 1 + (W ).

Aby przedstawi¢ αβ w postaci normalnej musimy podzieli¢ z reszt¡ X5 + 5X4 +X3 + 6X2 + 1
przez 1 +X +X2 +X3 +X4 w pier±cieniu Q[X]. Robimy to i dostajemy:

X5 + 5X4 +X3 + 6X2 + 1 = (X + 4)︸ ︷︷ ︸
q

(
1 +X +X2 +X3 +X4

)
+
(
−4X3 +X2 − 5X − 3

)︸ ︷︷ ︸
r

.

St¡d posta¢ normalna jest nast¦puj¡ca:

αβ = −4X3 +X2 − 5X − 3 + (W ).

Udowodnimy teraz, »e pier±cie«

R = Q[X]/(W ) = Q[X]/(1 +X +X2 +X3 +X4)

jest ciaªem. We¹my α ∈ R \ {0}. Poka»emy, »e α ∈ R∗. Poniewa» α ̸= 0, tak wi¦c

α = F + (W )

dla pewnego F ∈ Q[X] \ (W ). Skoro F /∈ (W ), to W ∤ F . Z Przykªadu 13.14(2), wielomian
W = 1+X+X2+X3+X4 jest nierozkªadalny w pier±cieniu Q[X]. Na ¢wiczeniach pokazujemy
ogólnie, »e:

je±li a, b ∈ R, R jest dziedzin¡, a nie dzieli b oraz element a jest nierozkªadalny, to wtedy
najwi¦kszy wspólny dzielnik a i b to 1.

Czyli w naszej sytuacji dostajemy:

W ∤ F oraz W jest nierozkªadalny ⇒ n.w.d. W,F to 1.

Poniewa» pier±cie« Q[X] jest euklidesowy oraz n.w.d. W,F to 1, tak wi¦c z Twierdzenia 11.22
istniej¡ A,B ∈ Q[X], takie »e:

AF +BW = 1.

St¡d dostajemy, »e:
AF + (W ) = 1 + (W ) = 1R.
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Czyli dla β = X3 + 5X2 + 1 + (W ) ∈ R mamy:

αβ = (F + (W ))(A+ (W )) = AF + (W ) = 1R.

St¡d α ∈ R∗ i R jest ciaªem.

Podobnie dowodzi si¦ nast¦puj¡cy ogólny wynik.

Twierdzenie 14.24. Niech K b¦dzie ciaªem i wielomian W ∈ K[X] b¦dzie nierozkªadalny.
Wtedy pier±cie« K[X]/(W ) jest ciaªem.
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15. Ideaªy maksymalne i ciaªa

Wyodr¦bnimy teraz abstrakcyjn¡ wªasno±¢ ideaªów postaci (W ) jak w Twierdzeniu 14.24,
która zapewnia, »e iloraz jest ciaªem.

De�nicja 15.1. Ideaª I P R nazywamy ideaªem maksymalnym, gdy:

(i) I ̸= R;
(ii) dla ka»dego J P R mamy:

I ⊆ J ⇒ J = I lub J = R.

Uwaga 15.2. Powy»sza de�nicja mówi, »e ideaªy maksymalne R to elementy maksymalne

zbioru ideaªów wªa±ciwych R wzgl¦dem porz¡dku danego przez inkluzj¦.

Twierdzenie 15.3. Niech R b¦dzie pier±cieniem euklidesowym oraz r ∈ R b¦dzie elementem
nierozkªadalnym. Wtedy ideaª gªówny (r) jest maksymalny.

Dowód. Udowodnimy najpierw, »e (r) ̸= R. Zaªó»my nie wprost, »e (r) = R. Wtedy w szcze-
gólno±ci mamy, »e 1 ∈ R, tzn. istnieje s ∈ S, taki »e rs = 1. Ale to znaczy, »e r ∈ R∗, co przeczy
nierozkªadalno±ci r.
We¹my teraz J P R, taki »e (r) ⫋ J . Mamy pokaza¢, »e J = R. Z Twierdzenia 14.12, R jest

dziedzin¡ ideaªów gªównych, czyli istnieje r′ ∈ R, taki »e (r′) = J . Poka»emy najpierw, »e r′ ∤ r.
Zaªó»my nie wprost, »e r′ | r, czyli istnieje a ∈ R, taki »e r′ = ar. Wtedy dla ka»dego b ∈ R
mamy:

br′ = bar ∈ (r).

Poniewa» dowolny element J = (r′) jest postaci br′ dla pewnego b ∈ R, dostajemy J ⊆ (r).
Poniewa» z zaªo»enia mamy, »e (r) ⊆ J , tak wi¦c dostajemy (r) = J , co przeczy zaªo»eniu
(r) ⫋ J i pokazuje, »e r′ ∤ r. Przypominamy teraz zadanie z ¢wicze«, które pojawiªo si¦ w
Przykªadzie 14.23:

je±li a, b ∈ R, R jest dziedzin¡, a nie dzieli b oraz element a jest nierozkªadalny, to wtedy
najwi¦kszy wspólny dzielnik a i b to 1.

U»ywaj¡c powy»szego wnioskujemy:

r jest nierozkªadalny oraz r′ ∤ r ⇒ n.w.d. r, r′ to 1.

Tak wi¦c u»ywaj¡c Twierdzenia 11.22 istniej¡ x, y ∈ R, takie »e:

xr + yr′ = 1.

Czyli mamy:

r ∈ (r) ⊂ J oraz r′ ∈ J ⇒ 1 = xr + yr′ ∈ J.

Z Uwagi 14.5(1) otrzymujemy, »e J = R, co nale»aªo pokaza¢. □

Uwaga 15.4. Twierdzenie 15.3 jest te» prawdziwe (ten sam dowód) w ogólniejszej wersji, je±li
zast¡pimy �pier±cie« euklidesowy� przez �dziedzina ideaªów gªównych�.

Przykªad 15.5. (1) Je±li K jest ciaªem, to wtedy pier±cie« K[X] jest euklidesowy. St¡d,
je±li wielomian W ∈ K[X] jest nierozkªadalny, to ideaª (W )◁K[X] jest maksymalny.

(2) Je±li p jest liczb¡ pierwsz¡, to ideaª pZ◁Z jest maksymalny.
(3) Pier±cie« Z[i] jest euklidesowy i np. wiemy »e element 1 + i ∈ Z[i] jest nierozkªadalny.

St¡d ideaª (1 + i)◁ Z[i] jest maksymalny.

Udowodnimy teraz ogólny wynik, z którego (oraz z Przykªadu 15.5(1)) wynika Twierdzenie
14.24.
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Twierdzenie 15.6. Niech R b¦dzie pier±cieniem przemiennym z jedynk¡ oraz I P R. Wtedy
mamy:

I jest ideaªem maksymalnym ⇔ R/I jest ciaªem.

Dowód. Pier±cie« jest ciaªem wtedy i tylko wtedy, gdy 0 ̸= 1 oraz ka»dy niezerowy element jest
odwracalny. �atwo zauwa»y¢, »e:

I ̸= R ⇔ R/I ̸= {0} ⇔ 0R/I ̸= 1R/I .

Czyli mo»emy zaªo»y¢, »e I ̸= R.
�⇒� Zaªó»my, »e I jest ideaªem maksymalnym i we¹my α ∈ R/I, takie »e α ̸= 0. Mamy
pokaza¢, »e α ∈ (R/I)∗. Niech r ∈ R b¦dzie, taki »e α = r+ I. Poniewa» α ̸= 0, tak wi¦c r /∈ I.
Rozwa»my zbiór:

J := {x+ y | x ∈ I, y ∈ (r)}.
�atwo zauwa»y¢, »e:

J P R oraz I ⊆ J.

Poniewa» r ∈ J \ I, tak wi¦c I ⫋ J . Poniewa» I jest ideaªem maksymalnym dostajemy, »e
J = R oraz:

1 ∈ J ⇒ ∃x ∈ I ∃y ∈ (r) 1 = x+ y.

Poniewa» y ∈ (r), tak wi¦c istnieje a ∈ R, takie »e y = ar i dostajemy:

1 = x+ ar.

Liczymy teraz:
α · (a+ I) = (r + I)(a+ I) = ar + I =︸︷︷︸

x∈I

1 + I = 1R/I .

St¡d α ∈ (R/I)∗, co nale»aªo pokaza¢.
�⇐� Zaªó»my, »e R/I jest ciaªem i we¹my J P R, taki »e I ⫋ J . Mamy pokaza¢, »e J = R.
U»ywaj¡c Uwagi 14.5(1) wystarczy pokaza¢, »e 1 ∈ R. We¹my a ∈ J \ I. Wtedy mamy:

a+ I ̸= I = 0R/I ⇒︸︷︷︸
R/I jest ciaªem

a+ I ∈ (R/I)∗.

Tak wi¦c istnieje b ∈ R, takie »e:

1 + I = (a+ I)(b+ I) = ab+ I.

Czyli mamy:
r := 1− ab ∈ I,

tak wi¦c dostajemy:
1 = r︸︷︷︸

∈I⊂J

+ ab︸︷︷︸
∈J

∈ J,

co mieli±my pokaza¢. □

Przykªad 15.7. Wiemy, »e wielomiany:

X2 +X + 1 ∈ Z2[X], X2 + 1 ∈ Z3[X]

s¡ nierozkªadalne, poniewa» s¡ stopnia 2 i nie maj¡ pierwiastków (Twierdzenie 13.5). Tak wi¦c
z Twierdzenia 15.3 dostajemy, »e ideaªy:

(X2 +X + 1)◁ Z2[X], (X2 + 1)◁ Z3[X]

s¡ maksymalne i z Twierdzenia 15.6 wynika, »e pier±cienie:

Z2[X]/(X2 +X + 1), Z3[X]/(X2 + 1)

s¡ ciaªami. Z Twierdzenia 14.21 (o postaci normalnej) otrzymujemy, »e

|Z2[X]/(X2 +X + 1)| = 4, |Z3[X]/(X2 + 1)| = 9,

czyli otrzymali±my ciaªa mocy 4 i 9. Mo»na pokaza¢, »e powy»sze ciaªo mocy 4 jest izomor�czne
z ciaªem z Przykªadu 10.2(3).
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Wiemy, »e ideaªy maksymalne mo»na otrzyma¢ z elementów nierozkªadalnych. Nast¦puj¡ce
twierdzenie, którego dowód pomijamy, pokazuje »e ideaªów maksymalnych jest bardzo du»o.

Twierdzenie 15.8. Ka»dy ideaª wªa±ciwy rozszerza si¦ do ideaªu maksymalnego.

Uwaga 15.9. (1) Dzi¦ki Twierdzeniu 15.8 wiemy, »e w ka»dym pier±cieniu R jest du»o
ideaªów maksymalnych, tak wi¦c u»ywaj¡c Twierdzenia 15.6 otrzymujemy te» du»o ho-
momor�zmów ilorazowych R → R/I, gdzie pier±cie« ilorazowy R/I jest ciaªem.

(2) Dowód Twierdzenia 15.8 korzysta z aksjomatu wyboru, czyli wiemy »e ideaªy maksy-
malne istniej¡, ale by¢ mo»e nie jeste±my w stanie ich konkretnie wskaza¢.

Na koniec tego wykªadu koncentrujemy si¦ na ciaªach. Niech K b¦dzie ciaªem. Zauwa»my, »e
je±li K = Z2, to mamy:

1 +2 1 = 0,

a je±li K = Q, to mamy:

∀n > 0 1 + . . .+ 1︸ ︷︷ ︸
n razy

̸= 0.

Interesuje nas ile razy trzeba doda¢ do siebie 1 w K aby otrzyma¢ 0 i czy to w ogóle mo»e
si¦ zdarzy¢.

De�nicja 15.10. We¹my n > 0. Mówimy, »e charakterystyka ciaªa K to n, co oznaczamy
char(K) = n, gdy n jest najmniejsz¡ liczb¡ dodatni¡, tak¡ »e:

1 + . . .+ 1︸ ︷︷ ︸
n razy

= 0.

Je±li takie n nie istnieje, to przyjmujemy »e char(K) = 0.

Przykªad 15.11. Niech p b¦dzie liczb¡ pierwsz¡.

(1) char(Zp) = p.
(2) char(Q) = 0.
(3) char(Zp(X)) = p.
(4) char(Q(X)) = 0.
(5) char(C) = 0.

W Przykªadzie 15.11 charakterystyka danego ciaªo to zawsze liczba pierwsza lub 0. Zoba-
czymy teraz, »e tak jest zawsze.

Twierdzenie 15.12. Niech K b¦dzie ciaªem. Wtedy charakterystyka K to liczba pierwsza lub
0.

Dowód. Zaªó»my, »e n := char(K) ̸= 0. Poka»emy, »e n jest liczb¡ pierwsz¡. Wiemy, »e n jest
najmniejsz¡ liczb¡ dodatni¡, tak¡ »e:

1 + . . .+ 1︸ ︷︷ ︸
n razy

= 0.

Poniewa» 1 ̸= 0, tak wi¦c n ⩾ 2. Niech p b¦dzie dowolnym dzielnikiem pierwszym n. Poka»emy,
»e n = p. Zaªó»my nie wprost, »e n ̸= p i niech:

m :=
n

p
.

Wtedy 1 < m, p < n i mamy:

(1 + . . .+ 1)︸ ︷︷ ︸
p razy

· (1 + . . .+ 1)︸ ︷︷ ︸
m razy

= 1 · 1 + . . .+ 1 · 1︸ ︷︷ ︸
pm = n razy

= 1 + . . .+ 1︸ ︷︷ ︸
n razy

= 0.

De�niujemy teraz:
a := 1 + . . .+ 1︸ ︷︷ ︸

p razy

, b := 1 + . . .+ 1︸ ︷︷ ︸
m razy

.
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Poniewa» m,n < p, tak wi¦c a ̸= 0 ̸= b. Ale ab = 0, czyli np. a jest dzielnikiem zera, co przeczy
temu, »e ka»de ciaªo jest dziedzin¡. □

Cz¦sto spotykali±my si¦ z sytuacj¡, »e mieli±my podpier±cie« R ciaªa K, taki »e R te» byª
ciaªem np.:

Q ⊂ R ⊂ C .
Poni»ej ogólna de�nicja.

De�nicja 15.13. Niech K b¦dzie ciaªem i F ⊆ K. Mówimy, »e F jest podciaªem K, gdy:

(i) F jest podpier±cieniem z jedynk¡ ciaªa K;
(ii) dla ka»dego a ∈ F \ {0} mamy a−1 ∈ F .

Uwaga 15.14. Nast¦puj¡ce obserwacje s¡ oczywiste.

(1) Podciaªa ciaªa K to dokªadnie te podpier±cienie K, które s¡ ciaªami.
(2) Je±li F jest podciaªem ciaªa K, to mamy:

char(F ) = char(K).

De�nicja 15.15. Je±li F jest podciaªem ciaªa K, to mówimy te», »e inkluzja F ⊆ K jest
rozszerzeniem ciaª.

Zauwa»my, »e cz¦sto spotykamy si¦ z sytuacj¡, gdy wielomian F ∈ F [X] nie ma pierwiastków
w ciele F , ale istnieje rozszerzenie ciaª F ⊆ K, takie »e F ma pierwiastki w K.

Przykªad 15.16. (1) Wielomian X2−2 nie ma pierwiastków w ciele Q, ale ma pierwiastki
w ciele R.

(2) Wielomian X2 + 1 nie ma pierwiastków w ciele R, ale ma pierwiastki w ciele C.

Twierdzenie 15.17. Niech F b¦dzie ciaªem oraz W ∈ F [X] \ F . Wtedy istnieje rozszerzenie
ciaª F ⊆ K, takie »e W ma pierwiastek w K.

Dowód. Poniewa» F [X] jest pier±cieniem euklidesowym i W ∈ F [X] \ F , tak wi¦c (z Twier-
dzenia 12.8) W rozkªada si¦ na iloczyn wielomianów nierozkªadalnych w pier±cieniu F [X]. W
szczególno±ci istnieje wielomian nierozkªadalny W0 ∈ F [X], taki »e W0 | W . Niech:

K := F [X]/(W0).

Z Twierdzenia 14.24, K jest ciaªem. Rozwa»my homomor�zm α : F → K, który jest zªo»eniem
nast¦puj¡cych homomor�zmów:

F
⊂−→ F [X]

homomor�zm−−−−−−−→
ilorazowy

K = F [X]/(W0).

Z ¢wicze« wiemy, »e dowolny homomor�zm pomi¦dzy ciaªami jest �1-1�, czyli α jest �1-1�.
Dlatego mo»na przyj¡¢, »e α to inkluzja i »e mamy rozszerzenie ciaª F ⊆ K.
Niech teraz:

x := X + (W0) ∈ K.

Wtedy mamy:

W (x) = W (X + (W0)) = W (X) + (W0) = W + (W0) = (W0) = 0K ,

poniewa» W0 | W , czyli W ∈ (W0). St¡d x jest pierwiastkiem W w ciele K. □

Przykªad 15.18. We¹my:

F = R, W = W0 = X2 + 1 ∈ R[X].

Wtedy wiemy, »e:
R[X]/(X2 + 1) ∼= C .

Przy powy»szym izomor�¹mie element x := X+(X2+1) ∈ R[X]/(X2+1) z dowodu Twierdzenia
15.17 przechodzi na jednostk¦ urojon¡ i ∈ C oraz mamy W (i) = 0.
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De�nicja 15.19. Ciaªo K nazywamy algebraicznie domkni¦tym, gdy ka»dy niestaªy wielomian
W ∈ K[X] ma pierwiastek w K.

Przykªad 15.20 (Zasadnicze Twierdzenie Algebry). Ciaªo C jest algebraicznie domkni¦te.

Mo»na si¦ spyta¢, czy istniej¡ jakie± inne (ni» C) ciaªa algebraicznie domkni¦te. Ponownie
jest ich bardzo du»o, ale nie mo»na ich konkretnie wskaza¢, o czym mówi poni»sze twierdzenie,
którego dowód pomijamy.

Twierdzenie 15.21. Niech F b¦dzie ciaªem. Wtedy istnieje rozszerzenie ciaª F ⊆ K, takie »e
K jest algebraicznie domkni¦te.

Idea dowodu. U»ywaj¡c Twierdzenia 15.17 znajdujemy rozszerzenia, w których istniej¡ pier-
wiastki wielomianów i robimy to wiele, wiele razy ... (indukcja pozasko«czona). □

Uwaga 15.22. Ciaªa algebraicznie domkni¦te s¡ niesko«czone.

Dowód. Je±li ciaªo F = {a1, . . . , an} jest sko«czone, to wielomian

F := (X − a1) · . . . · (X − an) + 1 ∈ F [X]

nie ma pierwiastków w F . □

Ciaªa algebraicznie domkni¦te s¡ �du»e�. Zajmiemy si¦ teraz �najmniejszymi� ciaªami.

Fakt 15.23. Ciaªo Q nie ma »adnych podciaª wªa±ciwych.

Dowód. Niech K b¦dzie podciaªem Q. Mamy pokaza¢, »e K = Q. Poniewa» K jest podciaªem,
tak wi¦c 1 ∈ K. We¹my dowolny x ∈ Q. Wtedy istniej¡ n ∈ Z,m ∈ N>0, takie »e:

x =
n

m
⇒ x =

±(

|n| razy︷ ︸︸ ︷
1 + . . .+ 1)

1 + . . .+ 1︸ ︷︷ ︸
m razy

.

Poniewa» K jest podciaªem Q oraz 1 ∈ K, tak wi¦c x ∈ K. Czyli dostajemy, »e K = Q, co
nale»aªo pokaza¢. □

De�nicja 15.24. Ciaªo F nazywamy ciaªem prostym, gdy F nie ma »adnych podciaª wªa±ci-
wych.

Przykªad 15.25. (1) Q jest ciaªem prostym.
(2) Je±li p jest liczb¡ pierwsz¡, to Zp jest ciaªem prostym, bo dla ka»dego r ∈ Zp mamy:

r = 1 +p . . .+p 1︸ ︷︷ ︸
r razy

.

Twierdzenie 15.26. Je±li F jest ciaªem prostym, to wtedy F ∼= Q lub F ∼= Zp dla pewnej
liczby pierwszej p.

Dowód. Rozwa»amy dwa przypadki.
char(F ) = 0.
Poka»emy, »e F ∼= Q. Niech:

F0 :=


±(

n razy︷ ︸︸ ︷
1 + . . .+ 1)

1 + . . .+ 1︸ ︷︷ ︸
m razy

∈ F | n,m > 0

 ∪ {0}.

�atwo sprawdzi¢ (uzywaj¡c zaªo»enia o charakterystyce F ), »e:

• F0 jest podciaªem F ,
• F0

∼= Q.
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Poniewa» F jest ciaªem prostym, dostajemy »e F = F0, czyli F ∼= Q.
char(F ) ̸= 0.

Z Twierdzenia 15.12, wiemy »e char(F ) = p, gdzie p jest liczb¡ pierwsz¡. Poka»emy, »e F ∼= Zp.
Niech:

F0 :=

1 + . . .+ 1︸ ︷︷ ︸
n razy

∈ F | 0 < n < p

 ∪ {0}.

�atwo sprawdzi¢ (uzywaj¡c zaªo»enia o charakterystyce F ), »e:

• F0 jest podciaªem F ,
• F0

∼= Zp.

Poniewa» F jest ciaªem prostym, dostajemy »e F = F0, czyli F ∼= Zp. □

Wniosek 15.27. Z dowodu Twierdzenia 15.26 wynika te», »e je±li F jest dowolnym ciaªem, to
istnieje jedyne podciaªo F0 ⊆ F , takie »e F0 jest ciaªem prostym. To podciaªo F0 nazywamy
podciaªem prostym ciaªa F .

Uwaga 15.28. (1) Je±li char(F ) = 0, to podciaªo proste F jest izomor�czne z Q.
(2) Je±li char(F ) = p > 0, to podciaªo proste F jest izomor�czne z Zp.

Na koniec zajmiemy si¦ ciaªami sko«czonymi. Zauwa»my, »e nie pojawiªo si¦ dotychczas ciaªo
mocy 6. Poni»sze twierdzenie mówi, »e nie jest to przypadek.

Twierdzenie 15.29. Je±li F jest ciaªem sko«czonym, to |F | jest pot¦g¡ liczby pierwszej.

Dowód. Niech F0 b¦dzie podciaªem prostym ciaªa F . Poniewa» ciaªo F jest sko«czone, tak wi¦c
ciaªo F0 jest równie» sko«czone. Z Twierdzenia 15.26 dostajemy, »e F0

∼= Zp dla pewnej liczby
pierwszej p. Wtedy F staje si¦ przestrzeni¡ liniow¡ nad F0 i niech:

n := dimF0(F ).

Poniewa» F jest sko«czone, tak wi¦c n jest liczb¡ naturaln¡ i dostajemy »e

|F | = |F0|n = pn,

czyli |F | jest pot¦g¡ liczby pierwszej. □

Wniosek 15.30. Nie istniej¡ ciaªa mocy 6, poniewa» 6 nie jest pot¦g¡ liczby pierwszej.

Dowody dwóch kolejnych twierdze« pomijamy.

Twierdzenie 15.31. Dla ka»dej liczby pierwszej p i ka»dego n > 0 istnieje ciaªo F , takie »e:

|F | = pn.

Twierdzenie 15.32. Je±li F1, F2 to ciaªa sko«czone oraz |F1| = |F2|, to wtedy

F1
∼= F2.

Wniosek 15.33. Widzimy, »e dla ka»dej liczby pierwszej p i ka»dego n > 0 istnieje jedyne (z
dokªadno±ci¡ do izomor�zmu) ciaªo F , takie »e |F | = pn. Ciaªo to oznaczane jest przez Fpn.

KONIEC WYK�ADU

103


	Wstęp
	1. Definicja grupy i pierwsze przykłady grup
	2. Grupy reszt, grupy izometrii oraz homomorfizmy
	3. Grupy cykliczne i grupy permutacji
	4. Warstwy, tw. Lagrange'a i zastosowania
	5. Homomorfizmy, jądra i dzielniki normalne
	6. Grupa ilorazowa i produkt grup
	7. Produkty grup cyklicznych i grupa kwaternionów
	8. Klasyfikacja grup małych rzędów i automorfizmy wewnętrzne
	9. Pierścienie, elementy odwracalne i dziedziny
	10. Ciała, homomorfizmy pierścieni i pierścienie wielomianów
	11. Ciało ułamków i pierścienie euklidesowe
	12. Jednoznaczność rozkładu
	13. Rozkładalność wielomianów
	14. Chińskie twierdzenie o resztach i ideały
	15. Ideały maksymalne i ciała

