WSTEP

Jest to skrypt do wyktadu Algebra 1 prowadzonego w Instytucie Matematycznym Uniwersy-
tetu Wroclawskiego. Skrypt ma 15 czesci, ktore powinny odpowiadaé¢ 15 tygodniom zajeé, ale
czasami materiat zrealizowany w danym tygodniu moze nieco odbiega¢ od tego podziatu.

Wyktad mozna naturalnie podzieli¢ tematycznie na dwie czesci: teorie grup (pierwsze 8 ty-
godni) i teorie pierscieni (kolejne 7 tygodni).

Uzywane oznaczenia

(1) Symbol ,:=" oznacza, ze lewa strona jest definiowana przez prawa, np.:

CL2Z:(I'CL.

(2) Symbol ,,[I” oznacza koniec dowodu.
(3) Jesli f: A— Boraz Ay C A, By C B,b€ B, to:
e f(Ap) to obraz (nie uzywam tu nawiasow kwadratowych);
e /7Y(By) to przeciwobraz (nie uzywam tu nawiaséw kwadratowych);
o f7H(b) = fH({b});
e A x B (produkt kartezjanski A i B) to zbior par (a,b), gdzie a € Aib € B;
e |A| to moc zbioru A.
(4) Oznaczenia zbiorow liczb:
e N:={0,1,2,...} to zbior liczb naturalnych (czyli 0 jest liczba naturalna);
e 7. to zbidr liczb catkowitych;
e () to zbior liczb wymiernych,;
e R to zbior liczb rzeczywistych;
e N.o:=1{1,2,...}, analogicznie np. N.5, czy tez Rxop24;
e (C to zbior liczb zespolonych.
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1. DEFINICJA GRUPY I PIERWSZE PRZYKLADY GRUP

Stowo algebra pochodzi od arabskiego al-Jabr:

|

co oznacza przenoszenie badz uzupelnianie. Historycznie, algebra rozpoczeta sie od rozwiazy-
wania konkretnych réwnan stopnia 1 oraz 2, ktérych rozwiazywanie wymaga przenoszenia
(na druga strone rownania). Potem zaczeto rozwazaé ogolne rownania, np. rownanie:

ar® +br+c¢ =0,
ktore ma nastepujace rozwiazania:

b+ VA _ —b—-VA

1 2a 2= 2a '
gdzie
A = b — 4ac.

W tym rownaniu i w jego rozwiazaniach pojawiaja sie operacje algebraiczne (dzialania):

= hy/
na literach, o ktérych myslimy jako o dowolnych liczbach. Taka wtlasnie jest algebra obec-
nie: zajmuje sie dzialaniami np. na zbiorach liter, ktore moga (ale nie musza) by¢ ogolnymi
wspotczynnikami jakiego$ rownania.

Niech teraz A bedzie dowolnym niepustym zbiorem (np. IN, Z, Q, R, C). Chcemy zdefiniowaé
pojecie dzialania na zbiorze A. Popatrzmy najpierw na bardzo naturalny przyktad: dziatanie
dodawania na IN. Dla dowolnych dwoch liczb naturalnych (np. 2 i 3) dzialanie dodawania
produkuje ich sume (np. 2+ 3 = 5). Czyli dziatanie dodawania jest funkcja za zbioru par liczb
naturalnych IN x IN w zbi6r liczb naturalnych IN.

+:NxN—>N, (a,b)—a+bd.
Ogolna definicja dzialania jest analogiczna.

Definicja 1.1. Dziataniem na niepustym zbiorze A nazywany dowolng funkcje

x: Ax A= A

?

Konwencja 1.2. Dla a,d’ € A piszemy ,a % a”” zamiast ,x((a,a’))”.

Na razie nie mamy zadnych zatozen na temat wtasnosci dziatania *, czyli dzialanie to moze
byé¢ (bardzo) ,dziwne”.
Przyklad 1.3. Ponizej kilka przyktadéow dziatan.
(1) Na zbiorach N, Z, Q, R, C mamy zwykle dzialania dodawania (+) i mnozenia (-).
(2) Mamy tez mnostwo innych ,dziwnych” dziatan, np. dziatanie:

ax*b:= (2a-b)+ 5a*

na (np.) zbiorze R.
(3) Teraz wazny ogolny przyktad. Niech X bedzie dowolnym zbiorem i niech XX oznacza
zbior wszystkich funkcji X — X. Dla f, g € XX mamy zlozZenie funkcji f o g € X*:

Ve X (fog)(x) = flg(x)).
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Czyli o jest dzialaniem na zbiorze X*X:

(4) Niech P(X) bedzie zbiorem wszystkich podzbiorow zbioru X. Wtedy przekroj zbiorow
(M) i suma zbioréow (U) sa dzialaniami na zbiorze P(X).

(5) Rozwazmy zbior R U{oco}, gdzie co to (nowy) formalny symbol. Definiujemy dziatanie
+ na zbiorze R U{oo}:

Vae RU{oo} a+ 00 :=o00=: 0+ a,
Va,b € R a + b to dodawanie z R.
Uwaga 1.4. Mamy nastepujacy prosty opis dziatan. Jesli x jest dziataniem na skonczonym
(oraz nie za duzym) zbiorze A = {aq,...,a,}, to definiujemy tabelke x:
ES aq a9 e (07%
a1 | ap *ay | ayxag | ... | ay xa,
Ao | Ao % A1 | Ao * A2 | ... | A2 * Qp
Qp | Qp * a1 | ap *ag | ... | a,*ay

Przyklad 1.5. (1) Niech
A= P({Oa 1}) = {(Z]’ {0}7 {1}7 {07 1}}

oraz ¥ = U. Wtedy mamy:

U |0 |0} | (1) [{0.1)
0| 0 [ {0} [ {1 [{0.1}
07 [ {07 [ {0 [{0.13 [{0.1)
{0 ({007 {13 [{0.1
{017 [{0.13 [{0,1} [ 0.1} [{0.1}

(2) Rozwazmy dwa przyktady dzialan na A = {0, 1} dane nastepujacymi tabelkami:

* 01 ¢ 0|1
0101 0710
11110 110]0

W zwiazku z Przykladem [L.5(2), wezmy nastepujaca bijekcje:

Fi{0} > {23 f0)=2, F1)=3.

Uzywajac f mozemy ,transportowa¢” (np.) dziatanie ¢ ze zbioru {0, 1} do zbioru {2, 3} otrzy-
mujac dziatanie, ktore nazwiemy M. Policzmy np. 2H3:

e cofamy sie przez f~! i dostajemy:

@) =0, f7'3)=1
e stosujemy dziatanie ¢ i dostajemy 041 = 0;
e na wynik naktadamy f i dostajemy
O3 = £(0) = 2.

Czyli ogblny wzor jest nastepujacy:

Vo, yc {23} By = f(f ()8 ().

Ponizej formalizujemy te konstrukcje.



Definicja 1.6. Niech f : A — B bedzie bijekcjg i * bedzie dzialaniem na zbiorze A. Dzialanie
- na zbiorze B nazywamy dzialaniem indukowanym przez dziatanie x poprzez funkcje f (lub
dzialaniem transportowanym poprzez funkcje f z dzialania x), jesli:

Va,y€ B zoy=f(f"@)x ().

Niedtugo pokazemy, ze dziatania transportowane maja te same ,wtasnosci algebraiczne” co
oryginalne dzialania. Aby wyodrebi¢ te wtasnosci, popatrzmy blizej na dziatanie skladania
funkcji na zbiorze XX,

(1) Dla f,g,h : X — X oraz x € X mamy:
[f o (goh)(x) = f(goh)(x)) = f(g(h)),
[(fog)ohl(z)=(fog)(h(z)) = f(g(h)).
Tak wiec dostajemy laczno$é dziatania o:
Vf.g.heX* fol(goh)=(fog)oh.
(2) Istnieje wyr6zniona funkcja
idy : X —- X, idx(z):=ux,
taka ze idy jest elementem neutralnym dzialania o:
VfeX® ldyof =f=foidx.
(3) Wezmy f,g € X*. Mowimy, ze g jest funkcja odwrotna do f, gdy:
fog=idx =go f.

Jesli funkcja odwrotna do f istnieje, to jest jedyna i oznaczamy jg przez f~—!. Ze Wstepu
do Matematyki wiemy, ze funkcja odwrotna do f istnieje wtedy i tylko wtedy, gdy f
jest bijekcja.

Definicja 1.7. Niech % bedzie dziataniem na zbiorze A.
(1) Dziatanie * jest {qczne, gdy:
Va,b,ce A ax(bxc)=(axb)xc.
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(2) Element e € A nazywamy elementem neutralnym dziatania *, gdy:
Vaec A exa=a=axe.

Szybki Fakt
Jesli e 1 ep 83 elementami neutralnymi dziatania *, to e; = es.

Dowdd Szybkiego Faktu. Poniewaz e; jest elementem neutralnym dziatania x, tak wiec:
€1 % €3 = €s.

Poniewaz es jest elementem neutralnym dziatania *, tak wiec:
€1 x ey = ey.

Stad e; = es. O

Czyli jesli element neutralny istnieje, to jest jedyny.
(3) Zalozmy, ze * ma element neutralny e (z Szybkiego Faktu wiemy, ze musi on by¢ je-
dyny!). Dla a,b € A mowimy, ze b jest elementem odwrotnym do a, gdy:

axb=e=bxa.
(4) Mowimy, ze dzialanie * jest przemienne, gdy:

Va,be A axb=>bxa.

Definicja 1.8. Niech % bedzie dzialaniem na zbiorze G. Mowimy, ze para (G, *) jest grupg,
gdy dziatanie * jest taczne, ma element neutralny i dla kazdego elementu w G istnieje element
odwrotny.

Grupe (G, %) nazywamy przemienng lub abelowq, gdy dziatanie * jest przemiennie

Konwencja 1.9. Czesto zamiast ,grupa (G, *)” piszemy , grupa G” domyslajac sie dzialania x.
Zanim zobaczymy przyklady, jeszcze jeden fakt zawierajacy istotne oznaczenie.

Fakt 1.10. Niech (G, -) bedzie grupg i g € G. Wtedy istnieje jedyny element odwrotny do g w
(G, ), ktory oznaczamy g .

Dowdd. Zalozmy, ze g1, g2 € G to elementy odwrotne do g w (G, ). Mamy pokazaé, ze g3 = go.
Mnozymy réwnosé:
g1-g=¢
obustronnie przez g, z prawej strony i otrzymujemy:
(91-9) g2 =e-g2 = go.

Z drugiej strony, uzywajac tacznosci - i tego, ze go jest elementem odwrotnym do g, otrzymu-
jemy:

(91°9)-92=91-(9-92) =g1- €= g1,
co daje g1 = (g1-9) - g2 = ga- [
Udowodnimy teraz gtéwna wlasnos$¢ dziatan transportowanych.
Twierdzenie 1.11. Niech f : A — B bedzie bijekcjg, x bedzie dziataniem na A oraz - bedzie

dziataniem na B indukowanym przez dziatanie x poprzez funkcje f. Jesli dziatanie x jest tgczne,
to dziatanie - tez jest tgczne.

Dowdd. Wezmy z,y, 2z € B i oznaczmy na chwile:

a:=f(f (@)= f(y)
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Wtedy mamy (uzywajac Definicji [1.6):

(@-y) 2= (f(f @)« f(y) =

=f([f @)= W] = f(2)

Podobnie dostajemy:

Z tacznosci * mamy:

@)+ )] = f () = f @) = [ () + £ ()]

i stad w konicu dostajemy (z-y) -z =z (y-2). O

Uwaga 1.12. Analogiczne twierdzenia sg prawdziwe dla przemiennodci, istnienia elementow
neutralnych i ogdlnie kazdej algebraicznej wlasnosci dziatan. W szczegdlno$ci mamy naste-
pujace zadanie z ¢wiczen: jesli powyzej (A, *) jest grupa, to (B, -) jest tez grupa.

Przyklad 1.13. (1) Popatrzmy najpierw na najbardziej naturalne dzialania dodawania i

mnozenia na zbiorach IN,Z, Q, R, C. Dziatania te na kazdym z tych zbioréw sa taczne
i przemienne. Poza tym 0 jest zawsze elementem neutralnym + oraz 1 jest zawsze
elementem neutralnym -.

Popatrzmy, czy istniejg elementy odwrotne. Np. 1 € IN nie ma elementu odwrotnego
wzgledem dodawania na zbiorze IN, Czyli (IN, +) nie jest grupa. Latwo zauwazy¢, ze
(Z,4),(Q,+), (R, +), (C,+) sa grupami przemiennymi. Jak dobrze wiemy, 0 na zadnym
z tych zbioréw nie ma elementu odwrotnego wzgledem dziatania - (;nie mozna dzieli¢
przez 07). Czyli (N,-),(Z,-),(Q,),(R,-), (C, ) nie sa grupami.

Rozwazmy teraz na nastepujace ,dziwne” dziatanie x na R:

ax*b:=a+ b

Dziwne dziatania zwykle nie sg tagczne. Aby udowodnié, ze dziatanie x nie jest laczne,
nalezy wskazaé konkretne elementy a, b, c € R, takie ze zachodzi:

ax(bxc)# (axb)*c.
Czyli trzeba te elementy jako$ zgadnaé. Zgadujemy, ze np.:
a=0,b=0, c=2.
Sprawdzamy:
(0%0)*2=(0+0*) *2=0%2=0+2"=4,

0% (0%2) =0%(0+2%) =0x4=0+4"=16.

Czyli faktycznie to ,dziwne” dzialanie * nie jest taczne.

Wiemy, ze dzialanie sktadania funkcji na zbiorze X jest laczne i ma element neutralny
idy. Wiemy tez, ze jesli f € X nie jest bijekcja, to f nie ma elementu odwrotnego.
Rozwazmy nastepujacy podzbior XX:

Sx :={f € X* | f jest bijekcja}.

Sktadanie funkcji wciaz jest dziataniem na zbiorze Sy, bo ztozenie bijekcji jest bijekcja
oraz, oczywiscie, to dziatanie wcigz jest laczne na zbiorze Sy. Element idx jest bijekcja,

czyli jest elementem neutralnym dzialania o na zbiorze Sx. Dla kazdej bijekcji f € S,
istnieje funkcja odwrotna f~!, ktora tez jest bijekcja. Czyli (S, o) jest grupa.
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(4)

Rozwazmy dzialanie + na zbiorze RU{oo} z Przykladu [L.3(5).

Udowodnimy ze to dziatanie jest taczne. Wezmy a,b,c € RU{oo}. Jesli a = oo lub

b= o0 lub ¢ = o0, to:

(a+b)+c=00=a+ (b+c).
Jesli a,b, ¢ € R, to oczywiscie rowniez mamy (a + b) + ¢ = a + (b + ¢). Czyli dzialanie
+ na zbiorze RU{oo} faktycznie jest taczne.

Latwo zauwazy¢, ze 0 jest elementem neutralnym dziatania + na zbiorze R U{oc}. Ale
element oo nie ma elementu odwrotnego (intuicja: oo — 0o to ,symbol nieoznaczony”).
Crzyli (RU{o0}, +) nie jest grupa.

Rozwazmy teraz dwa dzialania %, ¢ na zbiorze {0, 1} z Przyktadu [1.5[2).

Latwo sprawdzi¢ (rozwazajac przypadki), ze x jest laczne (niedlugo zrobimy to w

inny sposob), 0 jest elementem neutralnym x oraz:

0%x0=0, 1x1=0,

czyli kazdy element ma element odwrotny. Stad ({0,1} %) jest gru rzemienna.
y y y 3 y Ly, *) ] grupa p 3
Popatrzmy teraz na dzialanie ¢. Mamy:

(060)41 = 141 =0,
04(041) = 040 = 1.

Czyli dzialanie 4 nie jest taczne. Okaze sie niedtugo, ze dzialanie * jest ,nieprzypad-
kowe”, a dziatanie jest ,przypadkowe”.



2. GRUPY RESZT, GRUPY IZOMETRII ORAZ HOMOMORFIZMY

Popatrzmy teraz na nowe i wazne przykltady dziatan: dzialania modulo n (n € IN-;). Niech
Z, :={0,1,...,n— 1} bedzie zbiorem reszt modulo n oraz

o L — 1y
bedzie funkcjq n-tej reszty, tzn. Vo € 7, Nr € 7., mamy:

ro(x) = 1 <= 1 jest reszta z dzielenia z przez n
< nl|r —r.

Definiujemy dziatania dodawania i mnozenia modulo n (+, 1 -,) na zbiorze Z,:
Va,y € Ly, rH,y=r(z+y), xy:=ru(x-y).

Dla przyktadu:
3"‘54:7"5(7):2, 354:7’5(12):2
Mozemy napisa¢ np. tabelke +5:

+2 (01
0 (01
11110

Widzimy, ze dzialanie * na {0,1} = Z, z Przykladu [1.52) to dokladnie dzialanie +,, dlatego
tez to dzialanie x jest ,nieprzypadkowe”!

Twierdzenie 2.1. Dzialanie +, jest tgczne.
Dowdd. Wezmy x,y, z € Z.,,. Pokazemy, ze:
(T +ny)tnz=ro(r+y+2) =2+, (y +n 2).
7 definicji +,, mamy:
(x+py)+nz=r,((x+oy) +2).
Uzywajac definicji r,, oraz tego, ze x 4+, y = r,(z + y) dostajemy:
nl(x+n,y)—(x+y)=(r+,y)+2— (x+y+2).
Bedziemy uzywacé nastepujacej ,,prostej obserwacji’:
Ya,beZ ro(a) =ro(b) <= nla—0b.
Uzywajac ,,prostej obserwacji” dostajemy, ze:
o ((z+ny)+2)=r(x+y+2)
i stad mamy:
(z+ny) +nz=ro(z+y+2).
Analogicznie pokazuje sie, ze:
Tn (Y +nz) =rm(z+y+2)
i stad dostajemy (z +, y) +, 2 = = +, (y +n 2), czyli dzialanie +,, jest taczne. O

Ponadto mamy, ze:

e ( jest elementem neutralnym dziatania +,;
e 0 jest elementem odwrotnym do samego siebie (jak kazdy element neutralny);
e dla kazdego = € Z, \{0} mamy, ze n — x € Z, oraz n — x jest elementem odwrotnym

do z.
9



Czyli (Z,,+n) jest grupa. Dzialanie +,, jest przemienne, czyli:
(Z.r,, +r) jest grupa przemienng.
Popatrzmy teraz na dzialanie -,,. Podobnie jak dla +, mozna pokazac, ze:
Va,y,z € Zy, (T ny) nz=rp(zyz) =2 (Y0 2),

czyli dziatanie -, jest taczne.
Zatozmy teraz, ze n > 1. Oczywiscie, 1 jest elementem neutralnym -,. Ale wcigz 0 nie ma
elementu odwrotnego, czyli dla n > 1:

(Zy,, ) nie jest grupa.

Kontynuujemy przyklady grup, opiszemy teraz (skoriczone) grupy permutacji. Dla n > 0
definiujemy (patrz Przyktad [1.13(3)):

grupe wszystkich bijekeji {1,2,...,n} — {1,2,...,n}.

Dla o € §,, oznaczamy:
B 1 2 ... n
7=\ o) 02 ... on) )

Przyklad 2.2. Wypiszmy elementy grup Si, Sa, Ss:

. . 1 2
Slz{ld}, ng{ld,<2 1)},
g — g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
371 \V1 32 )03 21 ) \213) 231/ {312 '

Jesli oznaczmy Sy = {id, o}, to wtedy tabelka S, wyglada nastepujaco:

olid| o
id|id| o
oo lid

Piszac kod tej tabelki w TeXu, wziatem tabelke dzialania 4 i zamienitem wszystkie wystapienia
,0” na ,id” oraz ,,1” na ,,0”. Czyli tabelka (Ss, o) jest ,taka sama” jak tabelka (Zs, +2). Ogolnie,
latwo zauwazy¢, ze jesli G = {e, g} jest grupa dwu-elementowa, to jest tylko jedno mozliwe
dzialanie x na G, takie ze (G, x) jest grupa.

Grupy 57 i 9 sg przemienne. Zauwazmy, ze grupa Sz nie jest przemienna:

(2 13)e (5 1)m=(:
(3)- (s
(313)-(333)+ (33 1)-(4

Podobnie dla wszystkich n > 3, grupa S,, nie jest przemienna.
Podsumowujac, znamy juz dwie serie grup skoriczonych dla n > 1:

\V]

— N w
w W
~_
| I
—~

—_

N—

|
VR
DO
w N —

Stad mamy:

e grupy przemienne (Z,, +,);

e grupy S,, ktére nie sa przemienne dla n > 3.
Grupy macierzy
Niech n > 0 i GL,(R) bedzie zbiorem macierzy n X n o niezerowym wyznaczniku. Z algebry
liniowej wiemy, ze:

e iloczyn macierzy o niezerowym wyznaczniku jest macierza o niezerowym wyznaczniku,

czyli mnozenie macierzy jest dzialaniem na GL,(R);
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e mnozenie macierzy jest taczne;

e dla
1 0 - 0
01 - 0
I=|. . :
00 1

macierzy identycznos$ciowej mamy:
VAeGL,(R) A-1=A=1- A,

czyli I jest elementem neutralnym dzialania mnozenia macierzy na GL,(R);
e dla kazdej A € GL,(R) istnieje macierz odwrotna B = A~! € GL,(R), taka ze:

A-B=1=B-A.

Stad (GL,(R), ) jest grupa.
Dla n = 1 mamy GL;(R) = R\{0}, czyli

i jest to grupa przemienna. Podobnie (C\{0},-) oraz (Q \{0}, ) sa grupami przemiennymi.
Dla n > 2, grupa GL,(R) nie jest przemienna, np.:

10.11_11#21_11_10

11 0 1} |1 2 1 1] |0 1 11

Notacja multyplikatywna

Dziatanie w grupie G zwykle oznaczamy przez ,,-” lub przez ,nic”, tzn. dla a,b € G piszemy
a - b lub po prostu ab. Oczywiscie, jesli mamy konkretna grupe jak np. (R, +) czy (Zs, +5), to

juz nie oznaczamy dzialania tam przez -. Powyzsza notacje stosujemy, gdy moéwimy ogdlnie o
grupach. Element neutralny w grupie zwykle oznaczamy przez e.

Potegowanie w grupie
Niech (G,-) bedzie grupa i n > 0. Dzialanie - jest taczne, wiec dla kazdego g € G element:
gti=qg-...-g
——
n razy
jest dobrze okreslony. Definiujemy tez:
P =e gm=(97")".
Czyli dla wszystkich m € Z,g € G mamy zdefiniowany element ¢™ € (. Na ¢wiczeniach
pokazujemy nastepujacy wynik.
Twierdzenie 2.3. Dla kazdych g, h € G oraz m,n € Z zachodzi:
(1) gmg" = g™,
(2) (g™)" =g™",
(3) jesli gh = hg, to (gh)" = g™h".
Notacja addytywna

Abstrakcyjna grupe przemienna czesto oznaczamy przez (A, +). Wtedy element neutralny ozna-
czamy przez 0 oraz dla a € A i m € N zamiast a™ piszemy ma oraz zamiast a~! piszemy —a.

Na ¢éwiczeniach rozwazaliémy dysk
K, ={z€C ||z <r}

J

i zauwazyliSmy, ze dla r < 1, K, jest ,zamkniety na -’
na -”. Formalizujemy teraz to pojecie ,zamknietosci”.

Definicja 2.4. Niech (G, -) bedzie grupa i A C G. Moéwimy, ze:
11
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(1) A jest zamkniety na dziatanie -, gdy:
Va,a' € A a-a € A;

(2) A jest podgrupg G, co oznaczamy A < G, gdy:
(i) A jest zamkniety na dziatanie -,
(ii) e € A,
(iii) dla kazdego a € A mamy ze a™! € A.

Uwaga 2.5. Jesli A < G, to (A, ) jest grupa, gdzie tu - jest dzialaniem z G obcietym do A.

Przyklad 2.6. (1) R < (@a+)7 Q < (R7 +)7 Z < (Q7+)
(2) IN nie jest podgrupa (Z,+), bo cho¢ IN jest zamkniety na +1 0 € IN, to np. 1 € IN ale
—1¢ IN.
(3) R\{0} < (C\{0},-), @Q\{0} < (R\{0},).
(4) R\{0} nie jest podgrupa (R, +), bo R \{0} nie jest zamkniety na +, np. 1, —1 € R\{0}
ale 1+ (—1) =0 ¢ R\{0}.
(5) Zadanie z ¢wiczen: jesli H < Gi N <G, to HNN < G.
Uwaga 2.7. Teraz mozna sprecyzowaé¢ pewne konwencje.
(1) Jak moéwimy ,grupa R”, to zawsze to znaczy ,grupa (R, +)”, bo (RR,-) nie jest grupa!
(2) Jak mowimy ,grupa R\{0}”, to zawsze to znaczy ,grupa (R\{0},-)”, bo + nie jest
nawet dzialaniem na R \{0}!

Grupy izometrii
Niech W C R? bedzie figura ptaska (np. W to kwadrat badz trojkat). Definiujemy:

Izo(W) := {f € Sw | f jest izometria}.
Wtedy Izo(W) < Sw, czyli (Izo(W), o) jest grupa.
Mamy cztery typy izometrii:

symetrie osiowe;

obroty;

translacje;

e ztozenia translacji z symetriami osiowymi.

Jesli figura W jest ograniczona, to rozwazamy jedynie symetrie osiowe i obroty.

Popatrzmy doktadniej na przypadek, gdy W jest trojkatem réwnobocznym. Wtedy grupe
izometrii oznacza sie D3 i naleza do niej tylko obroty i symetrie osiowe. Ustawiamy trojkat jak
na rysunku ponizej (Srodek ciezkosci w srodku uktadu wspohrzednych). Mamy:

D5 = {id,O%ﬂ,O%w,SA,SB,SC} ;

gdzie S, to symetria osiowa wzgledem prostej [4 z rysunku, Sp to symetria osiowa wzgledem

prostej I, S¢ to symetria osiowa wzgledem prostej o i ogolnie O, to obrét o kat o w kierunku
12



przeciwnym do kierunku ruchu wskazowek zegara ($rodek obrotu to $rodek ukiadu wspot-
rzednych):

\Z

Izometria trojkata rownobocznego jest jednoznacznie wyznaczona przez jej wartosci na wierz-
chotkach {A, B,C}. Czyli, aby policzyé¢ np. Sy o O% wystarczy zobaczy¢ na co przechodza
wierzchotki. Liczymy S4 o Ogl:

027\' 27r 271'
A B ¢ BES 0 B, OB A A
Czyli dostajemy:
Sy o0 OTW = Sp.
Liczymy teraz O%w oSx:
OQﬂ. 0271— 0271'
A, A2 g A o2 A A BT ¢
Dostajemy:
02% o SA = Sc.

W szczegdlnosci:
SAOOQ]TTF 7502% OSA.

czyli grupa D3 nie jest przemienna. W ten spos6b mozna napisa¢ calyg tabelke grupy Dj.

Ogolnie dla n > 3 definiujemy D, jako grupe izometrii n-kata foremnego. Sktada sie ona
z n obrotow (identycznos$é rozumiemy jako obrot o 0 stopni) oraz n symetrii osiowych. Czyli
D,, jest grupa nieprzemienng o 2n elementach, co daje nam kolejng serie grup skonczonych.
Popatrzmy na Dy:

1
L]
| ]

=~ D [ C &+

" - -
- 1 -
- rd
- n -
- n -
b ] -
b -
~ L] -
- " o
- -
~ 1 »
b3 | ] -
™ i -
L *
- LI
Y 2
r Ll
P
J' n q\
- L] ~
- i .
" -
& L] LY
- H ~
- W -
* b
- [ ] -
.!’ i \\
- 1 - I
| P .14
E A [ .
" H .

| ]
1
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Mamy:
D4 = {id7O%7O7TJ 03?7'7 Sll7Sl27 Sl37 Sl4} .

Znowu wartosci tych izometrii sa wyznaczone na wierzchotkach {A, B, C, D}, czyli tatwo jest
napisac tabelke Dj.

Ogoblne zasady

e Zlozenie obrotu z obrotem jest obrotem.
e Zlozenie symetrii osiowej z symetrig osiowa jest obrotem.
e Zlozenie obrotu z symetria osiowa (i odwrotnie) jest symetria osiowa.

Rozwazmy jeszcze jedna grupe izometrii. Niech W bedzie prostokatem nie bedacym kwadratem:

Mamy:
K4 = IZO(W) = {ld, Oﬂ-, Sll, Slg} .

Napiszmy tabelke Kj:

Grupe K4 nazywamy grupg Kleina.

Chcemy teraz poréwnywac ze soba grupy.
Przyklad 2.8. Dwa przyktady przed ogolng definicjg.
(1) Rozwazmy funkcje n-tej reszty:
o Lo — 1y .
Dla dowolnych a,b € Z mamy:
nla—ra(@), nlb—ra®) = wlla+b—(rala) +ra(d))].
Czyli dostajemy:
rn(a+0) =1, (rn(a) +1,(0) = ro(a) +n ra(b),

czyli funkcja r,, przenosi dzialanie z grupy (Z,+) na dzialanie w grupie (Z,, +,).
14



(2) Ponumerujmy wierzcholki kwadratu przez zbior {1,2,3,4}. Definiujemy nastepujaca
funkcje:

U:Dy— Sy, U(f) = flu2says

gdzie f|p1234; to obciecie funkeji f do zbioru wierzchotkow {1,2,3,4}. Wtedy dla
kazdych f,g € Dy mamy:

U(fog)=V(f)o¥(g),

gdzie pierwsze ,,0” to sktadanie izometrii (dzialanie w grupie D,), a drugie ,,0” to skta-
danie permutacji (dzialanie w grupie Sy).

Definicja 2.9. Niech (G, ), (H,*) beda grupamii f : G — H.
(1) Funkcja f jest homomorfizmem, gdy:

V1,90 € G flgr-92) = f(91) = f(g2).
(2) Funkcja f jest izomorfizmem, gdy f jest homomorfizmem i jest bijekcja.

Przyktlad 2.10. (1) Funkcja n-tej reszty:
Tn: (Zy+) = (Zin, +0)

jest homomorfizmem.
(2) Uogolniajac homomorfizm obciecia ¥ : Dy, — Sy, dla kazdego n > 3 mamy:

v,: D, — 5,

funkcje obciecia izometrii n-kata foremnego do zbioru wierzchotkow {1,2,...,n}. Po-
niewaz kazda izometria z D,, jest wyznaczona przez wartosci na wierzchotkach, funkcja
v, jest ,1-17. Mamy:

tak wiec funkcja W3 : D3 — S5 jest izomorfizmem.
(3) Rozwazmy funkcje:
J iR = Rso, f(x) =2%.
Latwo zauwazy¢, ze Rsg < (R\{0},-), czyli (R0, -) jest grupa. Mamy:
Vz,yeR flz+y)=2""=2"2" = f(2)f(y).

Czyli funkcja f jest homomorfizmem z grupy (R, +) w grupe (R, -). Funkcja f jest
tez bijekcja, czyli jest izomorfizmem.

Uwaga 2.11. Jesli f : (G,:) — (H,*) jest izomorfizmem, to dzialanie x jest dzialaniem
indukowanym przez dzialanie - poprzez funkcje f. Stad algebraiczne wlasnosci dziatan - i * sa
takie same.

Definicja 2.12. Jesli dla grup (G,-), (H, %) istnieje izomorfizm
f : (Gv) - (H7*)a

to mowimy, ze grupy (G, -) i (H, *) sa izomorficzne, co oznaczamy (G, -) = (H,*) lub po prostu
G>~H.

Uwaga 2.13. Z Uwagi grupy izomorficzne maja te same wtasnosci algebraiczne, np. jesli
G = H i G jest przemienna, to H jest tez przemienna.
Przyklad 2.14. (1) Wiemy, ze

D3 = 53.
15



(2) Latwo zauwazy¢, ze

So =7y

i ze izomorfizmem jest funkcja:

Sg — ZQ, id — 0, (

co wynika np. z poréwnania tabelek:

1
2

2
1

)Hl,

o |id| o +9 011
id|id| o 0 [0]1
o|olid 1110

(3) Wiemy tez, ze:

(R, +) = (R>o, -)-
Ten ostatni izomorfizm ,przenosi dodawanie na mnozenie”. Ale dodawanie jest tatwiejsze
niz mnozenie! Stad wzieta si¢ idea dzialania suwaka logarytmicznego, gdzie dzieki
dodawaniu (przesuwaniu) mozemy tez mnozy¢ uzywajac odpowiedniej skali logarytmicz-

nej, ktora odpowiada powyzszemu izomorfizmowi.
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3. GRUPY CYKLICZNE I GRUPY PERMUTACJI
Zacznijmy od opisu dwoch konkretnych sytuacji.
Przyklad 3.1. (1) Niech:
{0,2,4,6} < Zs

to beda wszystkie wielokrotnosci 2 w grupie (Zsg, +s). Grupa Zs jest skonczona, wiec
jest skonczenie wiele tych wielokrotnosci:

2, 24g2=4, 2452452=06, 2452452452 =0.
(2) Niech:
372 :={...,—-6,-3,0,3,6,...} ={3k | k€ Z}
to beda wszystkie wielokrotnosci 3 w grupie (Z, +). Tez mamy:
32.< 7.
Uogolnimy te przyktady na przypadek dowolnej grupy.
Twierdzenie 3.2. Niech G bedzie grupg © g € G. Wtedy podzbior
{¢" | neZ} CGE
jest nagmniejszq podgrupg G zawierajgeq element g.
Dowdd. Uzywamy wlasnosci potegowania w grupach (Twierdzenie [2.3)).
Pokazemy najpierw, ze:
{¢" | neZ} <G.
(i) Dla kazdych i, j € Z mamy:
g9 =g €{g" | neZ}
czyli zbior {g" | n € Z} jest zamkniety na dzialanie z grupy G.
(ii) e = ¢° € {¢g" | n € Z}, czyli element neutralny nalezy do naszego podzbioru.
(ili) Dla dowolnego g™ € {¢" | n € Z} mamy:
(") =g " elg" IneZ}.
Stad faktycznie {¢" | n € Z} < G.
Pokazujemy teraz ,najmniejszos¢” {¢" | n € Z} < G.
Wezmy dowolng H < G, taka ze g € H. Mamy pokazaé, ze:
{¢" |neZ} CH.

Rozwazamy trzy przypadki.
Jesli n > 0, to:

poniewaz g € H i H jest podgrupa G.
Jeslin=0,to g =ec€ H.
Jesli n < 0, to:
n —n -1

g" = (g ) € H,
poniewaz —n > 0, tak wiec z rozwazonego powyzej przypadku mamy ¢~ " € H i wtedy (ponie-
waz H < G) dostajemy (¢7")~' € H. O
Definicja 3.3. Niech G bedzie grupa i g € G.

(1) Definiujemy:
(9) ={9" | ne€Z}.

(2) Grupe G nazywamy cykliczng, gdy istnieje g € G, takie ze G = (g).
17



Przyktlad 3.4. (1) Niech G = S3ig= <

)
(s 1))t

3
1
3 1 2
17\ 3 1
(2) Niech G =71 g = 3. Wtedy:
(3y=37Z={3k | k€Z}.
(3) Niech G =Zg i g = 2. Wtedy:

DN W

1 2
2 3
1 2
2 3

)}

(2) ={0,2,4,6}.
(4) Niech G =7Z, i g = 1. Wtedy:
<1> =2y,
Czyli grupa Z.,, jest cykliczna.
(5) Niech G =71 g =1. Wtedy:
(1) =7.

Czyli grupa Z jest cykliczna.

Zobaczymy teraz, ze Z, i 7 to jedyne grupy cykliczne z dokltadnoscia do izomorfizmu.
Potrzebny nam jest nastepujacy pomocniczy wynik.

Lemat 3.5. Niech G bedzie grupg, g € G i zatézmy, ze G = (g) (czyli G jest cykliczna). Jesli
dla pewnego k > 0 mamy g* = e, to wtedy |G| < k.

Dowdd. Wystarczy pokazaé, ze:
(9) S {d"g"s ")

(przy zalozeniu ¢g* = ). Wezmy dowolny element g™ € (g) (m € Z). Dzielimy z reszta m przez
ki dostajemy | € Z,r = ri(m) € Zy, takie ze:

m =kl +r.
Wtedy otrzymujemy:

m T 'S l ' 'S 'S 'S —
gr=g"" =g =(¢") g =¢€g =eg" =g €{,g"....d" "},
poniewaz r € Zj ={0,1,...,k — 1}, co konczy dowod. O

Twierdzenie 3.6. Zatozmy, ze G jest grupq cyklicang. Wtedy mamy:
(1) jesli G jest skoriczona, to G = Z,, dla pewnego n > 0;
(2) jesli G jest nieskoriczona, to G = 7.

W szczegdlnosci, kazda grupa cykliczna jest przemienna.

Dowdd. Wezmy g € G, takie ze G = (g). Rozwazamy dwa przypadki.

Przypadek 1: G jest skonczona i |G| =n
Definiujemy funkcje:
f:7Z,—G, f(r)=4g"

Udowodnimy w czterech krokach, ze f jest izomorfizmem.
Krok 1: f jest ,1-1”
Weimy i, j € Zy, takie ze i < jizalézmy nie wprost, ze f(i) = f(j). Dojdziemy do sprzecznosci.
Mamy:

g =r@)=r10)=¢"
Mnozac te réwnosé obustronnie przez ¢~ otrzymujemy:

e=9"=¢g'g =4g""
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Ale 0 < j —i < noraz G = (g), tak wiec z Lematu [3.5] otrzymujemy:

sprzeczno$¢, poniewaz |G| = n.
Krok 2: f jest ,na”
f jest roznowartosciowa (Krok 1) funkcja ze zbioru n-elementowego w zbiér n-elementowy, tak
wiec f jest na, bo n jest skoriczone.
Krok 3: ¢g" =¢
Z Kroku 2, mamy:

G={¢"g"....d" '},
tak wiec istnieje r € Z,, takie ze g" = ¢". Jesli r > 0, to postepujac jak w Kroku 1, otrzymujemy
g"~" =01 znowu z Lematu [3.5] mamy:

|G| <n—1r<n,

sprzecznosc.
Krok 4: f jest homomorfizmem
Weimy 1,7 € Z,. Wtedy istnieje [ € Z, taki ze:
itng=ra(i+j)=1i+j+In
Liczymy:
. . itng _ ititn _ iogomNE i Gl iGq G e gl
flitag) =g =g" " =g'g' (¢") = g'de =g'de=g'qg’ = f(I)f(j).
Krok 3

7 Krokow 1-4 otrzymujemy, ze f jest izomorfizmem.

Przypadek 2: G jest nieskoriczona
Ten przypadek jest znacznie tatwiejszy. Definiujemy funkcje:

f:Z—=G, fG)=4d"

Udowodnimy, ze f jest izomorfizmem.
Poniewaz

G=(9)={g' i€},
tak wiec f jest ,na”.
Latwo pokazujemy, ze f jest homomorfizmem:

Vi, j €7 fli+)=9""=3g¢ = f@)f())-

Pozostaje pokazac, ze f jest ,1-17. Wezmy i, j € Z, takie ze i < j. Jesli f(i) = f(j), to tak jak
w dowodzie Przypadku 1, dostajemy ze ¢~ = e, czyli z Lematu [3.5] |G| < j —i jest skoiiczona,
sprzecznosc. [
Uwaga 3.7. Zauwazmy, ze z dowodu Twierdzenia wynika ze dla G = (g) mamy:

(1) jesli G jest skonczona i |G| = n, to n jest najmniejsza liczbg dodatnia, taka ze g™ = e;
(2) jesli G jest nieskoriczona, to dla kazdej n > 0 mamy ¢" # e.

Definicja 3.8. Niech G bedzie grupa i g € G. Definiujemy rzqgd g, oznaczany ordg(g), jako
najmniejsze n > 0, takie ze ¢" = e. Jesli takie n > 0 nie istnieje, to definiujemy ordg(g) := oo.
Czesto piszemy ,ord(g)” zamiast ,,ordg(g)”.

Z Uwagi natychmiast wynika nastepujace:
Twierdzenie 3.9. Jesli G jest grupg i g € G, to wtedy mamy:

orda(g) = [(9)],

czyli rzqd elementu g, to moc najmniejszej podgrupy zawierajgcej g.
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Whiosek 3.10. Jesli grupa G jest skoniczona © g € G, to rzqd g jest tez skoniczony. Niedtugo
zobaczymy, ze:

ordg(g) dzieli |G|.

Uwaga 3.11. Twierdzenie moéwi, ze rzad elementu g to moc grupy (g). Dlatego tez
czesto na moc dowolnej grupy G moéwi sie rzqd G.

Przyktlad 3.12. (1) Mamy ordg, (2) = 4, poniewaz:
2+82:47é0, 2+82+82:67&07 2+82+82+82:0
Mamy tez:
248245 +52=0,
8?gzy
ale ordy, (2) # 8 (uwaga, to czesty blad!), bo 8 nie jest najmniejsza n > 0, taka ze:
248245 +52=0.

n razy

(2) Mamy:
ordg, <é ?) =2.
(3) Mamy:
1 2 3
ord53<2 3 1 ) = 3.
(4) Mamy:
ordz(1) = oo,
a nawet:
VkeZ\{0} ordz (k) = oo.
(5) Mamy:
ordz, (1) = n.

(6) Jesli G jest grupa i g € G, to wtedy:
ord(g) =1 & g=e.
Teraz pokrotce omowimy sytuacje, gdy zamiast {g} mamy dowolny podzbior A grupy G.

Definicja 3.13. Niech G bedzie grupa i A C G. Wtedy (A) oznacza najmniejsza podgrupe G
zawierajaca A. Jesli (A) = G, to mowimy ze G jest generowana przez A, lub ze A jest zbiorem
generatorow G. Dla gy, ..., g, € G, zamiast ({g1,...,9n}) piszemy (g1,..., gn)-

Pomijamy dowo6d nastepnego twierdzenia.

Twierdzenie 3.14. Niech A, G bedq jak wyzej oraz g € G. Wtedy g € (A) wtedy i tylko wtedy,
gdy:
day,...,a, € A Fky,... .k, €Z g:alfl...aﬁ".
Przyktad 3.15. (1) Mamy:
Dy = (0z, ).
gdzie S jest dowolng symetria osiowa z D3, poniewaz:
OQ%OO%W :O%w, O%ﬁ 0S=5, So00x=25",

gdzie S’, S” to dwie pozostale symetrie osiowe z Dj.
(2) Podobnie mamy dla dowolnego n > 3:

Dn:<2002;,5>.



(3) Mozna, pokaza¢ ze:

k1 15 kn In
1 1)1 0 1 1] (1 0
Yk iy ko, Ly € Z\{0} {0 J [1 J [0 1] [1 1] # 1.

Czyli potrzeba wszystkich tego typu iloczynéw aby dostac:

(o 1)1 9]) <cram

Grupy permutacji

Chcemy opisa¢ kazda permutacje za pomoca pewnych prostych permutacji.

Przyktlad 3.16. (1) Niech:

s (12345
TR =19 3 5 4 1

Powiemy, ze o jest cyklem (definicja pozniej).

'-1 "j .
\-«.$</\J

(2) Niech:

s (12 3 4
TEP T=1 9 1 4 3

Tutaj 7 nie jest cyklem.

Aby zdefiniowa¢ pojecie cyklu, musimy najpierw zdefiniowaé¢ pojecie no$nika permutacji,
czyli zbioru tych “istotnych” punktow.
Definicja 3.17. Niech o € S,,. Wtedy nosnik o to:
X, ={ie{1,2,...,n} | o(i) #i}.
W Przykladzie [3.16[(1) mamy:
X, =1{1,2,3,5} (n=>5).
W Przyktadzie [3.16/(2) mamy:
X, =1{1,2,3,4 (n=4).
Definicja 3.18. (1) Niech o € S,,. Mowimy, ze o jest cyklem dtugosci k, gdy | X,| = k oraz
mozemy przedstawic:
Xo‘ = {ila i27 v 72.145}7
tak ze:
U(il) = ig, O'(ig) = ig, e ,O'(Z-kfl) = ik, O'(Zk) = ’il.
Taki cykl zapisujemy:

0 = (il,ig, ce ,Zk)
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(2) Cykl dlugosci 2 nazywamy transpozycjg.
Uwaga 3.19. Zapis z Definicji [3.18|(1) nie jest jednoznaczny, np. mamy:
(1,2) = (2,1).
Przyklad 3.20. Mamy:
Sy ={id, (1,2)}, S5 ={id,(1,2),(1,3),(2,3),(1,2,3),(1,3,2)}.
Czyli grupy Sy i S5 sktadaja sie z samych cykli! Ale wiemy, ze np.

1 2 3 4
( 2 1 4 3 ) € 5
nie jest cyklem. Zauwazmy, ze:

(3773)=02e60

czyli ta permutacja jest ztozeniem ,roztacznych” cykli.

Definicja 3.21. Niech 0,7 € S,,. Powiemy, ze o i 7 sa roztgczne, gdy:
X, NX, =0,

czyli gdy nosniki o i 7 sa roztaczne.

Przyktad 3.22. Permutacje (1,2) i (3,4) sa roztaczne. Zauwazmy, ze:

(1,2)0(3,4)2(; f i §)=(3,4)o(1,2).

Ponizej uogélniamy obserwacje z Przyktadu [3.22

Twierdzenie 3.23. Jesli 0,7 € S, sq rozgczne, to mamy:

OO0OT =TOGO.

Dowdd. Wezmy dowolne ¢ € {1,2,...,n}. Mamy pokazaé, ze:

o(7(i)) = (o (7).
Bedziemy korzystali z tatwej do sprawdzenia obserwacji, ze (X, ) = X, (czyli tez 7(X,) = X,).
Rozwazamy 3 przypadki.

Przypadek 1: i € X,
Pokazemy, ze:

o(7(i)) = o(i) = 7(0(i)).
Z roztacznosci o i 7 dostajemy ¢ ¢ X, stad 7(i) = 4, czyli mamy:
o(7(i)) = a(i).
Poniewaz i € X,, tak wiec z powyzszej obserwacji mamy o(i) € X,. Z rozlacznosci o i 7
dostajemy o(i) ¢ X,. Czyli mamy:
7(o(i)) = o(2).

Przypadek 2: 1 € X,
Podobnie jak Przypadku 1 pokazuje sie:

Przypadek 3: i ¢ X, U X,
Podobnie jak Przypadkach 11 2 pokazuje sie:
o(r(i)) =i =7(0(i)),

co konczy dowdd. 0
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Przyklad 3.24. Obliczenia na permutacjach.

(1) Wezmy:
(12345 (12345
91=\9 31 54) 272154 3)

To jest zapis w postaci tabularycznej badZz dwuwierszowej.
(2) Mamy tez zapis w postaci iloczynu cykli roztacznych

12345
"1:(2 315 4):(172’3)0(4,5),
5

02:@ . g 3>:(1,2)o(3,5).

Bedziemy zwykle pisac¢ np. ,,(1,2)(3,5)” zamiast ,,(1,2) o (3,5)".
(3) Mnozenie permutacji.
(a) W postaci tabularycznej:

12345
72°01={ 15 2 3 4 )

o1 02

145221, 24253535 3585152 44553, 555454,

o

(b) Jako iloczyny cykli rozlacznych:
(1,2)(3,5)(1,2,3)(4,5) = (2,5,4,3).
Oba wyniki sie zgadzaja:

(1

(4) Permutacje odwrotne.
(a) W postaci tabularycznej (pierwsza rowno$é¢ to ,zamiana wierszy” a druga to
sprzestawienie”):

2 345
= 5 3 4>=(2,5,4,3).

L (1 2345\ [(23154\ (12345
1=\l 23154 ~\12345) \312%54)"
(b) Jako iloczyny cykli roztacznych:
Ogodlnie dla cykli mamy:
(ilai% s 7ik—17ik)_1 = (ikaik—la s 7i27i1)-

Poza tym ponizej korzystamy z przemiennosci cykli roztacznych:
oyt =((1,2,3)(4,5) 7 = (1,2,3)71(4,5) 7 = (3,2,1)(5,4) = (1,3,2)(4,5).
Oba wyniki sie zgadzaja:

1 2 3 4 5
(3 1 2 5 4):(173a2)(475)'

(5) Podnoszenie do poteg.
Jest zdecydowanie tatwiej podnosi¢ do poteg przy zapisie w postaci iloczynu cykli
rozlacznych, np. (ponownie korzystamy z przemiennosci cykli roztacznych):

ol = ((1,2,3)(4,5))" = (1,2,3)1°(4,5)'° = (1,2,3).

Zauwazmy tutaj, ze transpozycja (cykl dtugosci 2) ma rzad 2, cykl dtugosci 3 ma rzad
3 i ogdlnie cykl dlugosci k£ ma rzad k.

Aby uzywac¢ Przyktadu potrzebujemy nastepujacego wyniku.

Twierdzenie 3.25. Kazda permutacja ma przedstawienie w postacit iloczynu cykli roztgcznych.
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Idea dowodu. Wezmy o € S, i dowolny ¢ € X,. Patrzymy na cykl:

T = (i, o(i),0?(i), . .. ,akil(i)) :
gdzie
k= min{n | 6" (i) = i}.
Jesli 0 = 7, to twierdzenie jest juz udowodnione. Jesli nie, to bierzemy j € X, \ X, i tworzymy
kolejny cykl (roztaczny z 7) postaci:

7= (37 a(4),0%(5), ... ,Jl_l(i)) .
Jesli 0 = 7o 7', to twierdzenie jest udowodnione. Jesli nie, to kontynuujemy... U
Twierdzenie 3.26. Kazdy cykl rozktada sie na iloczyn transpozycyi.
Dowaod. Mamy:

(i1, 9, - i—1,1k) = (i1,12)(i2,13) . - . (Tp—1, k)
O
Z ostatnich dwoch twierdzen natychmiast wynika:
Whniosek 3.27. Kazda permutacja rozktada sie na iloczyn transpozycji.
Pozostaly nam do omoéwienia ostatnie pojecia dotyczace permutacji.
Definicja 3.28. Niech 0 € S, oraz 1 <1 < 7 < n.
(1) Pare (i,7) nazywamy inwersjq o, gdy o(i) > o(j).
o)) afi)
| inwersja
j
(2) Znak permutacji o, oznaczany sgn(o), to:
Sgn(a) = (_1)liczba inwersji o
(3) Mowimy, ze o jest parzysta, gdy sgn(o) = 1, tzn. 0 ma parzyscie wiele inwersji.
(4) Mowimy, ze o jest nieparzysta, gdy sgn(o) = —1, tzn. ¢ ma nieparzyscie wiele inwersji.

Fakt 3.29. Jesli o jest transpozycjq, to o jest nieparzysta.

Dowdd. Niech o = (i, j), gdzie i < j oraz niech r := j — i — 1. Powyzszy rysunek pokazuje, ze
o ma 2r + 1 inwersji, czyli nieparzyscie wiele. 0

Pomijamy dowod nastepnego wyniku.
Twierdzenie 3.30. Dla dowolnych o, € S,, mamy:
sgn(o o 1) = sgn(o) - sgn(7).
Z Faktu [3.29i Twierdzenia [3.30] otrzymujemy:

Twierdzenie 3.31. Dla dowolnej o € S,, mamy, ze o jest parzysta wtedy i tylko wtedy, gdy w
rozktadzie o na transpozycje wystepuje parzyscie wiele transpozycyi.
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i+1 i+2 j-1

Z dowodu Twierdzenia [3.26| oraz z Twierdzenia |3.31] otrzymujemy:
Whniosek 3.32. o Cykl dltugosci parzystej jest permutacjq nieparzystq.
o Cykl dlugosci nieparzystej jest permutacjq parzystaq.
Uwaga 3.33. (1) Rozklad permutacji na cykle roztaczne jest jednoznaczny z doktadno-

Scig do permutacji czynnikow, np.:
(1,2)(3,4) = (3,4)(1,2).

(2) Rozklad permutacji na transpozycje jest bardzo niejednoznaczny, ale jednoznaczna
jest (tylko) parzystosé ilosci transpozycji w rozkladzie, np.:

(1,2) = (1,2)(2,3)(2,3).
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4. WARSTWY, TW. LAGRANGE’A I ZASTOSOWANIA
Na poczatek kilka nazw.

Definicja 4.1. (1) Grupa trywialna to grupa G = {e} skladajaca sie tylko z elementu
neutralnego.
(2) Jesli G to grupa, to podgrupe {e} < G nazywamy podgrupq trywialng.
(3) Jesli A C B (A to podzbior B), to podzbior A jest wtasciwy, gdy A # B.
(4) Podobnie, jesli H < G (H to podgrupa G), to podgrupa H jest wita$ciwa, gdy H # G.
Ustalmy grupe G i podgrupe H < G. Teraz wazne pojecie, z ktorym czesto studenci maja
ktopoty.
Definicja 4.2. Niech a € G.
(1) Zbior postaci:
aH :={ah | h € H}
nazywamy warstwg lewostronng elementu a wzgledem podgrupy H w grupie G.
(2) Zbioér postaci:
Ha:={ha | he H}

nazywamy warstwg prawostronng elementu a wzgledem podgrupy H w grupie G.
Przyklad 4.3. (1) G=7,H=3%7,a=1.
Wtedy warstwy zapisujemy addytywnie:
1+3Z={1+4+3k| keZ}.

Czyli powyzsza warstwa lewostronna sktada sie z tych liczb catkowitych, ktore daja
reszte 1 przy dzieleniu przez 3. Mamy tez:

3Z+1={3k+1|keZ}={1+3k | keZ}=1+3Z.

Czyli warstwa lewostronna 1 wzgledem 37 w grupie Z pokrywa sie z warstwa prawo-
stronng 1 wzgledem 37 w grupie Z. Tak jest zawsze dla grup przemiennych.
Popatrzmy teraz na inne warstwy 37 w Z.:

0+3Z={0+3k|keZ}=3Z,
2+3Z={2+3k | keZ}.
Czyli widzimy, ze Z jest roztacznag suma warstw podgrupy 3 Z. Zobaczymy niedlugo, ze
nie jest to przypadek.
(2) G =7y, H=(2)=1{0,2,4,6,8}, a = 1.
Wtedy mamy:
1+1040,2,4,6,8} = {1,3,5,7,9}.
(3) G = 537 H = <(172>> = {1d7 (172>}7 a = (173)
Wtedy mamy:
(1,3){id, (1,2)} = {(1,3)id, (1,3)(1,2)} = {(1,3), (1,2,3)},
W tej sytuacji widzimy, ze:
(1,3){id, (1,2)} # {id, (1,2)}(1,3),

czyli warstwa lewostronna rozni sie od warstwy prawostronne;j!
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Dla H < G wlasciwa intuicja jest wyrazona nastepujacym rysunkiem (podobnie dla warstw

prawostronnych):
¢

d, H
o, H

| |

Czyli G ma by¢ roztaczna suma warstw lewostronnych H oraz rozlaczna suma warstw prawo-
stronnych H. Dazymy do pokazania, ze ta intuicja jest wlasciwa caly czas zaktadajac H < G.

Twierdzenie 4.4. Dowolne dwie warstwy lewostronne H w G sq sobie réwne lub sq roztgczne.
Analogicznie dla warstw prawostronnych.

Dowdd (dla warstw lewostronnych). Wezmy a,b € G. Mamy pokaza¢, ze
aHNbVH =( lub aH =bH.
Zatozmy, ze aH NbH # (). Pokazemy, ze aH = bH. Poniewaz aH NbH # (), tak wiec mozemy
wziaé ¢ € aH NbH. Wtedy istnieja hy, ho € H, takie ze:
ah1 =C= bhg
Pokazujemy teraz, ze aH = bH.
Dla dowodu inkluzji ,,C”, wezmy dowolne g € aH. Chcemy pokazaé¢, ze g € bH. Poniewaz
g € aH, wec istnieje h € H, takie ze g = ah. Wtedy mamy:
g =ah = ahy hy'h = bhy h{'h € bH,

— =2

bo hyhi*h € H (poniewaz H jest podgrupa G).

Inkluzje ,,0” pokazujemy analogicznie zamieniajgc rolami a i b. U

Whiosek 4.5. G jest sumqg roztgczng warstw lewostronnych. Analogicznie dla warstw prawo-
stronnych.

Dowdd. Poniewaz kazdy g € G nalezy do pewnej warstwy H (g € gH), tak wiec dostajemy
teze dzieki Twierdzeniu 4.4 U

Musimy sie teraz nauczy¢ rozpoznawacd, czy dane dwie warstwy sa réwne czy tez roztaczne.
Stuzy temu nastepujacy wynik.

Twierdzenie 4.6. Zaléimy, ze a,b € G. Wtedy mamy:

(1) aH=bH < abeH < blacH;
(2) Ho=Hb & ab'eH <& ba'eH.
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Dowdd (tylko dla (1)). Z Twierdzenia [4.4] otrzymujemy (poniewaz b € bH):
aH=VbH < bcaH < ((BheH)b=ah < a'beH.
7 drugiej strony:
Vge G geH & g¢'ed,
czyli dla ¢ = a~'b otrzymujemy:
albe H < bla= (a_lb)fl € H,
co koriczy dowod (1). O

Przyklad 4.7. (1) Mamy:
1437 =4+37,

poniewaz:
4-1=3€3%7Z.
(2) Mamy:
14+3%Z #2437,
poniewaz:

2—-1=1¢3%7Z.
Teraz idziemy krok dalej w abstrakc;ji.

Definicja 4.8. Niech G/H oznacza zbiér wszystkich warstw lewostronnych H w G:
G/H:={gH | g € G},
czyli G/H to pewien zbior podzbioréow G.
Podobnie H\G oznacza zbior wszystkich warstw prawostronnych H w G:
H\G:={Hg | g € G}.
Bedziemy sie koncentrowa¢ na zbiorze G/H.
Przyklad 4.9. (1) Mamy:
7/37 ={0+3%7,1+3%7,2+ 37},
——
3%
czyli sg 3 warstwy.
(2) Mamy:
Z10/{0,2,4,6,8} = {{0,2,4,6,8},{1,3,5,7,9}},
czyli sa 2 warstwy.
(3) Mamy:

Ss/{id, (1,2)} = {{id, (1,2)},{(1,3),(1,2,3)},{(2,3), (1,3,2)} },
czyli sa 3 warstwy.

Czemu w ogole rozwazamy G/H? Idea: chcemy wydzieli¢ G przez podgrupe H i dostac
znowu grupe (to nie zawsze sie uda, o czym niedlugo). Podobnie jak mamy dwie liczby n oraz
m 1 chcemy wydzieli¢ n przez m i dostac¢ .

Na poczatek zauwazmy:

Twierdzenie 4.10. Mamy:
|G/H| = |H\G],
czyli zbior warstw lewostronnych H w G jest rownoliczny ze zbiorem warstw prawostronnych H

w G,
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Szkic dowodu. Dla dowolnego podzbioru A C G definiujemy:
Ahi={at | ac A
Wtedy dla gH € G/H mamy:
(gH) ' =Hg™' e H\G.
Definiujemy funkcje:
G/H > gH — (¢gH) ' = Hg"' € H\G
i tatwo zauwazy¢, ze jest to bijekcja. 0]

Definicja 4.11. Indeks H w GG, oznaczany [G : H|, to jest moc zbioru G/H (rownowaznie moc
zbioru H\G) warstw lewostronnych H w G.

Zmierzamy do poréwnania: |H|, |G| i [G : H|. Najpierw mamy nastepujace:
Twierdzenie 4.12. Dla kazdego g € G mamy:
lgH| = |H| = [Hyg],
czyli wszystkie warstwy H w G sqg réwnoliczne.

Szkic dowodu. Mamy funkcje:
H>hw— ghegH

i tatwo zauwazy¢, ze jest to bijekcja. 0
Mozemy teraz udowodni¢ nastepujacy, najwazniejszy tutaj, wynik.
Twierdzenie 4.13 (Twierdzenie Lagrange’a). Niech G bedzie grupg skoriczong i H < G. Wtedy
mamy:
G| =[G - H] - |H|.
W szczegolnosci dostajemy:
HI ]G], G H] ]G]

Czyli:

o 1zqd podgrupy dzieli rzqd grupy;

o indeks podgrupy dzielt rzqd grupy.
Dowdd. Niech n := |G : H|. Wiemy, ze G jest rozlaczna suma warstw H (Wniosek [4.5), tak
wiec istnieja aq, as, ..., a, € G, takie ze:

G:alHUaQHU...UanH.
Wtedy dostajemy:
|G| = |aH| + |axH|+ ...+ |a,H| =n-|H| =[G : H|-|H|,

gdzie pierwsza rownos¢ wynika z rozlacznosci warstw i druga réwnos¢ wynika z Twierdzenia

412 OJ
Whiosek 4.14. Niech G bedzie grupg skonczong rzedu k i a € G. Wiedy mamy:
ord(a) | k, d"=e.
Czyli rzqd elementu dzieli rzqd grupy.
Dowdd. Wiemy, ze (Twierdzenie [3.9):
ord(a) = [{a)],

czyli ord(a) | k z Twierdzenia Lagrange’a.
Na Konwersatorium pokazujemy, ze jeéli ord(a) | k, to a* = e co daje druga czes¢ dowodzo-
nego wyniku. U

Potrzebujemy jeszcze jednej serii grup skonczonych.
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Definicja 4.15. Dla n > 0 definiujemy:
A, ={o €S, | o jest parzysta}.

Na ¢wiczeniach pokazujemy, ze:
A, < S,.

Zauwazmy, ze dla n > 1 mamy:
n!
=7

czyli:
|As| =3, [A4l =12, |A5|=60,...

Uwaga 4.16. (1) Z Wniosku [4.14] wiemy ze rzad elementu dzieli rzad grupy, czyli np. nie
ma elementu rzedu 4 w S3, bo

416 =153
Ale implikacja odwrotna nie jest prawdziwa, bo np.
414 =Ky,

ale w K, nie ma elementu rzedu 4.
(2) Z Twierdzenia Lagrange’a, wiemy ze rzad podgrupy dzieli rzad grupy stad tez np. nie
ma podgrupy rzedu 4 w Ss.
Ale implikacja odwrotna znowu nie jest prawdziwa, bo np.

6|12 =|A4,
ale mozna pokazac, ze w A4 nie ma podgrupy rzedu 6.

Zanim przejdziemy do zastosowan, poznamy jeszcze jedng serie przyktadéw grup. Dlan > 2,
wiemy ze -, jest dzialaniem tacznym i przemiennym na Z,, ktére ma element neutralny 1,
ale 0 nie ma elementu odwrotnego wzgledem -,,. Réwniez np. 2 nie ma elementu odwrotnego
wzgledem -4. Definiujemy:

7y ={k€Z, | NWD(k,n) = 1}.
Na ¢wiczeniach pokazujemy, ze -, jest dzialaniem na Z i ze (Z),-,) jest grupa przemienna.
Jesli p jest liczba pierwsza, to oczywiscie mamy:
Z,:={1,2,...,p—1}.
Mozemy teraz udowodni¢:

Twierdzenie 4.17 (Malte Twierdzenie Fermata). Zatdzimy, ze a € Z, p jest liczbg pierwszq i
p1a. Wtedy mamy:
a?'=1 (mod p).

Dowdd. Niech r := ry(a). Wtedy mamy:

a? ' =Pt (mod p).

Czyli mozemy przyjaé, ze:
a=1¢€y.
Poniewaz p 1 a, tak wiec a # 0, czyli a € Z.
Wiemy, ze | Z, | = p — 1. Z Wniosku , dostajemy ze:

aop...pa=1 W Z,,.
———
p — 1 razy
Czyli mamy:
@ '=a,....pa (modp)=1 (mod p),
wZ p—1razy w Zp
co konczy dowdd. 0
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Uwaga 4.18. Dzieki Matemu Twierdzeniu Fermata mozemy latwo liczy¢ reszty typu r,(n™),
gdzie p to liczba pierwsza i m,n € Z, poniewaz:

e n mozemy zastapi¢ przez r,(n) (tu nic nie uzywamy);
e m mozemy zastapic¢ przez r,_1(m) (tu uzywamy Malego Twierdzenia Fermata).

Przyklad 4.19. Mamy:
17 (172165) =T17 (25) s

poniewaz 17 jest liczba pierwsza oraz:
T17(172> = 2, 7’16(165) = 9.

A potem liczymy:
rir (172'9°) = ri7 (2°) = r7(32) = 15.

Zmierzamy do jeszcze jednego zastosowania w teorii liczb.
Twierdzenie 4.20 (Twierdzenie Wilsona). Jesli p jest liczbq pierwszq, to mamy:
(p—1D!'=-1 (mod p).
Przed dowodem potrzebujemy dwoch lematow.

Lemat 4.21. Niech (A, +) (notacja addytywna!) bedzie skoriczong grupg przemienng. Uporzqd-
kujmy elementy A, w taki sposdéb ze:

A=A{a,...,ak a1,y .., 05},
gdzie ay, . ..,a to wszystkie elementy a € A, takie ze a + a = 0. Wtedy mamy:
a+...+a, =a1+ ...+ ag.
Dowaod. Mamy, ze:
Vae A a+a=0 <& a=-—a.

Liczymy teraz:

a1+...+an:a1+...+a;3+ak+1+...+an.

a;a aFt—a
Wtedy mamy:
p+1 + ... +a, =0,
poniewaz dla kazdego a € {ay41,...,a,} zachodzi:
a# —a€{agi1,- -, an}t,
tak wiec w powyzszej sumie wszystkie elementy ,kasuja sie nawzajem”. O

Lemat 4.22. Niech p > 3 bedzie liczbg pierwszq. Wiedy p — 1 € Z, jest jedynym elementem
rzedu 2 w 7,
Dowdd. Poniewaz p > 3, tak wiec mamy p — 1 # 1, czyli:

ordz:(p —1) > 2.
Mamy tez:

(p—1) 'p(p_l) ZTp(p2—2p+1) =1,

czyli faktycznie:

ordz:(p — 1) = 2.
Pozostaje pokazac, ze p—1 jest jedynym elementem rzedu 2 w Z;. W tym celu wezmy a € Z,
taki ze ordz:(a) = 2. Pokazemy, ze a = p — 1. Mamy:

rp(a2) =a-pa=1,
czyli:
pla®>—1=(a—1)(a+1).

Poniewaz a € 7 \{1}, dostajemy 1 <a —1 < p, czyli p{a — 1. Stad mamy:
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e p to liczba pierwsza;
e pl(a—1)(a+1);

e pfa—1.
7 whasnosci liczb pierwszych dostajemy, ze p | a+ 1. Ale 0 < a+ 1 < p, tak wiec dostajemy, ze
p = a+ 1, czyli faktycznie a = p — 1. O

Dowod Tw. Wilsona. Mamy pokazac, ze:

(p—1!=-1 (mod p).
Jest to prawda dla p = 2, zatlézmy wiec ze p > 3.
Mamy, ze:
p—1N=1,2-,3...5(p—1) (mod p),
gdzie po prawej stronie kongruencji jest produkt wszystkich elementéw w skonczonej grupie
przemiennej 7. Z Lematu [£.21]i Lematu dostajemy:

p—1)!=p—1 (modp)=-1 (modp),
bo p —1 to jedyny element rzedu 2 w grupie Z,. O
Uwaga 4.23. (1) Prawdziwa (i tatwa do pokazania) jest tez implikacja przeciwna do tej w
Twierdzeniu Wilsona, tzn. nastepujace stwierdzenie jest prawdziwe
VneNsyg (n—1)=-1 (mod n) = n jest liczba pierwsza
(2) Implikacja przeciwna do implikacji w Malym Twierdzeniu Fermata nie jest praw-
dziwa, tzn. jesli sformutujemy Male Twierdzenie Fermata jako:
p @ pierwsza = (Va € Z) a”» =a (mod p),
to implikacja przeciwna nie jest prawdziwa, tzn. istnieja liczby ztozone n, takie ze dla
kazdego a € Z mamy a" = a (mod n). Liczby takie nazywaja sie liczbami Carmi-
chaela. Najmniejszg liczbg Carmichaela jest 561. Dopiero w 1994 roku udowodniono,
ze istnieje nieskonczenie wiele liczb Carmichaela.
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5. HOMOI\/IORFIZMY7 JADRA I DZIELNIKI NORMALNE
Na poczatek troche nazw.

Definicja 5.1. Niech f: G — H bedzie homomorfizmem. Wtedy méwimy, ze:

e f jest monomorfizmem, gdy f jest ,1-17;

o f jest epimorfizmem, gdy f jest ,na”;

o f jest endomorfizmem, gdy G = H,

o f jest automorfizmem, gdy G = H i f jest izomorfizmem.

Na ¢wiczeniach udowadniamy nastepujacy:

Fakt 5.2. Niech G, H, N to bedqg grupy oraz
o:G—H, ¢Y:H— N.
Wiedy mamy:

(1) jesli ¢ i v sq¢ homomorfizmami, to 1) o p jest tez homomorfizmem;
(2) jesli ¢ jest izomorfizmem, to o' : H — G jest tez izomorfizmem;
(3) mamy:

G=G, G=2H & H=G, G=2HiH=N = G=N.
Czyli = | przypomina” relacje rownowaznosci.
Definicja 5.3. Niech GG bedzie grupa. Definiujemy:
Aut(G) = {p € S¢ | ¢ jest automorfizmem}.

Na ¢wiczeniach dowodzimy, ze:
Aut(G) < Sg,
czyli Aut(G) jest grupa z dziataniem skladania funkcji.
Przyktad 5.4. (1) Na Konwersatorium pokazujemy, ze dla kazdego k € Z funkcja:
ok 21— 7, @p(r)=kx

jest endomorfizmem Z i ze wszystkie endomorfizmy 7 s tej postaci. Latwo zauwazy¢,

ze:
o € Aut(Z) & ke{-11}.
Czyli mamy:
Aut(Z) ={ 1,1}
ey
Latwo napisaé¢ tabelke Aut(Z):
°O | Y1 | P
$Y1 | P11 | P
$-1]¥-1] ¥
czyli mamy:
Aut(Z) = Zs .

(2) Na Konwersatorium pokazujemy, ze dla kazdego k € Z,, funkcja:
Ok 2 Ly — Ly, () =k
jest endomorfizmem 7, i ze wszystkie endomorfizmy 7Z,, sa tej postaci. Wtedy mamy:
or € Aut(Z,) & kel .
Poza tym:
Vk,l €Zy Pk © P = Phonl

czyli funkcja:
Z) >k @ € Aut(Z,)
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jest izomorfizmem, stad:
Aut(Zy,) = (Zy,, n) -
Dla przyktadu, popatrzmy na sytuacje gdy n = 8. Wtedy:
Aut(Zg) = ( §7'8)7 Z; = {173,5,7}

Latwo napisa¢ tabelke Zg:

s|113]5]7
11357
313[1]7([5
515713
7171531

czyli dostajemy (porownujac powyzsza tabelke z tabelka grupy Kleina K):
K4 = Z; = Aut(Zg)
Teraz wazne twierdzenie o homomorfizmach i rzedach elementow.

Twierdzenie 5.5. Niech f: G — H bedzie homomorfizmem i g € G. Wtedy mamy:

(1) f(eG) = e,
(2) fg™) =fl9™"
(3) nastepujgce uogdlnienie (1) oraz (2):

VneZ fg") = fl9)";
(4) jesli f jest ,1-17, to:

ordg(g) = ordu(f(9));

(5) jesli ordg(g) jest skonczony, to ordy(f(g)) jest skoticzony oraz:

ordu(f(9)) [ orda(g)-

Dowdd. Punkty (3) i (4) sa udowodnione na Konwersatorium. Dla dowodu (5), zalézmy ze
ordg(g) = n, tak wiec ¢" = eq. Wtedy dostajemy:

F9)" = f(g") = flea) =_en
(3) (1

Na Konwersatorium pokazujemy, ze z f(g)" = ey wynika:

ordg(f(g)) | n = ordg(g),
co konczy dowdd. =

~

Historycznie, pojecie grupy wrielo sie z pojecia grupy przeksztalcen, czyli (w naszej ter-
minologii) podgrupy Sy dla pewnego zbioru X. Niedtugo zobaczymy, ze kazda grupe mozemy
traktowac jako grupe przeksztalcen. Gléwny krok w tym kierunku to nastepujace:

Twierdzenie 5.6 (Twierdzenie Cayley’a). Dla dowolnej grupy G istnieje monomorfizm:
a:G— 5.
Szkic dowodu. Wezmy g € G i definiujemy:
F,:G—=G, Fyz)=gz.
Dla kazdego g € G funkcja F} jest bijekcja, poniewaz tatwo zauwazy¢, ze:
(Fg)_l = Fy.
Mozemy teraz zdefiniowa¢ nasza funkcje:
a:G—= S, oalg) =F,
Nalezy teraz sprawdzi¢, ze:
Vg,hed Fgp, = Fyo Fy,
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czyli a jest homomorfizmem oraz ze « jest ,,1-1” (co pomijamy). O

Definicja 5.7. Zalézmy, ze f : G — H jest homomorfizmem. Definiujemy:
e jqdro f jako:
ker(f) :={g9 € G | fg) = en};
e obraz f jako:
m(f):={f(g) e H|geG}.
Czyli ker(f) = f~'(en) (przeciwobraz) oraz im(f) = f(G) (obraz).

G H

“LJ_JE” Etl

Przyktlad 5.8. (1) Niech
rs . 4 — Zis
bedzie funkcja 5-tej reszty. Wtedy mamy:
ker(rg,) =5 Z, 1m(f) = Z5 .
(2) Niech
f:C—=C, flrxt+yi)=
Wtedy mamy:
ker(f) =Ri, im(f)=R.
Twierdzenie 5.9. Zalozmy, ze [ : G — H jest homomorfizmem. Wtedy mamy:

(1) im(f) < H;
(2) jesli f jest monomorfizmem, to im(f) = G.

Dowdd. Dla dowodu (1) sprawdzamy definicje bycia podgrupa.
(i) Uzywajac Twierdzenia[5.5(1) mamy ey = f(eq) € im(f).
(ii) Dla dowolnych f(g1), f(g2) € im(f) mamy:
f(g1)f(g2) = f(g192) € im(f).
(iil) Jesli f(g) € im(f), to mamy (uzywajac Twierdzenia [5.5(2)):
flg)™ = f(g7") €im(f).
Czyli dostalismy, ze im(f) < H.
Dla dowodu (2), z (1) mamy ze im(f) < H, czyli im(f) jest grupa. Jesli f jest monomor-
fizmem, to wtedy funkcja
f:G—im(f)

jest izomorfizmem, czyli im(f) = G. O

Whiosek 5.10. Uzywajge Twierdzenia widzimy, ze Twierdzenie Cayley’a mowi, ze kazda
grupa G jest izomorficzna z pewng podgrupa grupy bijekcji Se.

Okazuje sie, ze jadro ma pewne dodatkowe wtasnosci, ktére zobaczymy ponizej.

Twierdzenie 5.11. Zalozmy, ze f: G — H jest homomorfizmem. Wtedy mamy:

(1) ker(f) < G;
35



(2) dla dowolnego g € G mamy:
gker(f) = ker(f)g,

czyli warstwy lewostronne ker(f) pokrywajq sie¢ z warstwami prawostronnymi ker(f).

Dowdd. Dla dowodu (1) sprawdzamy definicje bycia podgrupa.
(i) Uzywajac Twierdzenia[5.5(1) mamy f(eq) = ey, tak wiec eq € ker(f).
(ii) Dla dowolnych a,b € ker(f) mamy f(a) = f(b) = eg, tak wiec:
flab) = f(a)f(b) = enen = en,
czyli ab € ker(f).
(iil) Jesli a € ker(f), to f(a) = en, stad (uzywajac Twierdzenia [5.5(2)) mamy :
fla™) =fla) " =ey =en,
tak wiec ™! € ker(f).
Czyli dostalismy, ze ker(f) < H.
Dla dowodu (2) wezmy g € G. Pokazemy, ze:
gker(f) = ker(f)g.
,C" Wezmy dowolne a € gker(f). Uzywajac Twierdzenia dostajemy g~'a € ker(f), tzn.
f(g7'a) = ey. Liczymy teraz:

flag™) = flag " ag™) = f(9)f (97'a) f (¢7") = f(9)enf (9)~" = en.

99 'a
~—

el

Stad ag™! € ker(f), czyli (uzywajac znowu Twierdzenia dostajemy a € ker(f)g, tak wiec:

gker(f) € ker(f)g.
»2” Analogicznie. O

Powyzsze wtasnosci jadra motywuja nastepujaca definicje.
Definicja 5.12. Podgrupe N < G nazywamy dzielnikiem normalnym (lub podgrupg nor-
malng), co oznaczamy N < G, gdy:

Vge G gN = Ng;

Intuicyjnie: dzielniki normalne to te podgrupy przez ktére mozemy wydziela¢, o czym bedzie
mowa wkrotce.

Przyklad 5.13. Niech G bedzie grupg i H < G.
(1) Mamy ,oczywiste” dzielniki normalne:
{e} € G, G 4G,
poniewaz:

VgeG glet ={e} ={ely, 9G=G=0Gy.
(2) Jesli G jest przemienna, to H < G.
(3) Zauwazylismy, ze:
{id, (1,2)} & Ss.
(4) Ale np. mamy:
As = {id, (1,2,3), (1,3,2) < Ss.
Zauwazmy, ze [Ss : As] = 2.

Twierdzenie 5.14. Jesli H < G oraz [G: H| =2, to H<G.
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Dowdd. Wezmy g € G i rozwazmy dwa przypadki.

Przypadek 1: g€ H
Wtedy gH = H = Hg.

Przypadek 2: g ¢ H

Wtedy gH # H # Hg. Ale wiemy (Wniosek [4.5]), ze G jest rozlaczna suma warstw i w naszej
sytuacji sa tylko dwie warstwy, bo [G : H| = 2. Czyli dostajemy gH = G\ H (dopelnienie H
w () i podobnie Hg =G \ H.

—
q H

Bm—

i

O

Teraz udowodnimy wynik, ktory pozwala szybko sprawdzaé, czy dana podgrupa jest dzielni-
kiem normalnym.

Twierdzenie 5.15. Jesli H < G, to mamy:
HLG & (Vg € G) (Yh € H) ghg™' € H.
Dowdd. ,=" Zatozmy, ze H < GG i wezmy dowolne g € G, h € H. Wtedy mamy:
ghegH = Hg.
HLG
Poniewaz gh € Hg, tak wiec uzywajac Twierdzenia dostajemy ghg™' € H.
»<" Wezmy dowolny g € G. Mamy pokazaé, ze gH = Hg. Dla dowodu inkluzji ,gH C Hg”,
wezmy dowolne a € gH. Wtedy istnieje h € H, takie ze a = gh. Mnozac te¢ rownos¢ z prawe]j
przez ¢! otrzymujemy:
ag ' =ghg '€ H
z zalozenia dowodzonej implikacji. Uzywajgc Twierdzenia dostajemy a € Hg. Inkluzje
»Hg C gH” pokazuje sie analogicznie. 0
Przyktlad 5.16. Niech:
SL,(R) := {A € GL,(R) | det(A) = 1}.
Latwo zauwazy¢, ze SL,(R) < GL,(R). Pokazemy, ze SL, (R) < GL,,(R) uzywajac Twierdzenia
5.15, Wezmy dowolne A € GL,(R) oraz B € SL,(R). Liczymy:
det (ABA™") = det(A) det(B) det(A)~" = det(A) det(A)~" = 1.
1
Czyli ABA™! € SL,(R) i z Twierdzenia dostajemy SL,(R) < GL,(R).
Uwaga 5.17. Jesli f : G — H jest homomorfizmem, to im(f) < H ale im(f) nie musi by¢
dzielnikiem normalnym H. Np. mamy homomorfizm:
i wtedy:
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Przyklad 5.18. Rozwazmy nastepujacy homomorfizm

(C\{0},), flr)=e

2= cos (2rm) + sin (2rm) i.

fi(R+) =
Sprawdzmy, ze to jest faktycznie homomorfizm:
f(T' + S) _ 62(7'+s)7ri _ e(2r71'+237r)i \:// €2r7ri€257ri _ f(T')f(S)

wzory de Moivre’a

(C o=fL%)
21y

A Hi)=4lo
p%4)

Wezmy dowolne r € R. Wtedy mamy:
2T = 1 <= cos (2rm

Stad mamy:

Liczymy teraz:

Stad dla dowolnego z € C mamy:
z € im(f)

(&

) +sin (2rm)i =1
1

<= cos (2rm) = 0 oraz sin (2rn) =
—ret.
ker(f) = Z.

im(f)={z€C | (3recR) e =z}
< (IreR) z=cos(2rm)+sin(2rm)i
= |z| =1
— 2z € 9,

gdzie S jest okregiem jednostkowym. Czyli dostajemys:

fer (9

AL L) A

im(f) = S".

/

4
m/\/-mm -S

prostej na okrag

N —
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Opiszemy teraz og6lny zwigzek jadra z monomorfizmami.

Twierdzenie 5.19. Niech f : G — H bedzie homomorfizmem. Wtedy mamy:
f jest monomorfizmem (czyli f jest ,1-17) & ker(f) = {ec}.

Dowdd. ,,=” Zalozmy, ze f jest ,1-1”7. Mamy pokaza¢, ze ker(f) = {eg}. Inkluzja ,{eq} C
ker(f)” jest oczywista, tak wiec pokazujemy tylko inkluzje ,ker(f) C {eg}. Wezmy dowolny
a € ker(f). Wtedy mamy:

fla) = en = fleq).
Poniewaz f jest ,1-17, otrzymujemy a = eg.
,<=" Zalozmy, ze ker(f) = {ec}. Mamy pokazac, ze f jest ,1-1". Wezmy g1, g2 € G i zalozmy,
ze f(g1) = f(g2). Pokazemy, ze g1 = go. Z tego, ze f(g1) = f(g2) dostajemy:
en = f(91)f(92) " = f (9192 ") -
Stad mamy:
9192+ € ker(f) = {ea},
czyli g1g; ' = eq istad g1 = gs. O
Uwaga 5.20. Jesli chcemy sprawdzi¢, czy dany homomorfizm f jest monomorfizmem, to zaw-

sze powinni$my sie koncentrowa¢ na pokazywaniu, ze ker(f) = {e}. Ten sposob jest zawsze
szybszy od pokazywania bezposrednio, ze f jest ,,1-1"!

Przyklad 5.21. Rozwazmy homomorfizm « z Twierdzenia Cayley’a, czyli
a: G — Sg, a(g) = Fy,

gdzie Fy(x) = gx. Wezmy ¢ € G i sprawdzmy kiedy g € ker(a). Jesli g € ker(a), to F, = id,
czyli w szczegolnosci:

e =id(e) = Fy(e) = ge = g.
Dostajemy stad, ze ker(a) = {e}, czyli a jest faktycznie monomorfizmem.
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6. GRUPA ILORAZOWA I PRODUKT GRUP

Zatozmy, ze G jest grupg i H < G. Czyli mamy:

VgeG gH = Hg.

Wtedy:

G/H={gH|geG}={Hg|geG}
Twierdzenie 6.1. Niech H < G. Wtedy mamy:
(1) Wzor
aH -bH = (ab)H

definiuje dziatanie w zbiorze G/H.

(2) (G/H,) jest grupq.
(3) Funkcja

m:G— G/H, m(g) = gH
jest epimorfizmem i zachodzi:

ker(m) = H.

Dowdd. Dla dowodu (1) trzeba sprawdzi¢, ze powyzsze dzialanie jest dobrze okreslone, czyli ze
nie zalezy od wyboru reprezentantéow warstw. Tzn. mamy pokazac, ze:

Va,d b, € G aH=dH, bH=UVH — abH = o'b'H.

Uzywajac Twierdzenia [4.6] powyzsze redukuje sie do pokazania:

Va,ad, b, € G ald eH bv'WWeH = (ab)'dV =0b"a'dt cH.

Na potrzeby dowodu oznaczmy:

h:=a'd € H.
Liczymy teraz:
blatd b =b"' h =b"'0'A dla pewnego h' € H.
—— —~—
h €HY=b'H
Ale b7 € H, czyli bYWl € H, 7 czego wynika ze:
abH = a'V'H,

co mieliSmy pokazac.
Dla dowodu (2) sprawdzamy (dos$¢ automatycznie) definicje dziatania grupowego.

(i) Lacznosc.
Weimy a, b, c € G. Wtedy mamy:
(aH -bH) -cH = (ab)H - cH = ((ab)c)H = (a(bc))H = aH - (bc)H = aH - (bH - cH).

(ii) Element neutralny.
Weimy a € G. Wtedy mamy:

aH-H=aH-eH =aeH =aH, H-aH =¢eH-aH =eaH =aH.

Czyli H = eH jest elementem neutralnym.
(iii) Elementy odwrotne.
Wezmy a € G. Wtedy mamy:

aH -a'H=a'H=H, o 'H -aH=a"'aH =H.

Czyli a1 H jest elementem odwrotnym do aH.
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Dla dowodu (3) sprawdzamy najpierw, ze funkcja m jest homomorfizmem. Wezmy a,b € G.
Wtedy mamy:

m(ab) = abH = aH - bH = m(a) - 7(b),
czyli funkcja 7 jest homomorfizmem
Nastepnie sprawdzamy, ze 7 jest ,na”; ale to jest oczywiste, bo dla kazdego aH € G/H, mamy
m(a) = aH.
Na koniec sprawdzamy, ze ker(7) = H. Liczymy:

ker(m) ={a€ G | m(a) =equ} ={acG|aH=H}={acG|ac H} =H,

czyli faktycznie ker(mw) = H, co koriczy dowod. O
Definicja 6.2. (1) Grupe (G/H,-) z Twierdzenial6.1}2) nazywamy grupq ilorazowq G wzgle-
dem H.
(2) Homomorfizm 7 : G — G/H z Twierdzenia [6.1|(3) nazywamy homomorfizmem ilorazo-
wym.

Przyklad 6.3. Wezmy G =7 i1 H = 37. Wtedy mamy:
7 /37 ={37,1+37,2+ 37Z}.
Mozemy policzy¢ np.:
(24+37Z)+(2+3Z)=2+32)+3Z=1+37Z.
Dostajemy nastepujaca tabelke:
+ 37 |14+37Z|2+4+3%
37 372 |14+37Z|2+4+3%Z

1432 |1+372 \24+3%2Z| 37
24372 \24+372Z| 37Z |1+37Z

Wida¢, ze dostajemy:

7./37 = (Zs, +s)
oraz ogolnie:

2 In? = (Zn,+n).

Udowodnimy teraz wazne twierdzenie, ktore pozwala nam zrozumieé grupy ilorazowe i
uogolnia ono obserwacje z Przyktadu

Twierdzenie 6.4 (Zasadnicze Twierdzenie o Homomorfizmach Grup). Niech ¢ : G — N bedzie
homomorfizmem grup. Wtedy mamy:

G/ ker(p) = im(p),
czyli dziedzina wydzielona przez jgdro jest izomorficzna z obrazem.
Doktadniej: istnieje monomorfizm grup:

Y Glker(p) = N, ¥ (gker(p)) = p(g),
taki ze im(v¢)) = im(p).

N

G v
>
kﬂr{'{’]
iT =
f./:)ak,a ! ’7!/
‘a 3 a



Dowdd. Oznaczmy dla wygody H := ker(y). Pokazemy najpierw, ze 1 jest dobrze okreslone
rownaniem ¢ (aH) = ¢(a). Wezmy a,b € G, takie ze aH = bH. Mamy pokazaé, ze ¢(a) = ¢(b).
Z aH = bH, wynika ze:
a 'b € H = ker(p),
stad dostajemy:
e = p(a™'b) = p(a) " p(b)
i ostatecznie ¢(a) = p(b), co mielismy pokazac.
Pokazemy teraz, ze 1) to homomorfizm. Wezmy aH,bH € G/H. Wtedy mamy:

Y(aH - bH) = ¢(abH) = p(ab) = p(a)p(b) = Y (aH ) (bH),

czyli ¢ jest homomorfizmem.
Pokazemy teraz, ze ¢ jest monomorfizmem. Wystarczy pokazac, ze ker(v)) = {eq/u} (pamie-
tamy, ze eq/p = H). Wezmy dowolny gH € ker(¢). Wtedy mamy:

en = ¥(gH) = ¥(g),

czyli g € ker(p) = H, co daje gH = H, tak wiec ker(¢) = {eq/u}
Z definicji ¢ mamy im(¢)) = im(yp) i dostajemy G/ ker(y) = im(p). O

Przyklad 6.5. Niech G bedzie dowolna grupa.
(1) Mamy homomorfizm trywialny:
p:G—G,  plg) =e

Dostajemy, ze:
ker(p) =G, im(p) = {e}.
7 Zasadniczego Twierdzenia o Homomorfizmach Grup otrzymujemy:

G/G = {e}.

(2) Mamy tez:
idg:G— G, idg(g) =y.
Dostajemy, ze:
ker(p) ={e},  im(p) =G.

Z Zasadniczego Twierdzenia o Homomorfizmach Grup otrzymujemy:

G/{e} = G.
(3) Niech n > 0 i wezmy homomorfizm n-tej reszty:

Tn i b — 1y, .

Wtedy mamy:

ker(f)=n%Z, im(f)=2,.

Czyli z Zasadniczego Twierdzenia o Homomorfizmach Grup otrzymujemy:

7 /n7 =7y,

jak w Przyktadzie [6.3]
(4) Wezmy homomorfizm z Przykladu [5.18

f:(R,+) — (C\{0},-), f(r) =e*™ := cos (2rm) + sin (2rm) .
Zauwazylismy, ze:
ker(f) =%, im(f)=S" (okrag jednostkowy).
Czyli z Zasadniczego Twierdzenia o Homomorfizmach Grup otrzymujemy:

R/Z=S"
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(5) Niech n > 0 i rozwazmy homomorfizm zadany przez wyznacznik:
det : GL,(R) — (R\{0},-).
Wtedy mamy:
ker(det) = {A € GL,(R) | det(A) =1} = SL,(R).

Poniewaz im(det) = R\{0}, tak wiec z Zasadniczego Twierdzenia o Homomorfizmach
Grup otrzymujemy:

GL,(R)/SLn(R) = (R\{0}, ).
Zmierzamy teraz do kolejnej konstrukeji algebraicznej.

Przyktad 6.6. Rozwazmy dwa nastepujace homomorfizmy:

a: Lo — Y, 0—0, 1~ 3;

B 25 — L, 0—0, 1—2 2—4.
Poniewaz mamy:

Zs ={0+60,0+62,0+64,1460,1 42,1444},
tak wiec otrzymujemy bijekcje:
Zg X Z3 — Zﬁ, (Z,]) — OZ(Z) +6 B(])

Chcemy aby bijekcja z Przykladu byla izomorfizmem, tak wiec powinnismy zdefiniowaé
dziatanie grupowe na produkcie Zs X Z3. Ponizej robimy to ogoélnie.

Twierdzenie 6.7. Niech G 1 H bedqg grupami. Definiujemy nastepujgce dziatanie w G x H:
(gv h) ’ (9,7 h/) = (.gg/a hh/)v

gdzie na pierwszej wspotrzednej jest dziatanie w G i na drugiej wspotrzednej jest dziatanie w
H. Wtedy (G x H,-) jest grupag.

Dowdd. Dla dowodu tacznosei - wezmy (g, h), (¢, 1), (9", k") € G x H. Wtedy:
((9.1) - (¢, 1) - (¢". 1) = (a9, hH') - (9", ") =
— (999", (W) = (glg'g"). h(H'H) = (g, ) - (/. ) - (6", 1)),
czyli dziatanie - jest laczne.

Podobnie tatwo sie sprawdza (co pomijamy), ze element neutralny - to (eq,ey) oraz ze dla
kazdego (g,h) € G x H, element odwrotny to (g~ ', h™'). O

Definicja 6.8. Grupe z Twierdzenia [6.7] nazywamy produktem grup G, H i oznaczamy G x H.

Przyklad 6.9. (1) Rozwazmy grupe:
Zs x 7y = {(0,0),(0,1),(1,0), (1,1)}.
oraz jej tabelke:

Zy % Zs | (0,0) | (0,1) | (1,0) ] (1,1)
(0,0) 1 (0,0)[ (0,1 (LO)[(L1)
(L0) | (LO)[(LD](0,0)](0,1)
(0,1) | (0,1)](0,0) [ (L) (L,0)
LD (LD (LO)]©.1]00)

Widzimy, ze:
Zy X 7o = K, (grupa Kleina).
(2) Rozwazana wczesniej funkcja:
Lo X Ly — L, (i,]) — a(i) +6 8())

jest izomorfizmem i mamy:
2y X Zg = Zﬁ .
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Nastepny wynik zawiera oba punkty z powyzszego przykltadu jako szczegélne przypadki i
daje ogo6lny test na to, czy dana grupa jest izomorficzna z produktem grup.
Twierdzenie 6.10 (Twierdzenie o produkcie wewnetrznym). Niech G bedzie grupg i A, B bedg
podgrupami G, takimi ze:
(1) AN B = {e};
(2) AB = G, tzn. dla kazdego g € G istniejg a € A,b € B, takie ze g = ab;
(3) dla kazdych a € A,b € B mamy ab = ba.

Wtedy nastepujgoca funkcja:
f:AxB—G, f(a,b)=ab
(zamiast ,, f((a,b))” piszemy tu ,,f(a,b)”) jest izomorfizmem, czyli A x B = G.
Dowdd. Sprawdzamy, czy f jest homomorfizmem. Wezmy (a,b), (a/,0’) € A x B. Liczymy:
f((a,b) - (d',0) = f(ad',bb") = aa'blf = aba't' = f(a,b)f(d’, V),
a’b=ba’
czyli f jest homomorfizmem.

Sprawdzamy, czy f jest ,1-1"7. Wystarczy pokaza¢, ze ker(f) = {eaxp}, gdzie eaxp = (e, ¢€).
Wezmy (a,b) € ker(f). Wtedy mamy:

e = f(a,b) = ab,
czyli dostajemy

Asa'=beB.
Stad (uzywajac (1)) mamy:

a'=bec AN B = {e},
czyli faktycznie (a,b) = (e, e).
Sprawdzamy, czy f jest ,na”. Z (2) dostajemy, ze dla kazdego g € G istnieja a € A,b € B,

takie ze:

g = ab= f(a,b),

czyli faktycznie f jest ,na”. 0

Definicja 6.11. Jesli podgrupy A, B spelniaja zalozenia Twierdzenia o produkcie wewnetrz-
nym, to méwimy ze G jest produktem wewnetrznym grup A, B.

Uwaga 6.12. (1) Twierdzenie o produkcie wewnetrznym mowi, ze jesli G jest produktem
wewnetrznym grup A, B, to wtedy:
G=AxB.

(2) Jesli G jest produktem wewnetrznym grup A, B oraz istnieja grupy H, N oraz izomor-

fizmy:

a:H—A [f:N—B,
to wtedy funkcja

f:HxN—=G, f(h,n)=a(h)s(n)
jest izomorfizmem i mamy:
G=HXxN.
Przyklad 6.13. (1) Niech G bedzie grupa Kleina:
G=K,=1{id,S,5,0,}.

Wezmy:

A= (8) = {id. 5}, B = (S = {id, S'}.



Wtedy mamy AN B = {id}, AB = K, (bo np. SS' = O;) oraz 5SS’ = S'S (bo cala
grupa K, jest przemienna). Stad K, jest produktem wewnetrznym A i B. Poniewaz
A =7y = B, tak wiec z Uwagi [6.12/(2) dostajemy:

K4 = ZQ X ZQ .
(2) Grupa Zg jest produktem wewnetrznym podgrup:
A= {0,3}2Z2, B = {072,4}2Z3

z Uwagi [6.12|(2) dostajemy:
Z@ = 7o X Z3 .
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7. PRODUKTY GRUP CYKLICZNYCH I GRUPA KWATERNIONOW
Nastepny wynik uogolnia fakt, ze Zg = Ziy X Z.3.
Twierdzenie 7.1. Zatozmy, ze k,1 > 0 sq wzglednie pierwsze. Wiedy mamy:
Ly 1y X 7y .
Dowdd. Niech n := kl. Przedstawimy 7., jako produkt wewnetrzny podgrup A i B, takich ze:
A=Yy, B =17,

(co wystarcza z Uwagi [6.12((2)). Wezmy:

A= () ={0,0,21,...,(k = 1)} = Z4,

B:= (k) ={0,k,2k,...,(I- 1)k} =27,.
Pokazujemy, ze AN B = {0}. Wezmy t € AN B i pokazemy, ze t = 0. Poniewaz [ | t i k | ¢, tak
wiec dostajemy:

NWW(l, k) | t.
Ale NWD(l, k) = 1, tak wiec NWW([, k) = n. Czyli mamy n | t oraz t € Z,, stad dostajemy
t=0.
Wezmy teraz dowolny t € Z,. Znajdziemy a € A,b € B, takie ze a +,, b = t. Rozwazmy
nastepujacy zbior:
S:={a+,b|acAbec B}.
Mamy pokazaé, ze S = Z,. Rozwazmy funkcje:
p:AxB—=S, ¢(ab) =a+,b.
Z definicji mamy, ze ¢ jest ,na”. Pokazemy, ze ¢ jest ,1-17. Wezmy (a, b), (a’,V') € A x B, takie
ze p(a,b) = p(d', ). Wtedy mamy:
at+p,b=d+,¥ = A>a—p,d=b-)beB.
Stad dostajemy:
a—pad, b —,be AN B ={0}.
Czyli mamy:
a—pa =0 b—-,b=0,

co w koricu daje (a,a’) = (b,V'), czyli ¢ jest ,1-1”. Podsumowujac, dostajemy ze powyzsza
funkcja ¢ : A x B — S jest bijekcja oraz mamy:

S| =|Ax B|=|A||B|=kl=n=|%Z,|.
Stad S jest podzbiorem Z, mocy n = |Z, |, czyli faktycznie S = 7, co mieliSmy pokazac.

Oczywiscie, mamy tez ostatni warunek z twierdzenia o produkcie wewnetrznym, bo grupa

7., jest przemienna, co kornczy dowod. 0

Uwaga 7.2. Cres¢ ,Z, = A+, B” powyzszego dowodu wynikala z czesci ,AN B = {0}" iz
faktu, ze:
| Z,, | =n =kl = |A||B].
Ogolnie mamy, ze jesli:
e H <G,K <G iG jest skoniczona;

e HNK = {e};

o [G] = |[H||K],
to wtedy G = HK, czyli dla kazdego g € G istniejag x € H,y € K, takie ze g = zy. Czyli ten
warunek otrzymujemy ,za darmo”, jesli wiemy ze |G| = |H||K| oraz H N K = {e}.

Przyjrzymy sie teraz blizej produktom grup cyklicznych. Oczywiscie, mozemy bra¢ produkty
wiekszej ilosci grup, czyli dla grup Gy, ..., G, mamy tez produkt grup G; X ... x G,,.

Twierdzenie 7.3. Niech ki, ..., k, > 0. Wtedy nastepujgace warunki sqg rownowazne:
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(1) Grupa Zi, X ... X Zy, jest cykliczna.
(2) Liczby ki, ..., k, sq parami wzglednie pierwsze, tzn. dla i # j mamy NWD(k;, k;) = 1.

Dowdd. (2) = (1)
Wiemy z Twierdzenia ze:

NWD(ki ko) =1 = Zy, X Zoy = Ly, -
Z zatozenia mamy NWD(kiko, k3) = 1 i stad znowu dostajemy:
Ly koks = Ligy iy X Liggy = Ligyy X Ligg, X Ly -
Kontynuujac tak dalej (prosta indukcja) otrzymujemy:
Li,....k, =Ly X ... X Ly,

czyli grupa Zy, X ... X Zy, jest cykliczna.

(1) = (2)

Udowodnimy, ze negacja warunku (2) implikuje negacje warunku (1). Zal6zmy, ze istnieja i # 7,
takie ze NWD(k;, k;) # 1. Bez zmniejszenia og6lnosci mozemy przyjac¢, ze i = 1 oraz j = 2.
Niech teraz:

k= NWW(k’l, k‘g) < ]{31]{32, l:= kk3k4 ok, < kiko .. k.
Wtedy dla kazdego @ mamy k; | [. Wezmy dowolny element:
(al,...,an) GZk’l X ... Xan.
Wtedy mamy:
lay, ..., a,) = (lay, ..., la,) = (0,...,0),
poniewaz dla kazdego i mamy:
Stad dla kazdego o € Zy, X ... X Zy, dostajemy:

ord(a) <l<k...k,= |Zk1 X ... Xan|,
czyli grupa Zy, X ... X Zj, nie jest cykliczna. O

Przyklad 7.4. (1) Grupa Zg X Zi7 X Ziss jest cykliczna.
(2) Grupa Zg X Zsg X Z nie jest cykliczna.

Zauwazmy, ze dla kazdych kq,...,k, > 0 grupa Zy, X ... X Zy, jest skoiiczona i przemienna.
Okazuje sie, ze zachodzi tez nastepujace twierdzenie odwrotne, ktore pozostawimy bez dowodu.

Twierdzenie 7.5. Niech A bedzie skoriczong grupa przemienng. Wtedy istniejg ky, ..., k, > 0,
takie ze:

A=y, X ... X Ly, .

Czyli kazda skoniczona grupa przemienna jest izomorficzna z produktem grup cyklicznych.

Chcemy teraz znalez¢ sposob na sprawdzanie, czy dwie skoriczone grupy przemienne (zapisane
jako produkty grup cyklicznych) sa ze soba izomorficzne.

Przyklad 7.6. (1) Oczywiscie, jesli rzedy grup sa rézne, to grupy nie moga by¢ izomor-
ficzne, dlatego bedziemy rozwazali jedynie sytuacje, w ktoérych rzedy rozwazanych grup
sa takie same.

(2) Z Twierdzenia wiemy Ze np.:

Ly 2 Lo X 2y, Liog 22 Lo X L .
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(3) A czy np.:
Zis X Lnos = Zizo X iy ?

Rozktadamy na produkty uzywajac Twierdzenia
Z6XZ1052Z2XZ3XZ3XZ5XZ7,
ZggXZngZQXZ3XZ5XZ3XZ7.

Czyli dostajemy, ze:

Zig X Zinos = Zizo X Ly !
Okazuje sie, ze sposob z Przyktadu (3) zawsze dziala, o czym moéwi nastepny wynik. Potrze-
bujemy najpierw pewnej notacji. Niech n > 0 i G bedzie grupa. Wtedy oznaczamy:
G":=Gx...xGQG, G .= {e}.
N————
n razy

Twierdzenie 7.7. Niech A bedzie skoriczong grupg przemienng.

(1) Istniejg ki1, ... kn,l, > 0, takie Ze ky, ..., k, to potegi liczb pierwszych oraz

A (T % ox (Zy )™
(2) Niech ky, ..., k, to parami rézne potegi liczb pierwszych oraz Uy, 1y, ... 1, Il € N. Wtedy

mamy:
(Zi )™ x .o x ()™ = (2 x .o (2, ) & h=10, . 1, =1,
Dowdd. Punkt (1) wynika z Twierdzenia i Twierdzenia , poniewaz dla réznych liczb
pierwszych py,...,py oraz ki, ..., k, € IN mamy:
Zp}fl-.‘.-pfnm = szlcl X ... X Z’pfnm .
Punktu (2) nie bedziemy dowodzié. O

Uwaga 7.8. Podsumowujac, je$li mamy dwie skorficzone grupy przemienne A i B, to aby
sprawdzi¢ czy A = B, nalezy:
(1) roztozy¢ Ai B na produkt grup postaci Z,:, gdzie p jest liczba pierwsza;
(2) policzy¢ ile razy wystepuje kazde Z, w rozktadzie A oraz w rozkladzie B i poréwnac
te ilodci wystapien.
Przyklad 7.9. Mamy, ze:
T x 73 x 72 x 75 x 1.y 2 Ty x 73 x 73 x 1.3 X 7.3,
poniewaz:
(2,3,2,5,7) #(4,2,2,5,7).
Poznali$émy juz wiele przyktadéw grup matych rzedow. Okazuje, sie ze jesli chodzi o grupy
rzedu co najwyzej 8, to jest jeszcze tylko jedna grupa ktorej nie znamy: grupa kwaternionéw.
Na poczatek zauwazmy, ze macierze o wspotezynnikach zespolonych tez mozna mnozy¢ (po-
dobnie jak macierze o wspotezynnikach rzeczywistych) i ze wtedy mamy grupe GL,(C): grupe

macierzy n na n o wspotczynnikach zespolonych i niezerowym wyznaczniku (z dzialaniem mno-
zenia macierzy). Wyrozniamy trzy macierze z GLo(C):

. [i o . [o 1 Lo [0
Tloo—i T -1 o) i o]

Q8 = {]7 _-[7i7 _i7j7 _j7k7 _k}

Niech teraz:

Wtedy tatwo sprawdzi¢, ze:
ij=k, jk=i, ki=j, ji=-k, kj=-i, ik=-j,

i’=jP=k*=-1, (-1)?=1
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Sprawdzamy przykladowe dwie rownosci:

- 218 4
<[22 C[2 -

Czyli Qs < GL2(C) 1 Qg nazywamy grupg kwaterniondw. Ponizej tabelka Qg:
Qs | I | =T i |—=i|j |—j| k |-k
I | I |—-I|1i|—-i|j|-j|k]|-k
—I |11 |—=i|1i/|—=j|3Jj|-k|k
i i | —i|—-1| 1 | k|-k|—=j| ]
—i| =i i | I |-T|-k| k| ]j |-}
i1y =3k k |—=IT] 1| 1i]-i
-3l =JlJ | k|=k| T |—-T|-i] i
k |k |-k| j |—j|—-1|1i]|-1
—k|-k| k | —j| ] i =i I |—1

Wtedy tez mamy:
e elementy rzedu 4 w Qg to i, —i,j, —j, k, —k;
e element rzedu 2 w Qg to —1;
e clement rzedu 1 w Qg to 1.
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8. KLASYFIKACJA GRUP MALYCH RZEDOW I AUTOMORFIZMY WEWNETRZNE

Na razie wiemy, ze kazda grupa cykliczna rzedu n jest izomorficzna z Z,,. Ponizej omowimy
klasyfikacje (z dokladnoscia do izomorfizmu) grup rzedu co najwyzej 8. Na poczatek pierwsze
twierdzenie klasyfikacyjne.

Twierdzenie 8.1. Niech G bedzie grupg rzedu p, gdzie p jest liczbg pierwszq. Wtedy mamy:
G=Y7,.

Dowdd. Poniewaz rzad G jest liczbg pierwsza, tak wiec |G| > 2, czyli istnieje a € G \ {e}.
Wtedy ord(a) > 1. Z Twierdzenia Lagrange’a mamy:

ord(a) | p = |G|.
Poniewaz ord(a) > 1 i liczba p jest pierwsza, dostajemy ze:
ord(a) = p = |G|.
Czyli G = (a) i stad G = Z,,. O

Teraz klasyfikujemy grupy rzedu co najwyzej 8. Niech |G| = n < 8. Rozwazamy przypadki.

n=1
Wtedy G = {e} jest trywialna i np. G = 7Z;.

2
Z z Twierdzenia [8.1

S
Il

@Q
1%

3
Z.3 7 Twierdzenia [8.1

S
Il

@Q
12

4
Pokazemy, ze G = Z4 lub G = Zy X Zs.

Dowdd. Zatézmy, ze G 2 Z.4. Pokazemy, ze G =2 7y X Z5. Poniewaz G 2 Z,4, tak wiec:

S
|

Vged ord(g) # 4.
7 Twierdzenia Lagrange’a (poniewaz |G| = 4) dostajemy:
Vge G > =e.

Na ¢wiczeniach pokazaliSmy, ze w tej sytuacji G jest grupa przemienna.
Wezmy teraz a € G oraz b € G\ {a, e}. Definiujemy:

A= (a) = {e,a}, B := (b) = {e, b}.
Mamy teraz (uzywajac przemiennosci G):
ANB={e}, AB=G, VYae€ AVbe B ab=ba.
Poniewaz A = Z, = B, tak wiec z Uwagi [6.12)2) dostajemy, ze G = Zy X Zs. O
Uwaga 8.2. Mozna pokaza¢, ze jesli |G| = p? i p jest liczba pierwsza, to:
G=Z, b G=7,x7Z,.

n=2>5
G = Zs z Twierdzenia [8.1
n=2~06

Naszkicujemy dowod tego, ze G = Zg lub G = Ss.
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Idea dowodu. Rozwazamy dwa przypadki, ktore beda miaty liczne podprzypadki.

Przypadek 1: G przemienna.
Pokazemy, ze G = Zg. Wezmy a € G\ {e}.

Przypadek la: ord(a) = 6.

Wtedy mamy:

G=(a)=Zs.
Przypadek 1b: ord(a) = 3.
Zdefiniujmy:

A= (a) = Zs

i wezmy b € G\ A. Rozwazamy teraz trzy ,podpodprzypadki”.
e Jesli ord(b) = 6, to j.w. G = Zs.
e Jesli ord(b) = 2, to bierzemy:

B = (b) = Z,
i wtedy tatwo zauwazyc¢, ze:
ANB={c}, AB=G, YacAVbe B ab=ba
Poniewaz A = Z3 1 B = Zs, tak wicc z Uwagi [6.12|(2) 1 Twierdzenia [7.1] dostajemy, ze
G =7y Xx1s=Zs.

e Udowodnimy teraz, ze ord(b) # 3 (ostatni ,podpodprzypadek”). Zatozmy, ze ord(b) = 3
i dojdziemy do sprzecznosci. Dla B := (b) mamy 7e b € B\ AN B stad:

ANBS B i |[AnB|||B|=3 = JAnB|=1 = AnB={e}.
Wtedy mozna pokazac, ze:
{ab | a € A,be B} =9>6=|G|,
co daje sprzecznosc.

Przypadek lc: ord(a) = 2.
Argument podobny do tego z Przypadku 1b.

Przypadek 2: G nie jest przemienna.

Uzasadnimy, ze G = S3. Jedli dla kazdego a € G mamy, ze a® = e, to wtedy j.w. G jest prze-
mienna, sprzecznosé. Stad istnieje a € G, taki ze ord(a) = 3. Niech H := (a) i wezmy b € G\ H.
Jak w Przypadku 1 otrzymujemy, ze ord(b) = 2. Definiujemy:

b = ab, b’ = ba.
Wtedy 0 # 0”, bo w przeciwnym wypadku G bylaby przemienna. Czyli mamy, ze:
G ={e,a,a®, b,V b"}
i mozna pokazac, ze nastepujaca funkcja:
1G> S5, fle) =id f(a) = (1,2,3), f(a?) = (1,3,2), f(b) = (1,2), F(¥) = (1,3), F(V") = (2,3)

jest izomorfizmem. O

n==17
G = 7 z Twierdzenia [8.1

n=38
Wtedy mamy, ze G jest izomorficzna z jedna z nastepujacych grup:

Q87 D47 Z87 Z4 X Z27 ZQ X ZQ X Z27
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czego juz nie pokazujemy (to jest najtrudniejsze!).

Potrzebujemy jeszcze jednej definicji.
Definicja 8.3. Niech G bedzie grupa. Wtedy

Z(G):={9€ G|V eGgr=u1zg9} (centrum grupy G).
Latwo zauwazy¢, ze Z(G) < G.

Przyklad 8.4. (1) Z(Qs) ={I,—1}.
(2) Z(Ds) = {id}.
(3) Z(Dy) = {id, O, }.
(4) Grupa G jest przemienna wtedy i tylko wtedy, gdy Z(G) = G.

Rozwazmy teraz nastepujacy motywujacy przyktad, ktéry doprowadzi nas do pojecia auto-
morfizméw wewnetrznych. Wezmy niestandardows baze przestrzeni liniowej R?, np.:

by

Dla funkcji liniowej f : R?* — R? o macierzy A, tzn.:

a b
a=[e )

1 a 0 c
7 (lo]) = 5] e #([]) - 2]
chcemy policzy¢ macierz f w powyzszej bazie niestandardowej
11 |1
0|7 |1] [~

Z algebry liniowej wiemy, ze macierz f w tej nowej bazie to
1 1] [a 0] 1 177"
0 1| |c d| |0 1| ~

B .= {(1) ﬂ :
Przy ustalonym B, dostajemy przeksztalcenie zamiany bazy:
op: A~ BAB™!.
Jesli funkcja f jest odwracalna, to mamy A € GLy(R) i dostajemy:
¢p: GLy(R) — GLy(R),  ¢p(A) = BAB™.

Zamieniamy teraz GLs(RR) na dowolng grupe G i macierz B na dowolny element g € G.

gdzie:

Oznaczmy:

Twierdzenie 8.5. Niech G bedzie grupg @ ustalmy g € G. Definiujemy nastepujaca funkcje:

wg: G = G, 0 (z) = grg™".

Wtedy g jest automorfizmem grupy G.

Dowdd. Niech z,y € G. Liczymy:

wo(zy) = gryg " = gr g gyg " = w4(x)0,(y),
~—

e

czyli ¢, jest homomorfizmem. Mamy tez:

Pg-1 (g(T)) = Pg1 (gl’g_l) =g tgrg™? (g_l)fl = .
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Tak wiec mamy:

Pg-10 @y =idg .
Podobnie otrzymujemy:

Py 0 g1 =idg .
Stad ¢4 : G — G jest bijekcja. Poniewaz ¢, jest tez homomorfizmem, tak wiec ¢, jest auto-
morfizmem. U

Definicja 8.6. Jesli G jest grupa oraz g € G, to automorfizm postaci ¢, z Twierdzenia
nazywamy automorfizmem wewnetrznym grupy G wyznaczonym przez element g.

Twierdzenie 8.7. Niech G bedzie grupg. Definiujemy nastepujaca funkcje:
p: G = Aut(G),  o(g) =y,

gdzie @g4 jest automorfizmem wewnetrznym z Twierdzenia 8.5 Wtedy funkcja o jest homomor-
fizmem grup.
Dowdd. Wezmy g, ¢ € G. Mamy pokazac, ze:

vlg99") = plg)op(g') .

—— N

Pgg’ Pg Py’

Aby to sprawdzié¢, wezmy dowolne x € G. Liczymy:

1 -1

Por (1) = 99'2(99) " = gg'z (¢) " 97 = gy (2)g7 = ¢, 0y () = (940 9g) (2).
Czyli faktycznie mamy: @g0 = @4 0 @g. O

Definicja 8.8. Obraz homomorfizmu ¢ z Twierdzenia czyli podgrupe Aut(G) skladajaca
sie z automorfizmoéw wewnetrznych grupy G, oznaczamy przez Inn(G).

Twierdzenie 8.9. Mamy:
Inn(G) =2 G/Z(G).
Dowdd. 7 Twierdzenia [8.7 funkcja
¢ : G — Aut(G)
jest homomorfizmem. 7 Zasadniczego Twierdzenia o Homomorfizmach Grup otrzymujemy:
G/ ker(y) = im(p) = Inn(G).
Czyli wystarczy pokazac, ze ker(¢) = Z(G). Liczymy:
ker(p) = {g € G | ¢, = idc}
={geG|VreG gy(z)=ux}
={geG|Vr el grg ' =ux}
={geG|VrelG gr=uag}
= Z(G),
co nalezato pokazac. O
Przyklad 8.10. (1) Jesli G = GL,(R) i B € GL,(R), to wiemy ze automorfizm wew-
netrzny ¢p odpowiada zamianie bazy. Mozna pokazaé, ze:
Z(GL,(R)) ={rl | r € R\{0}} (macierze skalarne).
(2) Rozwazmy G = S, i popatrzmy na:
(,0(172,3)((1, 2,3,4)) = (1,2,3)(1,2,3,4)(1, 2, 3)_1 =(1,2,3)(1,2,3,4)(1,3,2) =
=(1,4,2,3) =(2,3,1,4) = (0(1),0(2),0(3),0(4))

dla ¢ = (1,2,3). Tak jest zawsze, czyli dla kazdej o € S, oraz dla kazdego cyklu
(k1,..., k) € S, mamy:

olky,.... kot = (o(ki),...,o(k)).
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Czyli automorfizm wewnetrzny w S, tez mozna traktowa¢ jako “zamiane bazy” (badz
tez “zamiane nosnika”).

(3) Grupa G jest przemienna wtedy i tylko wtedy, gdy kazdy automorfizm wewnetrzny w
G jest identycznoscia.

Definicja 8.11. Niech G bedzie grupa i x, 2’ € G. Mowimy, ze x i 2’ sa sprzezone, gdy istnieje
g € G, taki ze:
grg ' =4
Latwo pokazaé, ze relacja sprzezenia w GG jest relacja rownowaznosci.

Definicja 8.12. Klasy abstrakeji relacji sprzezenia w G nazywamy klasami sprzezonosci.

Przyklad 8.13. (1) Grupa G jest przemienna wtedy i tylko wtedy, gdy klasy sprzezonosci
w G to singletony.

(2) Opiszemy klasy sprzezonosci w grupie S,,. Z Przyktadu (2) np. transpozycje tworza

klase sprzezonosci.

Podobnie: dla ustalonego k£ < n, cykle dtugosci £ tworza klase sprzezonosci.

Ogolnie: dla kazdych o, 7 € S,, mamy, ze o i 7 sa sprzezone wtedy i tylko wtedy, gdy o
i 7 maja ten sam typ rozkladu na cykle roztaczne.

(3) Jesli G = GL,(R) i B € GL,(R), to wiemy ze automorfizm wewnetrzny ¢p odpowiada
zamianie bazy. W GL,(R) klasy sprzezonosci sa wyznaczone przez odwracalne funkcje
liniowe

f:R"—= R",
tzn., dla ustalonej f jak wyzej, wszystkie macierze f w roéznych bazach R" daja klase
sprzezonosci w GL,(R).

To koniec teorii grup na tym wykladzie, teraz zaczyna sie:
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TEORIA PIERSCIENI
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9. PIERSCIENIE, ELEMENTY ODWRACALNE I DZIEDZINY

Rozwazmy teraz dwa dzialania na ustalonym zbiorze.

Przyktlad 9.1. (1) Mamy dzialania dodawania (+) i mnozenia (-) na zbiorach N, Z, Q, R, C.
(2) Mamy dzialania dodawania i mnozenia macierzy na zbiorze M, (R) (macierze n na n o
wspotezynnikach z R).
(3) Dla dowolnego zbioru X, mamy dzialania sumy (U) i przekroju (N) na zbiorze P(X)
(zbior wszystkich podzbiorow zbioru X).

Ustalmy zbior R z dwoma dziataniami, ktére oznaczamy przez + i -.

Definicja 9.2. (1) Trojke (R,+,-) nazywamy pierscieniem, gdy:
(i) (R,+) jest grupa przemienna.
(ii) Dziatanie - jest laczne.
(iii) Dzialanie - jest rozdzielne wzgledem dzialania +, tzn. dla kazdych z,y, 2 € R mamy:

(@+y)-z=@-2)+-2), z-(@+y=(z2)+(2y).

(2) Jesli (R,+,-) jest pierScieniem i dzialanie - jest przemienne, to (R,+,:) nazywamy
pierscieniem przemiennym.

(3) Jesli (R, +,-) jest pierscieniem i dzialanie - ma element neutralny, to (R, +, ) nazywamy
pierscieniem z jedynkq.

Notacja 9.3. (1) Jesli (R, +,-) jest pierScieniem, to element neutralny dzialania + ozna-
czamy przez Og lub po prostu przez 0.

(2) Jesli (R, +,-) jest pierscieniem z jedynka, to element neutralny dzialania - oznaczamy
przez 1 lub po prostu przez 1 (z ,Szybkiego Faktu” w Definicji[l.7[2) wiemy, ze element
neutralny jest jedyny).

(3) Zamiast ,pierscien (R,+,-)” czesto piszemy ,pierscieii R” (domyslajac sie dziatan).

Przyklad 9.4. (1) (N, +, -) nie jest pierécieniem, poniewaz (IN, +) nie jest grupa.
(2) (Z,+,),(Q,+,-), (R, +,-),(C, +, ) sa pierscieniami przemiennymi z jedynka.
(3) (Mn(R),+,-) jest pierscieniem z jedynka (1a,m) = I).
Jeslin > 2, to (M,(R),+,-) nie jest piercieniem przemiennym.
(4) Jesli X # 0, to (P(X),U,N) nie jest pierscieniem, poniewaz (P(X),U) nie jest grupa.
Podobnie: (P(X),N,U) nie jest pier§cieniem, poniewaz (P(X),N) nie jest grupa.
Wreigz mamy, ze:
e U jest rozdzielne wzgledem N,
e (N jest rozdzielne wzgledem U.

Notacja 9.5. Niech (R, +,-) bedzie pierscieniem.

(1) (R,+) to grupa addytywna pierscienia R.

(2) Jesli a € R, to elementem przeciwnym do a nazywany element odwrotny do a w grupie
(R,+) i oznaczamy ten element przeciwny przez —a.

(3) Dla a,b € R definiujemy:

a—b:=a+(=Db).

(4) Dla a,b € R zamiast ,a - b czesto piszemy ,,ab”.

(5) Mnozenie wykonujemy przed dodawaniem, tzn. dla a,b,c € R zapis ,,ab + ¢’ oznacza
s(a-b)+ ¢

(6) Dlan > 01ia € R mamy:

ca:=a+...+a, 0-a:=0g, —n)-a:=—(n-a).
n-a:=a a a R (—n)-a (n-a)
n razy

Stad dla kazdego n € Z i dla kazdego a € R mamy zdefiniowane n - a € R.
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(7) Dlan > 01ia € R mamy:
a=a-...-a.
n razy

Jesli R jest pierscieniem z jedynka, to:
a’ = 1g.

Fakt 9.6. Jesli (R +, ) jest pierscieniem © a,b,c € R, to wtedy mamy:

jeslz R jest pzersczemem z jedynkq, to ( 1g)-a=—a=a-(—1g).
Dowdd. (i) Mamy:
OR'CL:(OR+OR)'CL = OR'(Z+OR'(I.

rozdzielnosé

Odejmujac stronami Og - a, dostajemy Og -a = Ogr. Podobnie pokazuje sie, ze a-0r = Og.
(ii) Wiemy, ze w dowolnej grupie element odwrotny do elementu odwrotnego to wyjsciowy

element, co stosujemy do grupy (R, +).
(iii) Mamy:

(—a)-b—i—a-b: (—a+a)~b:OR-b : OR.

Stad dostajemy (—a) - b= —(a-b). Podobnie pokazuje si¢, ze a - (—b) = —(a - b).

(iv) Mamy:
(—a)- (—b)‘: ,

=
—
—
=
=
=
—
—
=
=

(v) Mamy:
a-(b—c)=a-((b+(—¢c))=a-b+a-(—c)

Podobnie pokazuje sie, ze (b—c¢)-a=b-a—c-a.
(vi) Mamy:

(—13)-a+a:(—1R)-a+1R-a:(—1R+1R)-a:03-a = OR.
O]
Stad dostajemy, ze —a = (—1g) - a. Podobnie pokazuje sie, ze —a = (—1g) - a

Prawie zawsze zachodzi Or # 1g 0 czym mowi nastepujacy wynik.
Fakt 9.7. Jesli R jest pierscieniem z jedynkq i O = 1g, to R jest pierScieniem zerowym, tzn.:
R={0gr}, Or+0g=0g, Or -0 = 0g.

Dowdd. Wezmy dowolny a € R. Wtedy mamy:

a=a-1lg=a-0g = Opg,

R R R

czyli R = {0g}. O
Przyktlad 9.8. (1) Dla kazdego n > 1, (nZ,+,-) jest pierScieniem przemiennym (bez je-

dynki!).
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(2) Zobaczymy, ze (Zpn,+n,n) jest pierScieniem przemiennym z jedynka. Wszystko juz
sprawdziliSmy wczesniej poza rozdzielnoscia -, wzgledem +,,. Wezmy a, b, ¢ € Z,,. Wtedy
mamy:

(@4, b) pne=ry(la+b)nc=r,(ro(a+bd)c) =r,((a+b)c) =

= rp(ac+bec) = rp(ac) +, rp(bc) =a- e+, b c.

Pierscien (Z,, +n, -n) nazywamy pierscieniem reszt modulo n.

(3) Jesli R jest pierscieniem przemiennym z jedynka (jak np. Z,,Z,Q,R,C), to mamy
pierécien macierzy M, (R) (z jedynka) o wspolczynnikach z R, gdzie dzialania pochodza
z pierScienia R podobnie jak dziatania w pierscieniu macierzy M,(R) pochodza od
dziatan w pierscieniu liczb rzeczywistych R. Dla przyktadu rozwazmy pierscien My(Z3):

a b 4 a V| |a+sad b+t

c d d d| |ec+s3d d+sd|’
a bl ld V| _Jazd+3b3d a3zl +3b5d
c d d d| |cgd +3dsd c3b +3d-3d

(4) Niech X bedzie zbiorem i R bedzie piericieniem. Przez RX oznaczamy zbior wszystkich
funkcji X — R. Wtedy RYX staje sie pierécieniem z nastepujacymi dzialaniami. Dla
f,g € R oraz x € X definiujemy:

(f+9)(@) = f(@) +rg(x),  (f-9)():= f(z) ry(z)
(dodawanie i mnozenie funkcji).
Jesli R jest pierScieniem przemiennym, to R jest tez pier§cieniem przemiennym.
Jedli R jest pierscieniem z jedynks, to R jest tez piercieniem z jedynka, gdzie 1zx jest
funkcja stala o wartosci 1g.
(5) Definiujemy:
C(R) := {f € R® | f jest ciagla}.
Wtedy C(R) € R® i C(R) jest pierscieniem (przemiennym z jedynka) z dzialaniami
dodawania i mnozenia funkcji, poniewaz (miedzy innymi) suma/iloczyn funkeji ciagtych
jest funkcja ciggly.
(6) Niech:
Zji]| ={n+mieC |n,meZ}
Dla a + bi, c + di € Z[i] mamy:
(a+bi)+ (c+di) = (a+c)+ (b+d)i € Z[i],

(a+bi) - (c+di) = (ac — bd) + (ad + bc)i € Z]i].
Stad Z[i] jest pierscieniem zwanym pierscieniem Gaussa.
W danym pierécieniu R wyrdznimy teraz pewne specjalne elementy.
Definicja 9.9. Niech R bedzie pierécieniem z jedynka i a € R.
(1) Element a nazywamy elementem odwracalnym pierscienia R, gdy istnieje b € R, taki ze:
ab=1 = ba.
(2) Przez R* oznaczamy zbiér wszystkich elementéw odwracalnych pierscienia R.

Twierdzenie 9.10. Niech R bedzie pierScieniem z jedynkg. Wiedy mamy:
(1) dla kazdych a,b € R*
ab € R*,

(2) (R*,-) jest grupg.
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Dowdd. (1) Wezmy a,b € R*. Czyli istniejg o/, b’ € R, takie ze:
ad' = ad'a=1=bb =bb.
Wtedy mamy:
(ab) (b'a')=a bV a' =ad =1=0b=1V da b= (bd)ab.
1 1
Stad ab € R*, co mieliSmy pokazac.
(2) Dziatanie - jest taczne na R, czyli jest tez taczne na R*. Jedynka pierscienia R jest tez
elementem neutralnym - na R*. Jesli a € R*, to istnieje b € R, taki ze:
ab=1 = ba.

Wtedy b € R* i b jest elementem odwrotnym do a w (R*,-).
0

Whniosek 9.11. Jesli a € R*, to istnieje jedyny b € R*, taki ze ab = 1 = ba. Oznaczamy
wtedy:
a':=h.

Dowdd. Wiemy, ze jest taka wlasnosé grup (jedynosé elementu odwrotnego). O

Definicja 9.12. Niech R bedzie pierscieniem z jedynka. Grupe (R*,-) nazywamy grupq ele-
mentow odwracalnych (lub grupg multyplikatywng) pierscienia R.
Uwaga 9.13. Niech R bedzie pier§cieniem.
(1) Wiemy, ze:
0e R <«— R={0}.
(2) Mamy grupe addytywna (R, +).
(3) Jesli R jest pierScieniem z jedynka, to mamy tez grupe multyplikatywna (R*,-).
(4) Jesli R nie jest pierScieniem zerowym, to (R,-) nie jest grupa (0 nie ma elementu
odwrotnego)!
(5) Jesli R nie jest pierScieniem zerowym, to + nie jest nawet dziataniem na R* (1, —1 € R*
ale 1+ (—1)=0¢ R*)!
Przyklad 9.14. (1) Mamy Z* = {1, -1}, czyli Z* = (Za, +2).
(2) Mamy R* = R\{0}. Podobnie Q" = Q\{0} oraz C* = C\{0}
(3) Dla n > 1 mamy:
(Z,)" = {k € Z, | NWD(k,n) =1} = ,stare Z.”.
W szczegolnosei, jedli liczba p jest pierwsza, to mamy:

Z; = 7, \{0}.
(4) Udowodnimy, ze:
Z[Z]* = {1’ _1’2.7 —’[/}_
,2" oczywiste: (—1)(—=1) =1 = i(—1).
»C” Wezmy a + bi € Z[i]*, tzn. a,b € Z oraz istnieja ¢, d € Z, takie ze:
(a+ bi)(c+di) = 1.
Naktadamy na ostatnia réwnosé | - |? i korzystamy z multyplikatywnosci | - |*:
[(a + bi)(c+ di)]* = |17,
[(a + bi) || (c + di)]* =1,
(a®>+b%) (¢ +d*) =1.
N e N’
€Z €Z

Stad mamy:
a?+bv e ={-1,1} oraz a*+b*>0.
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Czyli dostajemy, ze:
a>+v*=1 oraz a,beZ.
Tak wiec mamy:
(a==+11b=0) lub (a=01 b==£1).

Stad dostajemy cztery mozliwosci, ktore doktadnie daja, ze a + bi € {1, 1,7, —}.

(5) 7 definicji grupy GL,(R) dostajemy, ze:
M,(R)" = GL,(R).
(6) Niech R bedzie pierscieniem przemiennym z jedynka i X bedzie zbiorem. Wtedy mamy:
(R*) " ={feR*|VoeX f(z)e R} =(R")".
Teraz zajmiemy si¢ elementami zupelnie innego typu (niz elementy odwracalne).

Definicja 9.15. Niech R bedzie pierécieniem przemiennym i a € R. Mowimy, ze a jest dzielni-
kiem zera, gdy:

(i) a#0,

(i) istnieje b € R\ {0}, taki ze ab = 0.

Twierdzenie 9.16. Niech R bedzie pierscieniem przemiennym z jedynkq i a € R*. Wtedy a
nie jest dzielnikiem zera.

Dowdd. Zatoézmy nie wprost, ze a € R* i ze a jest dzielnikiem zera, tzn. istnieje b € R\ {0},

taki ze ab = 0. Mnozac obustronnie ostatnig rownoéé¢ przez a~! dostajemy:
b=altab=a"'-0=0.

Stad b = 0, co daje sprzecznosé. O

Definicja 9.17. Niezerowy pierscien przemienny z jedynka w ktorym nie ma dzielnikoéw zera
nazywamy dziedzing.

Przyklad 9.18. (1) Pierscienie Z, Z[i], Q, R, C sg dziedzinami.
(2) Pierscien Zjp nie jest dziedzina, poniewaz 2,5 € Zyo \{0} oraz 2105 = 0.
(3) Jesli p jest liczba pierwsza, to pierscien Z, jest dziedzina, bo wiemy ze kazdy niezerowy
element Z, jest odwracalny, czyli (uzywajac Twierdzenia [0.1€]) tenze niezerowy element
Z,, nie moze by¢ dzielnikiem zera.

Nastepny wynik zawiera implikacje odwrotna do tej w Przyktadzie [9.18((3).
Twierdzenie 9.19. Niech n > 1. Wtedy mamy:

2., jest dziedzing & n jest liczbg pierwszq.

Dowdd. Implikacja “<” to dokladnie Przyktad [9.18|3).

Implikacje “=" pokazujemy przez kontrapozycje, tzn. zakladamy ze n nie jest liczba pierwsza
i pokazujemy, ze pierscien Z, nie jest dziedzing. Skoro n nie jest liczba pierwsza, to istnieja
k,l > 1, takie ze n = kl. Wtedy k,l € Z,, \{0} oraz

k-nl=0,
czyli faktycznie pierscien Z.,, nie jest dziedzina. 0
Nastepny wynik uogoélnia Twierdzenie [9.19]

Twierdzenie 9.20. Niech R bedzie skoriczonym pierScieniem przemiennym z jedynkqg oraz a €
R\ {0}. Wtedy nastepujgce warunki sq réwnowazne.
(1) a € R*,
(2) a nie jest dzielnikiem zera,
(3) istnieje m > 1, takie ze a™ = 1.
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Dowdd. Tmplikacja “(1) = (2)” zachodzi dla dowolnych pierscieni przemiennych z jedynka na
mocy Twierdzenia [9.16

Dla dowodu implikacji “(2) = (3)”, uzywajac zasady szufladkowej oraz skonczonosci R, dosta-
jemy ze istnieja n, m > 0, takie ze:

Stad mamy:
a*(a™-1)=0 = aa” t(a™ —1) = 0.
Poniewaz R jest dziedzing oraz a # 0, ostatnia réwnos¢ implikuje:
a” Ha™—1)=0.

Podobnie dostajemy:
oraz poprzez indukcje mamy:

Czyli ™ = 1, co nalezato pokazac.
Dla dowodu implikacji “(3) = (1)”, zauwazmy ze:

am =1 = aa =1,
czyli a € R*. O
W poprzednim dowodzie pojawita sie:

Zasada skracania dla dziedzin.
Jesli R jest dziedzing, a,b,c € R, a # 0 i ab = ac, to wtedy b = c.

Dowadd. Poniewaz ab = ac, tak wiec dostajemy:
a(b—c) =0.
Poniewaz a # 0 i R jest dziedzina, dostajemy ze b — ¢ = 0, czyli b = c. U

Uwaga 9.21. W powyzszej zasadzie wystarczy zalozenie, ze a # 0 i a nie jest dzielnikiem zera.
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10. CIALA, HOMOMORFIZMY PIERSCIENI I PIERSCIENIE WIELOMIANOW
Teraz zobaczymy kolejng definicje, ktora wyrdznia ,najlepsze” pierscienie, takie jak Q, R, C.
Definicja 10.1. Ciato K to pierScien przemienny z jedynka, taki ze:
K* =K\ {0}
(niezerowe elementy sa odwracalne).

Przyktlad 10.2. (1) Pierscienie @, R, C sa cialami.
(2) Jesli p jest liczba pierwsza, to pierscien Z, jest cialem.
(3) Wiemy, ze pierscien Z4 nie jest ciatem. Ale wciaz istnieje cialo K = {0, 1, a,b} mocy 4.
Napiszemy tabelki + i - w tym ciele.

+10[1]alb O|l1]a|b
0/0(1]alb 0/0(0]0|0
111]/0|bla 1{0[1|a]|b
alalb|0]|1 al0la|b|1l
b|blal|l]0 b|O0|b|1l]a
Wtedy mamy:
(K, +) = i(f-/ = (Zg, +2) X (Za, +2), K* 2 (Z3, +3).

grupa Kleina
Twierdzenie 10.3. Niech R bedzie pierScieniem przemiennym z jedynkq. Wtedy mamy:
(1) jesli R jest ciatem, to R jest dziedzing;
(2) jesli R jest skoriczony i jest dziedzing, to R jest ciatem.
Dowdd. (1) Niech R bedzie cialem i a € R\ {0}. Wtedy a € R*, czyli (na mocy Twierdzenia
9.16) a nie jest dziennikiem zera. Stad w R nie ma dzielnikow zera, tzn. R jest dziedzina.
(2) Zalozmy, ze R jest skoriczony i ze jest dziedzina. Wezmy a € R\ {0}. Poniewaz R
jest dziedzing, tak wiec a nie jest dzielnikiem zera. Z Twierdzenia [0.20] (implikacja
»(2) = (1)”) otrzymujemy, ze a € R*. Stad R jest cialem.
0
Whniosek 10.4. Niech n > 2. Wtedy nastepujgce warunki sg rownowazne:
(1) liczba n jest pierwsza,
(2) pierscien Z., jest dziedzing,
(3) pierscien Z,, jest ciatem.
Przyktad 10.5. Zalozenie skoriczonosci jest niezbedne w Twierdzeniu[10.3](2), bo np. pierscient
7. jest dziedzina, ale nie jest ciatlem.
Podobnie jak dla grup, mamy tez pojecie homomorfizmoéw pierscieni.

Definicja 10.6. Niech R i S beda pierScieniami.

(1) Funkcja f: R — S jest homomorfizmem pierscieni, gdy dla kazdych z,y € R mamy:

flet+ry) = f@) +s fly),  flary) = fl2)s f(y)
(2) Jesli R, S sa pierscieniami z jedynka, to dodatkowo wymagamy, ze:
f(1r) = 1s.
Przyklad 10.7. (1) Funkcja r, : Z — Z, jest homomorfizmem pierscieni, bo dla kazdych
x,y € Z mamy:
Tn(fl' =+ y) = Tn(l') +n Tn(y)a T'n(l' : ?J) = 7ﬂn(x> ‘n rn(y)a 7071(1) =1L
(2) Naturalne funkcje inkluzji:
7. — Q, Q—R, R—-C

sa homomorfizmami pierscieni.
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Uwaga 10.8. Podobnie jak w przypadku grup, mamy pojecie izomorfizmu pierscieni, tzn. bi-
jektywnego homomorfizmu pierscieni. Jesli istnieje izomorfizm pierscieni R — .S, to méwimy ze
pierscienie R i S sa izomorficzne i piszemy R = S. Podobnie jak w przypadku grup, izomor-
ficzne pierécienie majg te same wlasnosci algebraiczne, tzn. np. jesli R jest dziedzing i R = S,
to wtedy S jest tez dziedzina.

Podobnie jak dla grup mamy pojecie produktu pierscieni.
Definicja 10.9. Niech R i S beda pierécieniami. Definiujemy dziatania + i - na R x S:
(r,s)+ (r',s") := (r+rr',s+s§), (r,s)-(r',s):=(r-gr',s-55).
Wtedy trojka (R x S, +,-) jest pierScieniem zwanym produktem pierscieni R i S, np. mamy:
Orxs = (Or, 0s).
Twierdzenie 10.10. Niech R, S bedg piericieniami.
(1) Jesli R, S sq pierscieniami z jedynkq, to R X S jest piericieniem z jedynkaq.
(2) Jesli R, S sq pierscieniami przemiennymi, to R X S jest pierscieniem przemiennym.

(3) Mamy:
(Rx S)" =R"xS"
Dowdd. Latwe dowody punktow (1) i (2) pomijamy. Dla dowodu (3) wezmy (r,s) € R x S.
Wtedy mamy:
(rs) € (RxS) <3 s)eRxS  (rs) () =(lgLs) = (r,s) - (r.s)

sSIeRI‘es rr' =1g=71'r, s =1g=15"s

& (r,s) € R x 5™
Czyli faktycznie: (R x S)" = R* x S*. O
Uwaga 10.11. Produkt pierScieni R x S prawie nigdy nie jest dziedzing (chyba, ze np. R
jest dziedzing i S = {0}), bo mamy:

(r,0) - (0,s) = (0,0).

Twierdzenie 10.12. Zalozmy, zZe liczby n,m > 1 sq wzglednie pierwsze. Wtedy nastepujaca
funkcja:

[l = Loy X L, f(z) = (rp(x),ra(z))
jest izomorfizmem pierscient.
Dowdd. Wiemy, ze jesli k | [, to wtedy funkcja

v (Lo, +1) = (L, +r)
jest homomorfizmem grup, tzn.
Va,ye€Zy i (2 1Y) = (@) +5 e (y)-
Podobnie mozna pokazaé, ze:
Va,y €, e (T y) =r(x) g re(y).

Czyli funkcja ry, : Z; — Zy jest homomorfizmem pierécieni (gdy & | 1). W szczegdlnoscei,
funkcje:
To ' Ly —> Lin, Tm : Lipn — Loy
s3 homomorfizmami pierscieni. Wezmy z,y € Z,,,. Wtedy mamy:
(rm () +m Tm(Y), () +0 70 (y))
(rm (), 7 (2)) + (rm(y), m(y))
= f(z) + f(y)-
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Podobnie pokazuje sie, ze:

Czyli funkcja f jest homomorfizmem pierscieni. Pozostaje pokazac¢, ze f jest bijekcja. Mamy:
| Zpr | = mn = | Ly X Zy, |,

czyli wystarczy pokazaé, ze f jest ,,1-1”. Na mocy Twierdzenia [5.19 (traktujac f jako homomor-
fizm grup addytywnych), wystarczy pokazac, ze ker(f) = {0}. Mamy:

ker(f) = {2 € Zumn | f(2) = 0z, x 2, } -
Dla kazdego z € ker(f) mamy:
(0,0) = 0z,,xz, = f(z) = (rm(z),ra(2)) -
Stad dostajemy 7,,(x) = 0 oraz r,(z) = 0, czyli:
m|x oraz n|x.

Poniewaz m i n sa wzglednie pierwsze, otrzymujemy ze mn | x, tak wiec z = 0, poniewaz
T € ZLimn. Stad ker(f) = {0}, co nalezalo pokaza¢. O

Definiujemy ogélnie jadro homomorfizméw pierscieni w ten sam sposoéb, jak byto ono uzyte
w powyzszym dowodzie.

Definicja 10.13. Jesli f : R — S jest homomorfizmem pierscieni, to jgdro f definiujemy jako:
ker(f) :=={z € R | f(z) = 0s}.
Kolejna definicja jest zwigzana z pierscieniami reszt.

Definicja 10.14. Funkcja FEulera, oznaczana:
@ :INs; — Ny
jest zdefiniowana w nastepujacy sposob:
o(n):={ke{1,2,...,n—1} : NWD(k,n) = 1}|.
Uwaga 10.15. Wiemy, ze:
7: ={k€Z, | NWD(k,n) = 1}.
Stad mamy:
p(n) =12,

Powyzsza uwaga ma zwiazek z nastepujacym twierdzeniem, ktore uogolnia Mate Twierdzenie
Fermata.

Twierdzenie 10.16 (Twierdzenie Eulera). Niech k,n > 0 bedg wzglednie pierwsze. Wtedy
mamy:
n?® =1 (mod k).
Dowdd. Wystarczy pokazaé, ze:
rr(n)?®) =1
w grupie Z;.
Element ri(n) nalezy do Z;, poniewaz:

NWD(k,n) =1 = NWD (k,ri(n)) = 1.
Poniewaz | Z;, | = p(k), tak wiec na mocy Wniosku dostajemy, ze 14(n)?*) = 1 (w grupie
7)), co nalezato pokazac. O
Uwaga 10.17. Poniewaz dla liczby pierwszej p mamy:
e(p) =12, =p—1,

tak wiec faktycznie Twierdzenie Eulera uogélnia Male Twierdzenie Fermata.
64



Teraz chcemy policzy¢ wartosé ¢(n) dla dowolnego n > 1. Okazuje sie, ze jest to mozliwe
jesli tylko umiemy roztozy¢ n na czynniki pierwsze. Potrzebujemy dwoch lematow.

Lemat 10.18. Jesli p jest liczbg pierwszg i m > 1, to wtedy:
p (™) =p" —p"

Dowdd. Liczba k € N nie jest wzglednie pierwsza z p™ wtedy i tylko wtedy, gdy k jest wielo-
krotnoscig p. Wielokrotnosci p w zniorze Z,m = {0,1,...,p™ — 1} to dokladnie:

0-p,1-p2:-p,....(p" " =1)p

i jest ich p™~ 1. Stad mamy:

(") = Zpm | =p" —p",
co nalezato pokazaé. O
Lemat 10.19. Jesli k,l > 1 sq wzglednie pierwsze, to wtedy:
p(kl) = @o(k)e(l).

Dowdd. Wiemy, ze:

(k) = | Zy, |
Poniewaz k i 1 sa wzglednie pierwsze, to z Twierdzenia [10.12| dostajemy, ze:
Zkl = Zk X Zl

(izomorfizm pierscieni). Stad mamy, ze:
Zy = (L x 1) =75 X 7},
gdzie rownos¢ wynika z Twierdzenia [10.10f(3). Czyli mamy:
o (kl) =2y | = | Ze X Z | = | Zi. | - | Z[ | = p(k)e(l),
co nalezato pokazac. O

Twierdzenie 10.20. Zatozmy, ze

n:plfl-...-pfl,
gdzie p1,...,p; to parami rozne liczby pierwsze @ ky, ...,k > 0. Wtedy mamy:
k k1—1 k Ty —1
pn)= (P —p* ) - (pll - )

Dowdd. Liczby pi*, ... p}* sa wazglednie pierwsze. Uzywajac Lematu m (i prostej indukcji)

dostajemy:
p(n) =¢<p’f1-----pfl> =<p(p'fl)---~-so<pfl>-
7 Lematu dostajemy, ze dla kazdego ¢ < [ mamy:
o (") =i =P,
co daje teze. 0
Przyktad 10.21. Obliczmy ¢(100) i ¢(315).

©(100) = ¢ (2 -5%) = (22 = 2") (5* = 5'") =220 = 40,

(315) = (3°-5-7) = (3> =3)(5-1)(T—1)=6-4-6 = 144.
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Niech R bedzie pierScieniem przemiennym z jedynka. Chcemy zdefiniowaé pojecie wielo-
mianu o wspolezynnikach z R. W analizie, wielomian (o wspotczynnikach rzeczywistych) jest
rozumiany jako funkcja f: R — R postaci:

flx)=ao+ a1z + ...+ ayz”
dla pewnego n € N i pewnych ag, ay,...,a, € R.

Jednak np. nad cialem skoniczonym Z,; mamy trzy r6zne wielomiany:

f@)=1+=z, nx)=1+2% g(z)=1+2°
dajace te same funkcje:

Czyli f,g,h powyzej to te same funkcje, ale r6zne wielomiany! To jest dobry moment, aby
wreszcie formalnie zdefiniowa¢ czym jest wielomian.

Definicja 10.22. Wielomian o wspotczynnikach z pierscienia przemiennego z jedynka R defi-
niujemy jako nieskoriczony ciag (ag, a1, ag, . ..) elementow R (czyli dla kazdego i mamy a; € R),
taki ze:

dn Vk>=n ap =0,
tzn. nasz ciag jest postaci:

(ag, ai, ag, ..., a0y, O, 0, .. )
Taki wielomian (czyli powyzszy ciag) oznaczamy przez:

ap+ a1 X + ... +a, X" lub przez Z a; X
i=0

Uwaga 10.23. Pokrotce: wielomian jest zdefiniowany jako ciag jego wspotczynnikow.
Ponizej kolejne definicje zwiazane z wielomianami.

Definicja 10.24. Niech f = a9+ a1 X + ... + a, X" bedzie wielomianem.
(1) Element ag nazywamy wyrazem wolnym wielomianu f.
ielomian (0,0, ...) nazywamy wielomianem zerowym.
2) Wielomi 0,0 elomi
(3) Wielomian postaci (ao, 0,0, ...) nazywamy wielomianem statym.
(4) Jesli a,, # 0, to:
i) liczbe n nazywamy stopniem wielomianu f;
i) liczbe v v stopni elomi
(ii) wspotezynnik a,, nazywamy wspdtczynnikiem wiodgeym wielomianu f;
iii) jesli a, = 1, to méwimy ze [ jest wielomianem unormowanym;
i) jesli 1. to méwimy ze f jest wielomi y
(iv) wielomian zerowy nie ma stopnia.

Przyklad 10.25. Niech R = Z. Wtedy
3+5X +1X7?

to unormowany wielomian stopnia 2 o wyrazie wolnym réwnym 3. Powyzszy wielomian zapisu-
jemy po prostu jako 3 +5X + X2,

Definicja 10.26. Zbiér wielomianéw o wspotczynnikach z pierécienia przemiennego z jedynka
R oznaczamy przez R[X].

Wiemy, ze wielomiany o wspoétczynnikach z R nie sa funkcjami R — R, ale wciaz takie
wielomiany wyznaczaja funkcje R — R.

Definicja 10.27. Niech
f=a+uX+...+a,X" € RIX]|.
Wielomian f wyznacza nastepujaca funkcje wielomianowq:

F:R— R, F(r)=ao+ar+...+a,r".
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Uwaga 10.28. Kazda funkcja wielomianowa jest elementem pierscienia funkcji R jak w
Przykladzie 0.§(4) (dla X = R).

Teraz chcemy aby sam zbior wielomianow R[X| stal sie pierscieniem. Czyli definiujemy dzia-
tania +,- na zbiorze R[X]| w ,sensowny sposob”, czyli tak aby byly zgodne z dzialaniami w
pierécieniu funkcji R7.

Definicja 10.29. WeZzmy
f = (ao,al,ag, .. ) < R[X], g = (b07b17 bg, .. ) € R[X]
Definiujemy:
f+g = (a0+b0,a1 +bl,a2—|—b2,...),

f-9:=(co,c1,¢2,...),
gdzie dla kazdego £ € N mamy:

k
Cr = aobk -+ albk,1 + ..+ ak,1b1 + Clkbo = Z aibk,i = Z G,ibj.
=0 i+j=k

Przyklad 10.30. Niech:
f=1+XeZ[X], g=1+2X+X*cZ[X].
Wtedy mamy:
fHg=01+X)+ (1+2X +X?) =2+3X + X,
f9=(14+X) (142X + X?) = 1-1+(1-241- 1) X +(1-1+1-2) X*+(1-1) X® = 143X +3X°+X°.
Trzeba jeszcze sie upewnié, ze zbior wielomianow jest zamkniety na dziatania z Definicji[10.29]

tzn. ze otrzymane w tej definicji ciagi sa faktycznie wielomianami. Do tego stuzy nastepujacy
wynik.

Twierdzenie 10.31. Niech f,g € R[X]. Wtedy f + g, f - g € R[X] oraz jesli
f+9#0# [y,
to mamy:
deg(f + g) < max (deg(f), deg(g)), deg(f - g) < deg(f) + deg(g).
Dowdd. Niech:
f=a+auX+...a, X", g=by+0 X+...+0,X",
gdzie a,, # 0 # b, tzn.:
deg(f) =n,  deg(g) =m.
Bez zmniejszenia ogblnosci mozemy przyjac, ze n > m, czyli zachodzi:
n = max (deg(f), deg(yg)) .
Wtedy mamy:
f+g="(ag+by)+(a +b)X + ...+ (Qm + b)) X" + @1 X"+ 4 a, X7,
czyli faktycznie:
deg(f + g) < n = max (deg(f), deg(g)) -

Podobnie mamy:

fg = agby + (arby + agh1) X + ... + amb,, X",
czyli deg(f - g) < deg(f) + deg(g). m

Stad dziatania z Definicji [10.29| sa dziatlaniami na zbiorze R[X].
Twierdzenie 10.32. Jesli R jest pierscieniem przemiennym z jedynkq, to R[X] jest tez piers-

cientem przemiennym z jedynkq.
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Dowdd. Wprost z definicji dzialania +, - na R[X] sa przemienne. Latwo zauwazy¢, ze (R[X], +)
jest grupa, gdzie Og[x] to wielomian zerowy. Widaé tez, ze elementem neutralnym - jest wie-
lomian staly o wyrazie wolnym réwnym 1. Pozostaje do pokazania rozdzielno$¢ - wzgledem +
oraz tacznosé -. Wezmy f, g, h € R[X], takie ze:

f:ZGiXi, gzzijj, h:chXk.
; ] k

rozdzielno$¢ - wzgledem +
Mamy (f +g)-h =Y, d X", gdzie:

l l l
dl = Z(al + bi)clﬂ' = Z a;Ci—; + Z bicl,i .
=0 i=0

i=0 = =
—_— Y
dj dy

feh=Y dX' g-h=> d/X"

Ale zachodzi:

Czyli faktycznie:

(f+9)-h=f-htg-h
tacznosé -
Mozna policzy¢, ze (f-g)-h =Y., d, X", gdzie:

d; = Z a;bjcy.
i+j+k=l
Podobnie dostajemy f - (g-h) =Y, d; X", co daje lacznosé -. O
Zobaczymy teraz co sie dzieje w sytuacji gdy R jest dziedzina.

Twierdzenie 10.33. Zaldzmy, ze R jest dziedzing i f,g € R[X]\ {0}. Wtedy zachodzi:

(1) deg(fg) = deg(f) + deg(g) (w szczegdlnosci: fg € R X]|\ {0});

(2) R[X] jest dziedzing.
Dowdd. Niech:

f=a+auX+...+a, X", g=by+0X+...+0,X",

gdzie a, # 0 # b,. Wtedy mamy:

deg(f) = mn, deg(g) = m.
Wiemy, ze:
fg = aobg + (albo + aobl)X + ...+ (lmmen+m.

Poniewaz R jest dziedzing oraz a, # 0 # b,, tak wiec a,b, # 0 oraz deg(fg) = n + m, co daje
punkt (1).
Punkt (2) wynika natychmiast z (1). O

Uwaga 10.34. Mozna podaé (¢wiczenia) przyklad np. f, g € Z4[X], takich ze:

deg(fg) < deg(f) + deg(g).
Definicja 10.35. Niech R bedzie pierscieniem przemiennym z jedynka, f € R[X]| oraz r € R.

(i) Przez f(r) oznaczamy warto$¢ na r funkcji wielomianowej pochodzacej od f.
(i) Definiujemy:
ev, : R[X]| — R, ev.(f) == f(r)

i funkcje ev, nazywamy funkcjq ewaluacji (w r).
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Uwaga 10.36. (1) Dziatania dodawania i mnozenia wielomian6w sa tak zdefiniowane aby
dla kazdego r € R funkcja ev,. : R[X]| — R byla homomorfizmem pierscieni, tzn. mamy:

Vg€ RIX] (f+9)r) = [lr)+g(r).

~
dodawanie w R[X] dodawanie w R

Podobnie dla mnozenia.
(2) Cala ,duza” funkcja

U : R[X] — RE, U(f)=F,
gdzie F' jest funkcja wielomianowa wyznaczong przez f, jest tez homomorfizmem pier-
Scieni.
(3) Mamy tez nastepujacy monomorfizm pierscieni:

a: R — R[X], a(r) = (r,0,0,...),
gdzie (r,0,0,...) jest wielomianem stalym o wyrazie wolnym 7.
Ponizej definiujemy pojecie analogiczne do pojecia podgrupy.

Definicja 10.37. Niech R bedzie pierécieniem i S C R. Podzbior S nazywamy podpierscieniem
R, gdy:
(i) S jest podgrupa (R, +);
(ii) dla kazdego z,y € S mamy:
x-y€eS.
Jesli R jest pierscieniem z jedynka, to S nazywamy podpiericieniem z jedynkg, gdy S dodatkowo
spehia:

(iii) 15 € S.
Uwaga 10.38. Tak jak w przypadku grup i podgrup mamy:
(1) jesli S jest podpierscieniem R, to S jest pierScieniem z dziataniami z R obcietymi do S;

(2) jesli S jest podpierscieniem z jedynka R, to S jest pierscieniem 7z jedynka z dziataniami
z R obcietymi do S.

Przyktlad 10.39. (1) Z jest podpierscieniem z jedynka @Q, Q jest podpierscieniem z jedynka
R i R jest podpierscieniem z jedynks C.
(2) 27 jest podpierscieniem Z, ale nie jest podpierscieniem z jedynka.
(3) Teraz dosé¢ nietypowy przyklad: R x{0} jest podpierscieniem R x R, ale nie jest pod-
pierécieniem z jedynka. Pomimo tego, R x{0} jest pierscieniem z jedynka! Mamy:

Irxqoy = (1,0) # (1,1) = lr x -

Rowniez pierscien zerowy jest zawsze podpierscieniem i jesli jest podzbiorem wtasci-
wym, to nie jest podpierscieniem z jedynka. Jednak sam w sobie pierScien zerowy jest
pierécieniem z jedynka, ktora tez jest zerem tego pierScienia.

(4) M, (Q) jest podpierscieniem z jedynka M, (R) i M,(R) jest podpierscieniem z jedynka
M, (C).

(5) Zs nie jest podpierscieniem Z,.

(6) Zli] jest podpierscieniem C.

Uwaga 10.40. Jesli f : Ry — Rs jest homomorfizmem pierscieni, to f(R;) jest podpierscieniem
Rs. Jesli f jest monomorfizmem, to mamy:

Ry = f(Ry).
Przyktad 10.41. Rozwazmy monomorfizm a : R — R[X] z Uwagi [10.36(3). Czyli mamy:
R=a(R),
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gdzie a(R) jest podpierscieniem R sktadajacym sie z wielomianow stalych. Czesto utozsa-
miamy R z powyzszym «(R) i piszemy R C R[X] uznajac R za podpierScieni pierScienia
wielomianow R[X].
Definicja 10.42. Piersciei wielomianéw dwoch zmiennych to:

R[X,Y]:= RIX][Y].
Analogicznie przez prosta indukcje mozna zdefiniowaé pierécienn wielomianéw n zmiennych dla

dowolnego n > 0:
R[Xl, e 7Xn] = R[Xl, e 7Xn71”Xn]-

70



11. CIALO ULAMKOW 1 PIERSCIENIE EUKLIDESOWE

Wiemy, ze z dziedziny Z mozna dosta¢ cialo Q, tzn.:
(i) Z jest podpierscieniem Q;
(ii) Dla kazdego = € Q istnieja m,n € Z, takie ze:
r=—.
m
Chcemy zrobi¢ co$ podobnego dla dowolnej dziedziny R, tzn. chcemy otrzymaé cialo K, takie
ze (1)—(ii) powyzej beda spetnione dla “R” zamiast “Z” oraz “K” zamiast “Q".
Ustalmy dziedzine R. Definiujemy nastepujaca relacje ~ na zbiorze R x (R \ {0}):

(r1,51) ~ (12, 52) & 7189 = T257.

Twierdzenie 11.1. Powyzsza relacja ~ jest relacjg rownowaznosci.

Dowaod. Zwrotnos¢ i symetrycznosé relacji ~ sa oczywiste. Dla dowodu tranzytywnosci wezmy
r1,T9,T3 € R oraz s, 89,83 € R\ {0}, takie ze:

(Tlasl) ~ (r2782>7 (T2a82) ~ (T3753).
Pokazemy, ze (ry,s1) ~ (73, 3). Z zalozenia mamy, ze:

1S9 = 281, 283 = I'3S2.

Mnozac pierwsza z tych rownosci obustronnie przez s3 dostajemy (uzywajac drugiej rownosci):
158283 = S17283 = S1I'3S2.
Czyli mamy:
718382 = 1I'351S52.
Uzywajac Prawa Skracania dla Dziedzin (i zalozenia: sy # 0), mamy ze 1183 = rgsy, czyli
(r1,81) ~ (73, 83), co mielismy pokazac. O

Definicja 11.2. Jesli R i ~ sa j.w., to dla (r,;s) € R x (R \ {0}) klase abstrakcji [(r,s)]~
nazywamy utamkiem o liczniku r oraz mianowniku s i oznaczamy ja przez:
r

S= [(1,8)]~-

Widac¢, ze faktycznie ciatlo (Q powstaje z dziedziny Z w opisany powyzej sposob. Definiujemy
teraz dzialania + i - na zbiorze utamkoéw pochodzacych od naszej ustalonej dziedziny R:

™ To . 7‘182—|—T281

rire ™ )

S1 52 81827 51 52 5152

Twierdzenie 11.3. (1) Powyzsze dziatania sq dobrze okreslone, tzn. nie zalezq od wyboru
licznikow 1 mianownikow.
(2) Zbior utamkow z powyzszymi dziataniami jest ciatem, ktore oznaczamy przez K.
(3) Nastepujaca funkcja:

T
piRo K ()=

jest monomorfizmem pierscient.

Dowdd. (1) Wezmy 71,77, 19,75 € R oraz s, s}, 2,55 € R\ {0}, takie ze:
T Ty  Th
= — =
S1 Sq S9 So
Czyli mamy:

/ / / /

riry T

T1798) Sy = 11755189
5152
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czyli mnozenie utamkow jest dobrze okreslone.
7 dodawaniem jest trudniej, co nie powinno dziwi¢ w przypadku utamkow. Liczymy:

/ / ! / / !
0 = (r1s] — ris1) sa8y — (r2shy — 15982) 515
—— ——
0 0
!/ ! ! !/ !/
! /! !/ ! !
= (r189 + 1r951) 8185 — (1185 + r5s]) $182.

Stad dostajemy:
T1Sy — T9S1  TySh — rhs)

)

S159 s sh
czyli dodawanie utamkow jest rowniez dobrze okreslone.
Warunki z Definicji [9.2] tatwo sie sprawdza. Zobaczmy np. tacznosé dodawania:
Ty T r3  T1S9+T9S1 T3
-+ +t—=——+—
S1 S92 S3 S5159 S3
(r189 4+ 1281) S3 + 135152
515253
715283 + 725183 + 735152

515283
Podobnie sprawdza sie, ze:

no (7“2 N rg,)  T18983 + 125183 + 135152

S S9 S3 515253
Mamy tez:
0 1
Ok = - lg = —.
K= K=7
Udowodnimy teraz, ze K jest cialem. Wezmy:
r
S € K\ {0k}.
Mamy:
r 0
- 7& OK =
S 1

stad dostajemy:
r=r-1#0-s=0.
Czyli r # 0 i stad:

czyli K jest cialem.
WezZzmy funkcje:

Mamy wtedy:

rL+r r r
@ (ri+r) = 11 2=T1+T2=S0(7‘1)+90(7‘2),
T T T
90(7‘17“2):%Z%'%Z@(ler's@(ﬁ),

1
90(1) = I = 1k,
czyli ¢ jest homomorfizmem piericieni.
Aby sprawdzié¢, ze ¢ jest monomorfizmem liczymy jadro:

ker(gp):{rER|gzOK:%}:{refHr-le-l}:{O}.
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Stad ker(y) = {0}, czyli ¢ jest monomorfizmem.

Definicja 11.4. Ciato K z Twierdzenia nazywamy ciatem utamkow R.
Uwaga 11.5. Czesto utozsamiamy R z p(R) (z Twierdzenia[11.3(3)) i piszemy R C K.

Przyktad 11.6. Jesli F' jest ciatem to przez F/(X) oznaczamy cialo utamkow pierscienia wielo-
mianéw F[X], ktore to cialo nazywamy ciatem funkcji wymiernych (o wspolezynnikach z ciala

Zmierzamy teraz do ogélnego pojecia dzielenia z resztg w pierscieniach. Na poczatek, sfor-
malizujmy pojecia dzielenia z reszta w pierscieniu Z.
Dla kazdych a € Z.,b € Z.\{0} istniejg q,r € Z, takie Ze:
a=b q +_r oraz |r| < |b].
~—

iloraz reszta

Czyli w celu sformalizowania pojecia dzielenia z reszta w pierscieniu Z istotna byta funkcja
wartosci bezwzglednej:
|-|:7Z — N.
Teraz ogoélna definicja.
Definicja 11.7. Pierécien R jest euklidesowy, gdy R jest dziedzing oraz istnieje funkcja
d: R\ {0} = N,

zwana normq euklidesowq, taka ze:
dla kazdych a € R,b € R\ {0} istnieja ¢, € R spelniajace:

a=bg+r oraz (6(r) <é(b) lub r=0).
Przyklad 11.8. Poniewaz dla kazdego n € Z mamy:
In| =0 & n =0,

tak wiec funkcja
|-|:Z\{0} - N
jest norma euklidesowa na pierscieniu 7 i piericien Z jest euklidesowy.
Zobaczymy jeszcze dwa przyktady pierscieni euklidesowych.
Twierdzenie 11.9. Pierscieri Gaussa Z.[i| jest euklidesowy z nastepujgeq normg euklidesowq:
§:7ZJi]\ {0} = NN, §(n+mi) = |n+mil*> =n? + m?
Dowaod. Wezmy:

a = aj + asi € 7ZJi], b=by + bsi € Z[i] \ {0}.
Na poczatek dzielimy a przez b w ciele C, czyli bierzemy «, 8 € R, takie ze:
. a

a+ fi= 7

(na konwersatorium zobaczymy, ze o, f € Q). Teraz wezmy q1, g2 € Z, takie ze:
o-al<y  1B-al<y
Definiujemy:
q:=q + g1 € Z]i], r:=a—bq € Zli].

Oczywiscie zachodzi warunek a = bg + r, tak wiec musimy tylko sprawdzi¢, czy |r|*> < |b|?
(poniewaz dla kazdego z € C mamy |z| = 0 & z = 0, wiec, podobnie jak w przypadku
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pierécienia 7, nie musimy sie przejmowaé bardziej skomplikowanym warunkiem). Zauwazmy,

ze.
| 2

r? < b & ‘Z?<1 & o <1
Sprawdzimy ten ostatni warunek. Mamy, ze:
=a—>b = L
r=a— bq ;=3 ¢
Stad dostajemy:
ri2 a 2
‘E B ‘E a q‘
= |(a+ Bi) = (q1 + g20) [
= (@ —q) + (B — @) il?
=(a—q)°+ (8- q)
e
~\2 2 2
co nalezato pokazaé. O

Wiemy juz, ze pierScienie Z oraz Z[i] sa euklidesowe. Zobaczymy teraz jeszcze jeden typ
przyktadow pierscieni euklidesowych. Wielomiany mozna dzieli¢ z reszta, tzn. mamy ponizsze.

Dla kazdych F € R[X], H € R[X]\ {0} istniejg Q, R € R, takie ze:
F=HQ+R oraz (deg(R) < deg(H) b R=0).

Powyzsze pozostaje prawda, gdy zastapimy R przez dowolne cialo (dowéd pomijamy, bo jest
analogiczny jak w przypadku ciata R).

Twierdzenie 11.10. Niech K bedzie ciatem. Wtedy pierscien wielomiandw K[X] jest euklide-
sowy, gdzie normq euklidesowq jest funkcja stopnia wielomianu:

deg: K[X]\ {0} — IN.

Zajmiemy sie teraz najwiekszym wspolnym dzielnikiem (NWD). Aby wyznaczy¢ NWD(n, m)
dla n,m > 0 uzywamy dzielenia z reszta w algorytmie Euklidesa.

Przyklad 11.11. Zastosujemy algorytm Euklidesa dla n = 854 i m = 350.
Krok 1 Dzielimy z reszta 854 przez 350:

854 = 350 - 2 + 154.
Krok 2 Dzielimy z resztg 350 przez 154:
350 = 154 - 2 + 42.
Krok 3 Dzielimy z reszta 154 przez 42:
154 =42 -3+ 28.
Krok 4 Dzielimy z reszta 42 przez 28:
42 =28 -1+ 14.
Krok 5 Dzielimy z reszta 28 przez 14:
28=14-2+0.
Ostatnia reszta to 0, czyli w tym momencie algorytm sie zatrzymuje i dostajemy:

NWD(854, 350) = 14.
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Analizujac powyzszy przyktad, ogdlna procedura znajdowania NWD(n, m) dla n,m > 0 jest
nastepujaca:

e dzielimy z reszty n przez m:
n=mq + 71, || < |ml;
e dzielimy z reszta m przez ry:
m=Trigs + 12, 2| < [ral;
e dzielimy z reszta ry przez ry:
T1 = T2q3 + 73, |ra| < |rs|
i tak dalej... W konicu dostajemy nastepujaca sytuacje:
Th—1 = TkQr+1 + 0, re # 0.
Wtedy algorytm Euklidesa daje, ze:
NWD(n,m) = ry.

Mozemy powyzszg procedure przeprowadzi¢ w dowolnym pierscieniu euklidesowym, ale aby wie-
dzie¢ do czego ta procedura ma prowadzi¢ musimy najpierw zdefiniowaé¢ pojecie najwickszego
wspolnego dzielnika (w dowolnym pierécieniu przemiennym z jedynka). Na poczatek zdefiniu-
jemy pojecie dzielnika.
Definicja 11.12. Niech R bedzie pierscieniem przemiennym z jedynka oraz x,y € R.
(1) Mowimy, ze x dzieli y (w pierscieniu R), co oznaczamy zx | y, gdy istnieje r € R, taki ze
y=rx.
(2) Mowimy, ze x jest stowarzyszony z y (w pierScieniu R), co oznaczamy x ~ vy, gdy z | y
oraz y | x.

Przyklad 11.13. (1) Jeshi x,y € Z, to mamy:

T~y & r=y lub = —y.
(2) Jesli F,W € R[X], to mamy:
F~W & Jre R\{0} F=rW.

Analogicznie, jesli zamiast R mamy dowolne ciato.

Uwaga 11.14. Latwo zauwazy¢, ze:

(i) relacja podzielnosci | jest zwrotna i przechodnia, tzn.
x|z oraz zlyiylz = xlz
(ii) relacja stowarzyszenia ~ jest relacja rownowaznosci.

Definicja 11.15. Niech R bedzie pierscieniem przemiennym z jedynka oraz z,y,z € R. Mo-
wimy, ze z jest najwiekszym wspdlnym dzielnikiem (n.w.d.) x i y (w pierscieniu R), gdy:

(i) z[ziz]y;
(ii) dla kazdego 2’ € R mamy:

Zx oraz 2|y = z

Uwaga 11.16. (1) W Definicji [11.15
e punkt (i), moéwi ze z jest wspolnym dzielnikiem x i y;
e punkt (ii), mowi ze z dzieli kazdy wspdlny dzielnik z i y.
(2) Stowo ,najwickszy” w Definicji odnosi sie do relacji podzielnosci |, a nie do innych

mozliwych relacji na R. Np. nie odnosi si¢ ono do relacji porzadku < na Z!
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(3) Dla R = Z mamy zawsze dwa najwicksze wspolne dzielniki (w sensie Definicji [11.15),
np. najwieksze wspolne dzielniki 4 i 6 to 2 oraz —2. Jedli z tych dwodch najwiekszych
wspolnych dzielnikéw, wybierzemy ten dodatni, to otrzymujemy ,klasyczny” najwiekszy
wspolny dzielnik (oznaczany NWD), ktory jest tez najwiekszy w sensie relacji porzadku
< naZ.

(4) Jak wida¢ w punkcie (3), n.w.d. nie jest wyznaczony jednoznacznie, tzn. mamy:

(i) jesli z oraz 2’ san.w.d. z iy, to z ~ 2/;
(i) jesli z jest nw.d. x iy oraz z ~ 2/, to 2’ jest rowniez n.w.d. z i y.
(5) Sa przyktady pierécieni i elementéw w nich, dla ktorych n.w.d. nie istnieje.

Zobaczymy teraz, ze w pierscieniach euklidesowych n.w.d. istnieja i ze mozna je wyznaczaé
uzywajac algorytmu Euklidesa.

Twierdzenie 11.17. Niech
d: R\ {0} - N
bedzie normq euklidesowq w dziedzinie R oraz a,b € R\ {0}. Bierzemy teraz q;,r; € R, takie Ze
a=bqp +nr d(ry) < o(b),
b=riga+r2 d(r2) < 0(r),
=122 + 13 0(rs) < 6(r2)

1 tak dalej ... Ta procedura musi sie urwaé po skonczenie wielu krokach, tzn. dla pewnego k > 0
mamy (przyjmujgc ro :=b,r_1 :=a):

Th—2 = Tk_1qk + Tk 3(rg) < 6(rg—1),

Th—1 = Tkqr+1 tzn. vy | Tpo1.

Wtedy ry jest n.w.d. a ¢ b.

Dowod. Mamy pokazaé, ze:

(i) ry | @ oraz ry | b,
(ii) dla kazdego d € R zachodzi:

d|a oraz d|b = d| rg.
Dla dowodu (i) zauwazmy, ze:
Tk—1 = Tkqr+1 = Th | TE-1
Tak wiec, uzywajac nastepujacej oczywistej implikacji:
x|y oraz x|z = rlyLz
dostajemy, ze:
Th—2 = Th—1qQk + Tk OTAZ T} | Th_1 = Tk | Te—2.

Postepujac tak dalej (indukcyjnie) otrzymujemy:

76 | The1, Tk | Theooo oo TR |71, TR TO TR To0,
\b,./ ~—~
a

co pokazuje (i).
Dla dowodu (ii) zalézmy, ze d | a oraz d | b. Wtedy mamy:

a=bq +m = ri=a—bq = d|r,
d|a,d|b
b = e —
T1qo + T2 = To b 71q2 = d’Tg
djb,d|r1
i tak dalej ... Indukcyjnie dostajemy, ze d | ry, co nalezato pokazac. 0
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Przyklad 11.18. (1) Wezmy R = Z[i]. Wtedy norma euklidesowa to:

d:7Z[i)\ {0} = N, S(n +mi) == |n+mil* = n® + m>.
Wyznaczymy n.w.d. a = —24 + 2¢ oraz b = —1 + 13i.

Krok 1 Dzielimy z resztyg —24 4 2i przez —1 + 13:.
—24 420 =(—1+13i)- 20 +2+4i
—_— — 7 =

a b q1 71

(procedura dzielenia z reszta w pierscieniu Z[i| byta opisana w dowodzie Twierdzenia
11.9). Upewniamy si¢, ze na pewno podzielilismy z reszta, poniewaz mamy:

20 = 2% + 4% = §(2 + 4i) < §(—1 + 13i) = (—1)* + 13* = 170.

Krok 2 Dzielimy z reszta —1 + 13¢ przez 2 + 4.
—1tl3i:w'w+w.
1 q2 T2
Upewniamy sie, ze na pewno podzieliliSmy z reszta:
10 = (—1)> + 3% = 6(—1 + 34) < §(2 + 4i) = 20.
Krok 3 Dzielimy z reszta 2 + 47 przez —1 + 3i.
w = (—1+ 39) U

1 T2 q3

+ 0 .
—~—

T3

Czyli ostatnia niezerowa reszta ro = —1 4 3¢ jest n.w.d. —24 + 27, —1 4 134.
Wezmy R = Q[X]. Wtedy norma euklidesowa to:

§:Q[X]\ {0} — N, O(F) :=deg(F).
Wyznaczymy n.w.d. a = X? +7X +6 oraz b = X? —5X — 6.

Krok 1 Dzielimy z resztg X2 + 7X + 6 przez X? — 5X — 6.
X2 47X 4+6=(X*-5X—6)-_ 1 +12X +12.
—_—— ~ -~ ~ Y=

a b q1 1

Upewniamy si¢, ze na pewno podzieliliSmy z reszta:
1 = deg(12X +12) < §(X* - 5X —6) = 2.
Krok 2 Dzielimy z reszta X2 — 5X — 6 przez 12X + 12.

—_—— \ 12 2 ~—

r1 T2

1 1
X2—5X—6:(12X+12)-(—X——>+ 0
N——’

b

q2

Czyli ostatnia niezerowa reszta r; = 12X + 12 jest n.w.d. X? +7X +6, X2 —5X — 6.
Poniewaz 12X + 12 ~ X + 1 (Przyktad [11.13{(2)), tak wiec X + 1 jest rowniez n.w.d.
X?+7X +6,X? —5X — 6, na mocy Uwagi [L1.16(4(ii)), i tenze X + 1 jest w pewnym
sensie ,najladniejszym” n.w.d. X2+ 7X +6, X% — 5X — 6.

Teraz ogodlna obserwacja.

Twierdzenie 11.19. Niech R bedzie dziedzing oraz r,r' € R\ {0}. Wtedy mamy:

/

rer & Jue R v =ur
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Dowdd. ,,<=” (ta implikacja jest prawdziwa w dowolnym pierécieniu przemiennym z jedynka)
Zalozmy, ze r' = ur, gdzie u € R*. Wtedy mamy, ze r | 7. Ponadto mamy r = v~ 'r' (u € R),
czyli mamy tez 1’ | r. Stad dostajemy r ~ r’; co nalezato pokazac.
,=" (tu uzywamy zalozenia, ze R jest dziedzina)
Poniewaz r ~ 1/, tak wiec r | 7’ oraz r' | r, czyli istnieja a,b € R, takie ze:
r' = ar oraz r=br,
co daje:
r = bar.
Poniewaz (z zalozenia) r # 0, z Prawa Skracania dla Dziedzin dostajemy, ze:
1 = ba.
Czyli a € R* oraz r' = ar, co nalezalo pokazac. O

Whiosek 11.20. Jesli R jest dziedzing, a,b,v € R oraz r to n.w.d. a,b, to dowolny n.w.d.
a, b jest postaci ur dla pewnego u € R*.

Przyklad 11.21. Wiemy, ze:
Z[i]* ={1,-1,1,—}
i wiemy tez, ze —1 4 3i to n.w.d. —24 + 24, —1 + 13¢. Stad pozostate n.w.d. —24 + 2i, —1 4 13:
to:
—(=143i) =1-3i, i(—143i) = -3—1, (=i)(—1+3i) =3+1.

Wracamy do obliczen prowadzacych do NWD(350,824). Mamy:
854 =350-24 154, 350 =154 -2+ 42, 154 =42 -3+ 28,
42 =28+ 14, 28=14-2, NWD(350,824) = 14.

Teraz ,.cofamy sie™
14 =—-28+42 oraz 28 =154—42-3

implikuje:
14 =42 — (154 — 3-42) = 154 + 4 - 42.
Ostatnia réwnosé¢ wraz z rownoscia 42 = 350 — 2 - 154 implikuje:
14=—-154+4-(350 —2-154) =4-350 — 9 - 154.
Ostatnia réwnosé¢ wraz z rownoscia 154 = 854 — 2 - 350 implikuje:
14=4-350—-9- (854 —2-350) =22-350 4 (—9) - 854.

Stad zapisalismy 14 (czyli NWD(350,824)) jako ,,Z-liniowa kombinacje” liczb 350 i 824. Podob-
nie mozemy zrobi¢ w dowolnym pierscieniu euklidesowym zastepujac NWD przez n.w.d.

Twierdzenie 11.22 (Rozszerzony algorytm Euklidesa). Niech R bedzie pierscieniem euklide-
sowym, x,y,r € R oraz r to n.w.d. x,y. Wiedy istniejqg a,b € R, takie Ze:

r=ax + by.
Idea dowodu. ,Odwracamy” algorytm Euklidesa jak w przyktadzie powyzej. U

Dualnie do pojecia najwiekszego wspolnego dzielnika mozemy tez zdefiniowaé¢ pojecie najm-
niejszej wspdlnej wielokrotnosci.

Definicja 11.23. Niech R bedzie pierécieniem przemiennym z jedynka oraz z,y,z € R. Mo-
wimy, ze z jest najmniejszq wspdlng wielokrotnoscig x iy (w pierscieniu R), gdy:

(i) z]ziy]z
(ii) dla kazdego 2’ € R mamy:

x|z oraz y|Z = z| 2.
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Uwaga 11.24. Podobnie jak dla najwiekszego wspolnego dzielnika, najmniejsza wspolna wie-
lokrotnosé jest wyznaczona z doktadnoscia do relacji stowarzyszenia oraz najmniejsza wspolna
wielokrotno$¢ moze nie istniec.

Przyklad 11.25. Wiemy, ze dla m,n > 0 mamy:
NWD(m,n) - NWW(m,n) = m - n.
Stad np. dostajemy:

350 - 854 196420
NWW (350, 854) = =

_ - = 14030.
NWD(350, 854) 14

Podobnie jest w dowolnym pier§cieniu euklidesowym (dow6d pomijamy).
Twierdzenie 11.26. Niech R bedzie piericieniem euklidesowym oraz x,y € R. Wtedy najm-
niejsza wspolna wielokrotno$é x,y istnieje i jest postaci:
Y

)

r
gdzie v to n.w.d. x,y.

Przyklad 11.27. 7Z Twierdzenia najmniejsza wspolna wielokrotno$é¢ wielomianow:
X?24+7X 46, X?2-5X—-6
w pierscieniu Q[X] to (uzywajac Przyktadu [11.18|2)):
(X2+7X +6) - (X?—-5X —6)
X+1

Dowod nastepnego wyniku stosuje teorie pierscieni euklidesowych.

= X% —2X? 429X — 30.

Twierdzenie 11.28 (Twierdzenie Bézout). Zatdzmy, ze K jest ciatem, F € K[X] oraz o € K.
Wtedy mamy:

Fla)=0 & (X —a)| F.
Dowadd. “<="
Poniewaz (X — «) | F, tak wiec istnieje Q) € K[X], taki ze:
F=(X—-aoQ.
Wtedy mamy:
F(a) = (X = 2)Q) (a) = (@ = a)Q(a) = 0-Qa) = 0
oy

Zalozmy, ze F(a) = 0. Dzielimy z reszta F' przez X — o w pierscieniu euklidesowym K[X] i
otrzymujemy @, R € K[X], takie ze:
F=(X-a)Q+R, oraz R=0 lub deg(R) < deg(X —a)=1.
Jesli R =0, to (X —a) | F, co nalezato pokazac.
Zatozmy, ze R # 0 i dojdziemy do sprzecznosci, ktora zakonczy dowod. Mamy, ze:
deg(R) < 1 = deg(R) =0 = R e K\ {0}.
Wtedy mamy:
0=Fla)= (X -a)Q@+R)(a) =R #0,
sprzecznosé. O
Definicja 11.29. Niech R bedzie pierscieniem przemiennym z jedynka, F' € R[X]ir € R.
Mowimy, ze r jest pierwiastkiem F', gdy

F(r)=0.
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Przyklad 11.30. Wezmy:
F=1+X+X*+X?eQ[X].
Wtedy mamy F(—1) = 0, czyli z Twierdzenia Bézout dostajemy:
X+1]1+X+X%+ X2
Widac tez, ze:
I+ X+ X+ X =(1+X)+X*1+X)=(1+X) (1+X?),
czyli faktycznie X +1 |1+ X + X2 + X3.
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12. JEDNOZNACZNOSC ROZKLADU
Mamy nastepujace klasyczne twierdzenie:

Twierdzenie 12.1 (Podstawowe Twierdzenie Arytmetyki). KaZda liczba naturalna n > 1 jest
tloczynem liczb pierwszych. Sktadniki tego iloczynu sq jedyne z doktadnoscig do kolejnosci.

Chcemy to twierdzenie uog6lni¢ do przypadku dowolnych pierécieni euklidesowych. Na po-
czatek potrzebujemy ogdlnego odpowiednika liczb pierwszych.
Definicja 12.2. Niech R bedzie dziedzingip € R\ (R*U{0}). Mowimy, ze p jest nierozktadalny,
gdy:

Ya,be R p=a-b = ac€ R lub beR".

Uwaga 12.3. Kazdy element x € R ma ,rozktad”
r=x-1

i ogolniej dla dowolnego v € R* mamy tez ,rozklad™

r=zxzu"u

Element x jest nierozkladalny, gdy takie trywialne rozktady jak powyzej to jedyne rozktady x
na iloczyny elementow R.

Przyklad 12.4. Wezmy n € Z. Wtedy mamy:

n jest nierozkladalny & n=p lub n=—p, gdzie p to liczba pierwsza.

Dla dowodu twierdzenia uogoélniajacego Podstawowe Twierdzenie Arytmetyki do dowolnego
pierscienia euklidesowego potrzebujemy trzech lematow.

Lemat 12.5. Zatozmy, ze:
o R jest pierScieniem euklidesowym,;
x? y7 Z E R;
1 to now.d. x,y;
x| yz.
Wtedy x | .

Dowdd. 7 tego, ze R jest pierScieniem euklidesowym oraz 1 to n.w.d. z,y otrzymujemy (na
mocy Twierdzenia [11.22)), ze istnieja s,t € R, takie ze:

1 =sz+ty.
Mnozac ostatnig rOwnos¢ obustronnie przez z otrzymujemy:
z =sxz + tyz.
Poniewaz x | yz, tak wiec z | tyz. Czyli mamy:
x| sxz oraz x|tyz = x| srz+tyz = 2,
co nalezato pokazac. O

Kolejny wynik mowi o drugiej wlasnosci (pierwsza jest zawarta w Definicji , ktora wy-
roznia liczby pierwsze.

Lemat 12.6. Zatozmy, ze:
o R jest pierscieniem euklidesowym;
e a,bpeR;
e p jest nierozktadalny;
o p | ab.

Wtedy p | a lub p| .
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Dowdd. Niech d € R bedzie n.w.d. a,p. W szczegolnosci d | p, czyli istnieje h € R, taki ze
p = dh. Mamy wtedy:

p=dh oraz p jest nierozkladalny = de R* lub h e R".
Rozwazamy dwa przypadki.

Przypadek 1: d € R*.
Poniewaz d € R*, tak wiec d ~ 1 (przypominam, ze ~ to relacja stowarzyszenia). Czyli mamy:

dtonwd. a,p oraz d~1 = 1 to n.w.d. a,p.
Z Lematu [12.5] (dla © = p,y = a, z = b) otrzymujemy, ze p | b, co wystarczalo pokazac.
Przypadek 2: h € R*.
Poniewaz p = dh oraz h € R*, tak wiec d = ph™!, czyli p | a. Wtedy mamy:
pld oraz d|a = p | a,
co rOwniez wystarczato pokazac. 0

Kolejny wynik méwi, ze w pierScieniu euklidesowym nie istnieje nieskoriczony i istotnie zste-
pujacy ciag w sensie relacji podzielnosci. Dowo6d bedzie szkicowy.

Lemat 12.7. Niech

d: R\ {0} - N
bedzie normg euklidesowq na R. Wtedy nie istnieje nieskoniczony ciqg ag, ay,as, ... € R, taki
ze:
VnelN Ap > Gpit oraz  Qpi1 | ap-

Szkic dowodu. Zaldzmy nie wprost, ze powyzszy ciag istnieje. Definiujemy:
I :={roap +ma+...+ma, | n €N, ro,r,...,7, € R} CR.
Wezmy g € I\ {0}, taki ze §(g) jest minimalna. Wtedy mamy:
dN € N dag,aq,...,ay € R g ="Tolg+1ria+ ... +ryay.
Dzielac z reszta w pierscieniu euklidesowym R oraz uzywajac minimalnosci §(g) otrzymujemy:
VnelN gl an

(uzyjemy tylko tego, ze g | any1).
Z drugiej strony mamy, ze:

ay | ag, ay | ai,...,ay | ay = ay | g =roap +ma;+ ... +ryay.
Tak wiec dostajemy:
an|g oraz g|any = an | any1.

Poniewaz 7z zalozenia mamy, ze ayy1 | ay, tak wiec dostajemy ay ~ an.1, co daje sprzecznosé
7 zatozeniem i konczy dowdd. 0]

Teraz juz mozemy sformulowaé i udowodnié¢ (szkicowo) twierdzenie o jednoznacznosci roz-
ktadu w pierscieniach euklidesowych.

Twierdzenie 12.8. Zaldzmy, ze R jest pierscieniem euklidesowym i a € R\ (R*U{0}). Wtedy

istniejg elementy nierozktadalne py, ..., p, € R, takie ze:
a=DpP1r-..."Pn
oraz rozktad ten jest jednoznaczny z doktadnosciq do kolejnosci czynnikow 1+ stowarzyszenia,
tzn. jesli mamy elementy nierozktadalne q1,...,q, € R, takie Zze a = q1 - ... qn, to wtedy:
(i) n=m,
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(ii) istnieje o € S, taka Ze:

b1~ 4o1)s -+ -3 Pn ™~ Go(n)-

Szkic dowodu. Istnienie rozktadu
Jesli a nie ma takiego rozktadu, to (nieco przewrotnie) element a jest rozkladalny i to w taki
sposob, ze:

dag,a; € R\ R*: a = apay
i np. a; nie ma takiego rozktadu, tzn.
3@10, a1 € R \ R* : a1 = Q10011
i np. ay; nie ma takiego rozktadu, tzn.
daig, a1 € R \ R*: @11 = A110a111---
Wtedy mamy:
aq | a, aiy | ay, Aaiil | a1q, ... ap »~ a, ayjp * ay, ay1p > aiy, - - -

co przeczy Lematowi i pokazuje istnienie rozktadu.
Jednoznaczno$¢ rozktadu
Zatozmy, ze:

Pro - Pn=4q1" .. " qm,

gdzie wszystkie elementy p;,q; € R sa nierozktadalne. Wtedy dzigki Lematowi 1 proste]
indukcji dostajemy:

pla- - am = Fi pr| g
Stad istnieje t € R, taki ze q; = pit. Poniewaz ¢; jest nierozkladalny, tak wiec:

q; = pit = p €R° lub teR".

Ale p; jest nierozktadalny, tak wiec p; ¢ R*, czyli mamy, ze t € R*. Stad dostajemy, ze p; ~ g;.
Definiujemy teraz o(1) := i, wydzielamy obie strony rownosci

Pl e Pn=q1 - Qm
przez pp i indukcyjnie konczymy dowod. U

Przyktad 12.9. Twierdzenie specjalizuje sie do nastepujacych sytuacji.

(1) R = Z: Podstawowe Twierdzenie Arytmetyki.
(2) R = K[X], gdzie K jest cialem: jednoznacznosé¢ rozktadu na wielomiany nierozkladalne.
(3) R = Z]i]: jednoznaczno$¢ rozkladu w pierscieniu Gaussa.

Uwaga 12.10 (Uwaga historyczna: zwiazek z Wielkim Twierdzeniem Fermata). Wielkie Twier-
dzenie Fermata (WTF) mozna sformutowaé¢ w nastepujacy sposob. Niech p > 2 bedzie liczba
pierwsza. Wtedy rownanie:

XP 4 YP = 77

nie ma nietrywialnych rozwiazan catkowitych.

W XIX wieku pojawity sie ,dowody” WTF uzywajace rozkltadéw w pierscieniu Z[(,], gdzie
Gp € C\{1}, takim ze ¢} = 11 Z[(p] jest najmniejszym podpierscieniem z jedynky C zawieraja-
cym (,. Powyzsze ,dowody” bylyby dobre, gdyby pierscienie Z|[(,] miaty wlasnosé¢ jednoznacz-
nego rozktadu, np. gdyby pierscienie Z[(,] byly euklidesowe. Jednak okazalo sie, ze jesli p > 23,
to wtedy pierscien Z[(,] nie ma wtasnosci jednoznacznego rozkladu.

Poprawny dow6d WTEF zostal podany dopiero w 1994 roku przez Andrew Wilesa.
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Przyklad 12.11. Uzasadnimy szkicowo, ze pierscien
7 [vV-3] :={n+mvV-3|n,meZ}

nie ma wiasnosci jednoznacznego rozktadu. Rozwazmy nastepujace dwa rozktady elementu 4

w pierscieniu Z[v/—3]:
2-2=(1++v-3)-(1-v-3).
Aby udowodnié, ze wlasnosé jednoznacznego rozktadu nie zachodzi nalezy pokazac, ze:
(i) elementy

2, 1+v-3,1-vV-3
sa nierozktadalne w pierscieniu Z [\/—3 ;

(i) mamy:
1+ \/—_3 2] — \/—_3
w pierScieniu Z [\/—_3]
Aby pokaza¢ powyzsze (i) oraz (ii) uzywamy nastepujacej funkcji ,normy” (nie jest to norma

euklidesowal):
d:Z[\/—?)} — NN, d(n+m\/—3) =n?+ 3m?.
Mamy nastepujace wlasnosci funkeji d, ktorych dowody pomijamy (z,y € Z [\/—3 ):
(1) d(zy) = d(z)d(y);
(2) z€Z[V-3 & d(z) =1
Poniewaz mamy:
d(z) =1 & r = =+1,
tak wiec z (2) otrzymujemy, ze:
7 [vV-3] ={-1,1}.

Stad dostajemy od razu (ii) uzywajac Twierdzenia|11.19

Jesli chodzi o (i), to dla przykladu pokazemy ze 2 jest elementem nierozkladalnym w pier-
Scieniu Z [\/—3]. WeZzmy z,y € Z [\/—3 , takie ze 2 = zy. Mamy pokazaé, ze:

v €Z[V=3] lub yeZ[vV=3]".
Uzywajac (1) liczymy:
4 =d(2) = d(zy) = d(z)d(y).
Czyli mamy:
d(x),d(y) € N oraz d(x)d(y) =4 = d(z) =1 lub d(y) =1 lub d(z) =2 =d(y).
Zauwazmy, ze dla kazdych n,m € IN mamy:
n® + 3m? # 2 = dlx)=1 lub d(y) =1.

Ponownie z (3) powyzej otrzymujemy, ze x € Z [\/—3] "luby € Z [\/—3]*, co nalezalto pokazac.
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13. ROZKLADALNOSC WIELOMIANOW
Zauwazmy najpierw nastepujaca prosta wlasnosc pierscieni wielomianow.
Fakt 13.1. Niech S bedzie dziedzing. Wiedy mamy:
SIX] = 5"
Dowdd. Dowodzona réwno$é wynika natychmiast z Twierdzenia [10.33](1). O
Dla wygody wprowadzamy nastepujaca definicje.

Definicja 13.2. Niech R bedzie pierécieniem przemiennym z jedynka i » € R. Mowimy, ze r
jest rozktadalny, gdy:

(i) r # 0 oraz r ¢ R,

(ii) r nie jest nierozkladalny, tzn. istnieja x,y € R\ R*, takie ze:

r=2xy.
Niech K bedzie cialem. Z Faktu wiemy ze:
K[X]* =K"= K\ {0}.

Czyli dla F € K[X] warunek (i) z Definicji [13.2|jest rownowazny temu, ze F' € K[X]\ K, tzn.
F' nie jest wielomianem stalym, czyli deg(F) > 1.
Teraz bedzie seria twierdzen o rozkladalnosci wielomianéw. Ustalmy K j.w. oraz F' € K[X].

Twierdzenie 13.3. Jesli deg(F') > 1 i F' ma pierwiastek, to wtedy F jest rozktadalny.

Dowdd. Niech a € K, takie ze F(a) = 0. Z Twierdzenia Bezout (X — a) | F, czyli istnieje
W e K[X], taki ze:

F=(X—-aW.
Wtedy mamy:
2 < deg(F) =deg((X —a)W) = deg(X — a) + deg(W) = 1+ deg(W).
Stad deg(W) > 1, czyli W ¢ K[X]*. Podobnie X —a ¢ K[X]*, stad F jest rozkladalny. O

Uwaga 13.4. F'i K j.w.
(1) Jesli deg(F) = 1, to oczywiscie F' jest nierozkladalny.
(2) Odwrotna implikacja do tej w Twierdzeniu nie jest prawdziwa, bo np.

F = (X?4+1)(X?+2) € RIX]
jest rozktadalny w R[X], ale wciaz nie ma pierwiastkow w R.
Twierdzenie 13.5. Zalozmy, ze deg(F') € {2,3}. Wtedy mamy:
F jest nierozktadalny & F' nie ma prerwiastkow.

Dowdd. Obie implikacje pokazemy poprzez kontrapozycje.

,=" Ta implikacja jest prawdziwa nawet przy zalozeniu deg(F) > 1 uzywajac Twierdzenia

13.3

,<" Zalozmy, ze F jest rozkladalny i ze deg(F') € {2,3}. Pokazemy, ze F' ma pierwiastek.
Poniewaz F jest rozktadalny, tak wiec istnieja H,W € K[X], takie ze:

deg(H) >0 oraz deg(W)>0 oraz F=HW.
Stad dostajemy:
{2,3} > deg(F) = deg(H) + deg(W) >0 oraz deg(H)>1 oraz deg(W)>1.

Czyli ostatecznie:
deg(H)=1 lub deg(W)=1.
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Poniewaz K jest cialem, tak wiec dostajemy ze:
H ma pierwiastek w K lub W ma pierwiastek w K.

Stad F' = HW ma réwniez pierwiastek w K, co nalezalo pokazac. U

Przyklad 13.6. Nastepujacy wielomian:
F=1+X’+X°€ Z[X]
jest nierozkladalny z Twierdzenia [13.5] poniewaz deg(F') = 3 oraz:
F(0)=14#0, F1)=1491421=1#0,
czyli F' nie ma pierwiastkow (w Zy).

Dowody dwoch kolejnych twierdzeri pomijamy. Dowod pierwszego z nich jest dosé trudny i
(standardowy dow6d) ma charakter analityczny. Dowod drugiego z tych twierdzen jest tatwiej-
szy.

Twierdzenie 13.7 (Gauss 1799, Zasadnicze Twierdzenie Algebry (liczb zespolonych)). Jesli
F e C[X]\C, to F ma pierwiastek w C (tzn. C jest ciatem ,algebraicznie domknictym”).
Twierdzenie 13.8. Jesli W € R[X] oraz a,b € R sq takie, Ze:
z:=a+bi ¢ R oraz W(z) =0,
to W(z) =0, gdzie Z = a — bi, oraz nastepujgcy wielomian o wspdtezynnikach rzeczywistych:
(X —2)(X —2) = X* — 20X + (a® +V?)
dzieli W w R[X].

Whniosek 13.9. (1) Niech W € C[X]. Wtedy mamy:
W jest nierozktadalny & deg(W) = 1.

(2) Niech W € R[X]|. Wtedy nastepujgce warunki sqg réwnowazne:
(i) W jest nierozktadalny;
(i) deg(W) =1 lub deg(W) =2 oraz A :=b* — dac < 0.

Dowdd. Punkt (1) wynika od razu z Twierdzen 137

Dla dowodu punktu (2) pokazujemy dwie implikacje.
,<=" Jesli deg(W) =1, to wiemy ze W jest nierozktadalny.
Jesli W = aX? +bX +ci A < 0, to wiemy (szkola $rednia), ze W nie ma pierwiastkow. Z
Twierdzenia wynika (poniewaz deg(WW) = 2), ze W jest nierozktadalny.
=" Zalozmy, ze W jest nierozktadalny. Wtedy z Twierdzenia dostajemy, ze deg(W) =1
lub W nie ma pierwiastkow. Mozemy zalozy¢, ze deg(W) > 1, czyli dostajemy, ze W nie ma
pierwiastkow rzeczywistych. Z Twierdzenia dostajemy, ze W ma pierwiastek zespolony
z € C\ R. Z Twierdzenia wiemy, ze:

H:= (X —2)(X —2) € R[X] oraz H|W (wR[X]).
Czyli istnieje T € R[X], taki ze W = HT. Mamy teraz:
W jest nierozkladalny oraz W = HT oraz deg(H)=2>0 = deg(T) = 0.

Stad

deg(W) = deg(HT) = deg(H) + deg(T) =2+ 0=2
do czego dazyliSmy. Poniewaz W nie ma pierwiastkow, tak wiec (ponownie szkola $rednia)
A < 0, co nalezalo pokazac. 0]

Zobaczymy teraz jakie liczby wymierne moga by¢ pierwiastkami wielomianéw o wspotczyn-
nikach catkowitych.
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Twierdzenie 13.10 (Twierdzenie o pierwiastkach wymiernych). Niech:
W=a,X"+...+uX+a €Z[X]

oraz k,l € 7. bedq wzglednie pierwsze, takie ze W(k/l) = 0. Wtedy k | ag oraz | | a, (w

pierscieniu Z.).

Dowadd. Mamy, ze:

k k" k
0:W<7) :anl—n+...+a17+a0.

Mnozac ostatnig rownos¢ obustronnie przez [ dostajemy:

0= ank™ + an1 K"+ .. 4 arkl™ ™t + aol™,

k (ank‘"—l +oa, K"+ all"_l) = —apl™.
Ostatnia rownos$¢ implikuje, ze k | apl™.
Poniewaz k, | sa wzglednie pierwsze, tak wiec rowniez k, {" sa wzglednie pierwsze. Czyli mamy:
NWD (k,0") =1 oraz k| aogl® = k| ao,
co mielismy pokazaé¢. Analogicznie pokazuje sie, ze [ | ay,. U
Przyklad 13.11. Niech:
W =2X?+ X?+4X +2 € Z[X].

Z Twierdzenia o pierwiastkach wymiernych, jedyne mozliwe pierwiastki wymierne W to:

1 1
) _27 17 _17 a8 o

27 2
Latwo sprawdzi¢, ze W(—1/2) = 0. W szczegolnosci W jest wielomianem rozkladalnym w
pierscieniu Q[X]. Wciaz nie wiemy czy ten wielomian jest rozkladalny w pierscieniu Z[X].
W tym celu stosuje sie nastepujacy wynik, ktéorego dowodd pomijamy.

2

Twierdzenie 13.12 (Lemat Gaussa). Niech:
W=aX"+...+a1X +ay € ZIX|\7Z.

Wtedy nastepujgce warunki sq rownowazne.

(1) W jest wielomianem nierozktadalnym w pierscieniu Z[X|.
(2) W jest wielomianem nierozktadalnym w pierscieniu Q[X| oraz zadna liczba pierwsza
nie dzieli wszystkich wspotczynnikow ag, aq, . .., a,.

W szczegolnosci dla wielomianow z Z[X] mamy:

nierozktadalny w Z[X] = nierozktadalny w Q[X],

rozkladalny w Q[X] = rozktadalny w Z[X].
Tak wiec, wielomian W z Przyktadu [13.11] jest rozkladalny w Z[X].
Teraz ostatnie kryterium, ktore jest bardzo uzyteczne (jesli sie stosuje).
Twierdzenie 13.13 (Kryterium Eisensteina). Niech:
W=a,X"+...+aX +aq € Z[X]
1 zatozmy, ze istnieje liczba pierwsza p, taka Ze:

(1) p ’ ao, P | Ay, ..., P ‘ Ap—15
(il) ptan;
(iii) p* 1 ao.
Wtedy wielomian W jest nierozktadalny w pierscieniu Q[X].
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Dowdd. Dzielac przez NWD(ag, aq, . . ., a,) (w pierécieniu Z[X|) mozemy przyjac, ze ag, ay, . . ., a,
nie maja zadnego wspoélnego dzielnika pierwszego.

Zalozmy nie wprost, ze W jest rozkladalny w pierscieniu Q[X]. Z Lematu Gaussa dostajemy,
ze W jest rozkladalny w pier§cieniu Z[X]. Wezmy wiec G, H € Z[X]\Z[X]*, takie ze W = GH.
Poniewaz ag, ay, ..., a, nie maja zadnego wspolnego dzielnika pierwszego, tak wiec dostajemy
ze deg(G) > 0 oraz deg(H) > 0. Niech:

G=0,X4 .. . +01 X +by, H=c X"4+...+c1X+cy, ba#0#d, cn#0#m.
Poniewaz W = GH, tak wiec dostajemy ay = bycy. Czyli mamy:

ag=boco i plap i p*fag = (ptbo i pleo) lub (ptecy i plbo).
Przyjmijmy, ze ptbo i p | co (jesli pfcoip | bo, to dowdd jest analogiczny).

WezZzmy teraz:
re=min{i <m | pfel.
Wtedy mamy:
pleco oraz ptey, = 0<r<m<n(=d+m).
Z minimalnosci r otrzymujemy, ze:
b | Co, P | Ciy..-»D ‘ Cr—l7p)fcr-

W szczegdlnosci:
p | blcr—l + ...+ b7._161 + bTCO.
Uzywajac tego, ze p jest liczba pierwsza dostajemy:

pte, oraz pfb = p 1 bocy
Lacznie otrzymujemy:
plbic—1+. . .4b._1c1+b.cy oraz ptboc, = p1a, = boc,+bic._1+. .. 4+b._1c1+b.cy,
co daje sprzeczno$¢, poniewaz r < n. 0

Przyklad 13.14. (1) Wezmy:
W =3X*+15X?+10, p=5.

Wtedy mamy:
(i) 5]10,5 | 15;
(i) 513;
(iii) 52 1 10.
Czyli z Kryterium Eisensteina, W jest nierozkladalny w pierscieniu Q[X].
Z Lematu Gaussa (poniewaz wspolczynniki W nie maja zadnego wspolnego dzielnika
pierwszego), W jest nierozktadalny w pierscieniu Z[X].
(2) Wezmy:
W=X+ X"+ X"+ X’ + X? + X + 1.
Zauwazmy, ze ogolnie (dla dowolnych wielomianow o wspotezynnikach z dowolnych pier-
Scieni przemiennych z jedynka) mamy:

W jest nierozkladalny & W (X + 1) jest nierozktadalny.
Uzywajac przedstawienia:
X"—1
W =
X—-1

mozemy policzy¢, ze:

e () (e () () ()x- )

Wtedy dla p = 7 z Kryterium Eisensteina otrzymujemy, ze wielomian W (X + 1) jest

nierozkladalny w pierscieniu Q[X]. Stad wielomian W jest nierozkladalny w pierscieniu
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Q[X]. Z Lematu Gaussa dostajemy tez, ze wielomiany W i W (X + 1) sa nierozkladalne
w pierscieniu Z[X].
Podobnie dla kazdej liczby pierwszej p, wielomian:

Xy o+ X +1
jest nierozkladalny w pierscieniu Q[X] oraz w pierscieniu Z[X].
Uwaga 13.15. Lemat Gaussa i Kryterium Eisensteina zachodza

e ogo6lniej: dla dowolnego pierdcienia euklidesowego R zamiast Z oraz ciata utamkoéow K
pierécienia R zamiast Q;

e jeszcze ogllniej: dla dowolnej dziedziny z wlasnoscia jednoznacznego rozkladu R
(i clala utamkow K).
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14. CHINSKIE TWIERDZENIE O RESZTACH I IDEALY

Sunzi Suanjing, czyli ,podrecznik arytmetyczny Mistrza Sun” to traktat matematyczny na-
pisany pomiedzy trzecim a pigtym wiekiem naszej ery. Rozdzial trzeci tegoz traktatu zawiera
nastepujacy akapit:

Mamy pewne rzeczy, ktorych ilo$é jest nieznana. Jesl liczymy te rzeczy po trzy, to zostang
dwie; jesli liczymy te rzeczy po pieé, to zostang trzy i jesli liczymy te rzeczy po siedem, to zo-
stang dwie. Ile jest tych rzeczy?

Mistrz Sun otrzymal rozwigzanie: x = 23.
Powyzsze pytanie jest rownowazne pytaniu o rozwigzanie nastepujacego uktadu kongruencji:

r=2 (mod 3)
r=3 (mod5)
r=2 (mod7)
Nastepujace twierdzenie wyjasnia te rozwazania.
Twierdzenie 14.1 (Chinskie Twierdzenie o Resztach). WeZmyny,...,ng > 1 parami wzglednie
pierwsze 1 niech:
N:=n¢-... ng.
Wtedy dla dowolnych ay,...,ar € 7. istnieje x € 7., kiore jest rozwigzaniem nastepujgceqo

uktadu kongruencyi:

x =a; (mod ng)

as (mod ny)

r = a; (mod nyg)
Ponadto, jesli ' € 7. jest rdwniez rozwigzaniem tego uktadu kongruencji, to mamy:

r=2" (mod N).
Dowdd. Pokazujemy najpierw (nieco nietypowo) jedynos$é (czyli czesé ,Ponadto...”) rozwigza-
nia rozwazanego uktadu kongruencji, w sytuacji gdy jeszcze nie wiemy czy jakiekolwiek rozwia-

zania istniejg. Jedynos$ci tej uzyjemy pédzniej do dowodu istnienia rozwiazania.
Jesli x oraz x’ sa rozwigzaniami rozwazanego uktadu kongruencji, to mamy:

r=a; (mod ny), ¥ =a; (mod ny),
czyli dostajemy:
r=2" (mod n) = ny | x—a'.
Podobnie otrzymujemy:
/ / /
n|lex—a, nole—2a,... ng|xz—2a.
Poniewaz nq,...,n; > 1 sa parami wzglednie pierwsze, otrzymujemy ze:
N=mny-...-ng|z—2,

co znaczy, ze x = 2’ (mod N).
Dla dowodu istnienia rozwiazania rozwazanego uktadu kongruencji bierzemy nastepujaca
funkcje:
O LN = Ly X ... X Ly, o(x) = (1o, (), ..., rn, (x))
Z udowodnionej jedynosci powyzej, funkcja ¢ jest ,,1-17. Zauwazmy, ze:

| Zn|=N=mny-...-np=|Zpn, X...XZp,|
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Czyli funkcja ¢ jest funkcja roznowartosciows pomiedzy dwoma skoniczonymi zbiorami tej same;j
mocy, tak wiec ¢ jest rowniez ,na”. W szczegdlnosci, istnieje x € Zy taki ze:
T'ny (ZL‘) = Tn, (a1)7 rn2<x> = rm(a?)v S ’Tnk<x) = rnk(ak>’
czyli x jest rozwigzaniem rozwazanego uktadu kongruencji. 0
Uwaga 14.2. Powyzszy dowdd nie jest konstruktywny, tzn. nie podaje sposobu jak zna-
lez¢ powyzsze rozwiagzanie x. Nietrudno jest jednak podaé¢ taki sposob. Jesli chcemy rozwiagzac
nastepujacy uktadu kongruencji:
r=a; (mod ny), r=ay (mod ny),
gdzie NWD(ny,n9) = 1 (czyli k = 2), to (poniewaz NWD(ny,ny) = 1) uzywajac Twierdzenia
11.22| dostajemy mq, mo € 7., takie ze:
mini + Moo = 1.
Wtedy nasze rozwigzanie to:
T = a1MaNg + aominy,
poniewaz liczymy, ze:
T = armang + asming = ay (1 — myny) + aeming = a; + (as — a;) miny = a;  (mod ny).
Podobnie dostajemy, ze:
r=ay (mod ny).
Istnieja tez analogiczne wzory w sytuacji, gdy k > 2 i znal je juz Mistrz Sun.
Pojecie kongruencji mozna uogélni¢ do dowolnego pierscienia przemiennego z jedynka (podob-

nie mozna tez uog6lni¢ Chinskie Twierdzenie o Resztach) uzywajac pojecia ideatu. Intuicyjnie:
idealy w teorii pierécieni graja role dzielnikow normalnych w teorii grup.

Definicja 14.3. Niech R bedzie pierScieniem przemiennym z jedynka oraz I C R. Wtedy [
nazywamy ideatem pierécienia R, co oznaczamy I < R, jesli:

(i) I < (R, +);
(ii) zachodzi

Vre R Vxel re € 1.

Czyli I jest podgrupa grupy addytywnej pierscienia R oraz I jest zamkniety na mnozenie przez
elementy R.

Przyklad 14.4. (1) Zawsze mamy ideal zerowy:

{0t <R,
oraz ideal niewlasciwy:
R < R.
(2) Mamy
272.<7
i ogblniej dla dowolnego n € Z:
nZ 7.

(3) Niech:
I:={F e R[X] | F(i) =0}
(np. X2+ 1 € I). Wtedy latwo pokazac, ze I <R[X].
(4) Niech:
I=Aa,X"+...+ a1 X +a € Z[X] : 2]|ap}.

Wtedy nietrudno zauwazy¢, ze I < R[X].
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Uwaga 14.5. (1) Jesli I < Roraz 1 € I, to I = R, poniewaz dla kazdego r € R mamy:
r=r-1el.

Czyli ideat:
(i) zawsze jest podpierscieniem;
(ii) prawie nigdy nie jest podpierscieniem z jedynka.
(2) Jesli I N R* # (), to rowniez I = R, poniewaz jesli u € I N R*, to dla kazdego r € R

mamy:
r=rut-uel.
Definicja 14.6. Niech R bedzie pierScieniem przemiennym z jedynka oraz zi,...,z, € R.
Przez (x4, ...,x,) oznaczamy ideal generowany przez x,...,x,, tzn.:
(X1, ) i ={mx1+ ...+ 12y | r1,...,7 € R}
(wszystkie ,, R-liniowe kombinacje” elementow xy, ..., z,).

Uwaga 14.7. Latwo zauwazy¢, ze:

(i) (x1,...,2,) jest faktycznie ideatem pierscienia R;
(ii) (z1,...,x,) jest najmniejszym idealem pierscienia R zawierajacym elementy 1, ..., x,.

Definicja 14.8. Ideat I < R nazywamy gtownym, gdy istnieje x € I, taki ze:
I = (z).

Uwaga 14.9. Idealy gtowne to doktadnie te idealy, ktére moga by¢ generowane przez jeden
element.

Przyktlad 14.10. (1) Mamy:
{0} =(0), R=(1),

czyli sa to idealy gtoéwne.
(2) Mamy:
nZ = (n),

czyli sa tez to idealy gltowne.
(3) Wkrotce (Przyklad [14.13((2)) zauwazymy, ze

{F eR[X] | F(i)=0} = (X*+1),

czyli to jest tez ideat gtowny.
(4) Mozna pokazadé, ze:

{an X"+ ...+ a1 X +a€Z[X] : 2]ao} =(2,X)
oraz ze ideal (2, X) < Z[X] nie jest ideatlem gléwnym.

Definicja 14.11. Drziedzine R, w ktorej kazdy ideal jest gtowny nazywamy dziedzing ideatow
gtownych.

Teraz ogolny wynik, ktory np. daje Przyktad [14.13(2).

Twierdzenie 14.12. Kazdy pierscien euklidesowy R jest dziedzing ideatow gtownych.
Doktadniej, jesl I jest niezerowym ideatem R oraz

d: R\ {0} - N
jest normg euklidesowqg na R, to mamy I = (a), gdzie:

d(a) =min{d(x) | z € I\ {0}}.
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Dowdd. Niech R, 0, 1,a beda j.w. Pokazujemy, ze:
I =(a).

»,=" Dowolny element idealu (a) ma posta¢ ga dla pewnego ¢ € R. Poniewaz a € I oraz I jest
idealem R, tak wiec ga € I, czyli dostajemy I O (a).

»C7 Wezmy dowolny = € I. Chcemy pokazaé, ze x € (a), tzn. ze a | * w R. Aby to pokaza¢
postepujemy jak zwykle w pierScieniach euklidesowych, tzn. dzielimy z reszta x przez a dostajac
q,7 € R, takie ze:

r=aq+r oraz (0(r) <é(a) lub r=0).
Jesli r =0, to a | x i twierdzenie jest udowodnione.
Jesli r #£ 0, to 6(r) < d(a) 1 dazymy do otrzymania sprzecznosci. Mamy:
r=_x — a 6 q €1
~ s ,
el €l  ¢R

Ale r # 0 oraz §(r) < d(a), co przeczy minimalnosci 0(a). O

Przyktad 14.13. (1) Wideale nZ < Z element n (jesli n # 0) jest niezerowym elementem
o najmniejszej wartosci bezwzglednej (norma euklidesowa na 7Z.), tak wiec z Twierdzenia
[14.12] mamy:

n7 = (n),
co jest tez oczywiste bez uzywania Twierdzenia [14.12
(2) Jesli K jest ciatem, to K[X] jest pierscieniem euklidesowym, gdzie norma euklidesowa
jest stopien wielomianu. Stad, jesli I jest niezerowym ideatem w K [X], to mamy [ = (F),
gdzie:
deg(F) = min{deg(W) | W € I\ {0}}.
W szczegolnosei, jesli K = R oraz
I:={F e R[X] | F(i) =0},

to X2 +1 jest wielomianem najmniejszego stopnia z I (w I nie ma wielomianéw stopnia
1, poniewaz i ¢ C), tak wiec mamy:
{FeR[X] | F(i)=0} = (X*+1).

(3) W pierscieniu Z[X] mamy ideal (2, X), ktory nie jest idealem glownym. Czyli Z[X]
nie jest dziedzing idealow gléwnych. Uzywajac Twierdzenia [14.12| dostajemy, ze Z[X]
nie jest pierscieniem euklidesowym.

Na ¢wiczeniach zauwazyliSmy, ze stopien nie jest norma euklidesows na pierscieniu

Z|X]. Teraz widzimy, ze na pierScieniu Z[X| nie istnieje zadna norma euklidesowa.
Uwaga 14.14. Wiemy, ze pierscien euklidesowy ma wtasnosé jednoznacznego rozkladu (Twier-
dzenie [12.8). Mozna pokaza¢ ogolniejsze twierdzenie (w praktyce jest to ten sam dowod, co

dowod Twierdzenia [12.8) mowiace, ze kazda dziedzina ideatow glownych ma wlasnosé¢ jedno-
znacznego rozkltadu.

Jesli mamy dzielnik normalny N w grupie G, to mozemy skonstruowa¢ grupe ilorazowa G/N.
Zobaczymy teraz, ze podobnie jest w przypadku idealéw w pierdcieniach.

Definicja 14.15. Niech I < R. Wtedy R/I definiujemy jako zbiér warstw addytywnych [ w
R, tzn.:
R/I:={r+1|re€ R}

Twierdzenie 14.16. Niech [ < R. Definiujemy dzialania +, - na zbiorze R/1:
(a+I)+(b+1):=a+b+1, (a+1)-(b+1):=ab+ 1.
Wiedy mamy:

(1) powyzsze dziatania sq dobrze okreslone;
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(2) (R/1,+,") jest piericieniem przemiennym z jedynkq zwanym pierScieniem ilorazowym;
(3) funkcja
m:R— R/I, n(r)=r+1
jest homomorfizmem pierscieni, ktory jest ,na” oraz ker(mw) = I.

Szkic dowodu. Pokazemy tylko, ze mnozenie jest dobrze okreslone, co jest tu najtrudniejsze (ale
wciaz tatwe). Wezmy a,a’, 0,0’ € R, takie ze:

a+1=d+1, b+1=0V+1.

Mamy pokazaé, ze ab+ I = a'b’ + 1.
Z zalozenia mamy:

a—d €l oraz b—Vb el = (a—a)bel oraz (b—V)ael.
Czyli dostajemy, ze:
ab—a't =ab—ad'b+bad —bd €l.
—_——  —\—
(a—a’)b (b—0b")a
Stad dostajemy, ze ab+ I = o't/ + I, co nalezalo pokazac. O

Przyklad 14.17. (1) Warstwy i kongruencje
Niech I =nZ dZ oraz a,b € Z. Wtedy mamy:

nla—b << a=b (modn) <& a—-benZ <& a+nZ=b+nZ.

Uogolniamy (notacyjnie) rownowaznosc:
a=b (modn) < a+nZ=>b+nZ
do dowolnego pierscienia przemiennego z jedynka R oraz dowolnego I < R. Dla kazdego
a,b € R piszemy:
a

b (mod I),

jeslia+1=>b+1 (czylib—a € I) i mowimy wtedy, ze a przystaje do b modulo 1.
(2) Pierscienie ilorazowe
Latwo zauwazy¢, ze mamy nastepujacy izomorfizm pierscieni (n > 0):

7 /n7 =7, .
Niedtugo bedzie ogolne twierdzenie na ten temat (Twierdzenie [14.19)).

Zobaczymy teraz, ze idealy maja kolejna ceche dzielnikow normalnych, tzn. ze sa to doktadnie
jadra homomorfizmoéow pierscieni.

Twierdzenie 14.18. Niech f : R — S bedzie homomorfizmem pierScieni przemiennych z
jedynkq. Wiedy:

(1) ker(f) < R,

(2) im(f) jest podpierscieniem z jedynkq pierscienia R.

Dowdd. Sprawdzimy tylko, ze ker(f) jest zamkniety na mnozenie przez elementy R. Wezmy
x € ker(f) oraz r € R. Wtedy mamy:

f(z) =0 = flra) = f(r)f(z) = f(r)-0=0.
Czyli rz € ker(f), co nalezalo sprawdzi¢. O

Nastepne twierdzenie jest analogiczne do Zasadniczego Twierdzenia o Homomorfizmach Grup.
Analogiczny dowdd pomijamy.

Twierdzenie 14.19 (Zasadnicze Twierdzenie o Homomorfizmach Pierscieni). Niech f: R — S
bedzie homomorfizmem pierScieni przemiennych z jedynkqg. Wtedy mamy nastepujgcy izomor-
fizm pierscieni:

R/ ker(f) = im(f).
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Przyklad 14.20. (1) Funkcja n-tej reszty r, : Z — 7., jest homomorfizmem pierscieni i

mamy:
ker(f) =nZ, im(f) =27, .
Czyli z Zasadniczego Twierdzenia o Homomorfizmach Pierscieni otrzymujemy:
Z/n7="7,.

Rozwazmy nastepujacag funkcje ewaluacji:
ev; : R[X] — C, ev;(F) = F(i).
Poniewaz i ¢ R, tak wiec powyzsza funkcja nie jest specjalnym przypadkiem funkeji
ewaluacji z Definicji [10.35] ale wcigz ta funkcja jest homomorfizmem pierscieni analo-
gicznie do Uwagi [10.36(1). Mamy:
ker (ev;) = {F € RIX] | F(i) =0} = (X*+1).

Latwo zauwazy¢, ze im(ev;) = C (ev;(aX + b) = ai + b), tak wiec z Zasadniczego
Twierdzenia o Homomorfizmach Pierscieni otrzymujemy:

RIX]/(X?+1)2=C.

Rozwazmy nastepujaca funkcje ewaluacji:
evs QIX] = QV2,  ev(F)=F (\/5) .
Podobnie jak w punkcie (2) powyzej, mamy im(ev 5) = Q[v2]. Mamy tez:

ker (evy5) = {F € QX] | F (V2) =0} <qx].
Dzieki Twierdzeniu wiemy, ze:
ker (ev ) = (F),

gdzie F' € ker(ev s;) jest wielomianem minimalnego stopnia. Poniewaz V2 ¢ Q, tak
wiec w ker(ev, 5) nie ma wielomianéw stopnia 1 i dostajemy:

ker (evﬁ) = (X2 — 2) .
7 Zasadniczego Twierdzenia o Homomorfizmach Pierécieni otrzymujemy:
Q[X]/(X* - 2) = Q[V2].
Niech:
Z[1/2] ::{%EQ | n € Z, mG]N}

bedzie najmniejszym podpier§cieniem @ zawierajacym Z oraz 1/2. Rozwazmy nastepu-
jaca funkcje ewaluacji:

eviys : Z1X] = Z[1/2], evio(F) = F(1/2).
Wtedy mozna pokazac, ze:
ker (evip) = (2X — 1), im(f) = Z[1/2].

Czyli z Zasadniczego Twierdzenia o Homomorfizmach PierScieni otrzymujemy:
Z[X]/(2X —1)=7Z[1/2].
Rozwazmy:
r7 g — L.
Poniewaz 7 | 14, tak wiec jest to homomorfizm pierscieni. Mamy:
ker (r7) = {0, 7}, im (r7) = Zr .
Czyli z Zasadniczego Twierdzenia o Homomorfizmach PierScieni otrzymujemy:

Z14 /{07 7} = Z? .
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W powyzszych przyktadach pojawily sie pierscienie typu R[X]/(W) dla W € R[X]. Przyj-
rzymy sie blizej tej sytuacji gdy R = K jest cialem. Dowo6d nastepujacego twierdzenia pomi-
jamy.

Twierdzenie 14.21. Niech K bedzie ciatem oraz W € K[X], takim Ze deg(W) = n > 0.
Wtedy kazdy element o € K[X]/(W) ma jednoznaczne przedstawienie jako:
a=as+a X +...+a, 1 X"+ (W)
dla pewnych (dla tego ustalonego o jedynych!) ag,aq,...,a,-1 € K.
Uwaga 14.22. Niech K i W beda jak w Twierdzeniu [I4.21]

(1) Przedstawienie a jak w Twierdzeniu nazywamy przedstawieniem w postact nor-
malne;.

(2) Twierdzenie mozna wyrazi¢ mowiac, ze K[X|/(W) jest przestrzenia liniowa nad
cialtem K o wymiarze n i bazie:

{1+ W), X+(W),.... X"+ (W)}.
Przyklad 14.23. Niech
Wi=1+X+X*+ X?+ X' € Q[X]
i rozwazmy pierscienn R := Q[X]/(W). Wezmy:
a=X+1+(W)eR,  B:=X>+5X*+1+(W)€R.
Przedstawimy a8 € R w postaci normalnej. Posta¢ ,nienormalna” to:
af=(X?+1) (X +5X°+ 1)+ (W) =X +5X* + X° + 6X* + 1+ (W).

Aby przedstawi¢ o3 w postaci normalnej musimy podzieli¢ z reszta X° +5X* + X3 +6X2 +1
przez 1 + X + X% + X3 + X* w pierdcieniu Q[X]. Robimy to i dostajemy:
XPH5X 4+ X2 46X +1=(X+4) (1+ X+ X*+ X+ X*) + (—4X° + X? —5X - 3).
\“/—/ J/

-

q r

Stad posta¢ normalna jest nastepujaca:
aff = —4X* + X? —5X — 3+ (W).
Udowodnimy teraz, ze pierScien
R=Q[X]/W)=Q[X]/(1+ X + X*+ X* + X1
jest ciatem. Wezmy « € R\ {0}. Pokazemy, ze o € R*. Poniewaz « # 0, tak wiec
a=F+ (W)
dla pewnego F € Q[X]\ (W). Skoro F' ¢ (W), to W { F. Z Przykladu [13.14)2), wiclomian

W =1+ X + X2+ X3+ X* jest nierozkladalny w pierscieniu Q[X]. Na ¢wiczeniach pokazujemy
ogoblnie, ze:

jesli a,b € R, R jest dziedzing, a nie dzieli b oraz element a jest nierozkltadalny, to wtedy
najwiekszy wspolny dzielnik a 1 b to 1.

Czyli w naszej sytuacji dostajemy:

W+ F oraz W jest nierozkladalny = n.w.d. W, F to 1.
Poniewaz pierscienn Q[X] jest euklidesowy oraz n.w.d. W, F to 1, tak wiec z Twierdzenia [11.22
istnieja A, B € Q[X], takie ze:

AF + BW = 1.
Stad dostajemy, ze:

AF + (W) =1+ (W) = 1.
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Czylidla 8 = X® +5X?+ 1+ (W) € R mamy:
af=(F+(W))(A+(W))=AF + (W) = 1x.

Stad o € R* 1 R jest ciatem.

Podobnie dowodzi sie nastepujacy ogolny wynik.

Twierdzenie 14.24. Niech K bedzie ciatem i wielomian W € K[X] bedzie nierozktadalny.
Wtedy pierscien K[X]/(W) jest ciatem.
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15. IDEALY MAKSYMALNE I CIALA

Wyodrebnimy teraz abstrakcyjng wlasnosé idealow postaci (W) jak w Twierdzeniu [14.24]
ktora zapewnia, ze iloraz jest ciatem.

Definicja 15.1. Ideat I < R nazywamy ideatem maksymalnym, gdy:

(i) I # R
(ii) dla kazdego J < R mamy:

I1cJ = J=1 lub J=R.

Uwaga 15.2. Powyzsza definicja mowi, ze idealy maksymalne R to elementy maksymalne
zbioru ideatow wtasciwych R wzgledem porzadku danego przez inkluzje.

Twierdzenie 15.3. Niech R bedzie pierScieniem euklidesowym oraz r € R bedzie elementem
nierozktadalnym. Wiedy ideal gtowny (r) jest maksymalny.

Dowdd. Udowodnimy najpierw, ze (1) # R. Zal6zmy nie wprost, ze (r) = R. Wtedy w szcze-
golnosci mamy, ze 1 € R, tzn. istnieje s € S, taki ze rs = 1. Ale to znaczy, ze r € R*, co przeczy
nierozktadalnosci r.

Wezmy teraz J < R, taki ze (1) ; J. Mamy pokazaé, ze J = R. 7 Twierdzenia , R jest
dziedzina idealow gtownych, czyli istnieje ' € R, taki ze (r') = J. Pokazemy najpierw, ze ' { r.
Zalozmy nie wprost, ze 1’ | r, czyli istnieje a € R, taki ze ' = ar. Wtedy dla kazdego b € R
mamy:

br' = bar € (r).

Poniewaz dowolny element J = (r’) jest postaci br’ dla pewnego b € R, dostajemy J C (r).
Poniewaz z zalozenia mamy, ze (r) C J, tak wiec dostajemy (r) = J, co przeczy zalozeniu
(r) & J i pokazuje, ze v’ { r. Przypominamy teraz zadanie z ¢wiczei, ktore pojawito sie w

Przyktadzie [14.23]

jesli a,b € R, R jest dziedzing, a nie dzieli b oraz element a jest nierozkltadalny, to wtedy
najwiekszy wspolny dzielnik a 1 b to 1.
Uzywajac powyzszego wnioskujemy:

r jest nierozkladalny oraz ' {r = nw.d. r,7’ to 1.

Tak wiec uzywajac Twierdzenia [11.22]istniejg x,y € R, takie ze:

ar +yr’ = 1.
Czyli mamy:
re(rycJ oraz r'eJ = l=ar+yr'eld
Z Uwagi [14.5(1) otrzymujemy, ze J = R, co nalezalo pokazac. O

Uwaga 15.4. Twierdzenie [15.3|jest tez prawdziwe (ten sam dow6d) w ogolniejszej wersji, jesli
zastapimy ,pierécien euklidesowy” przez ,dziedzina idealow gléwnych”.

Przyklad 15.5. (1) Jesli K jest ciatem, to wtedy pierscien K[X] jest euklidesowy. Stad,
jesli wielomian W € K[X] jest nierozktadalny, to ideat (W) < K[X] jest maksymalny.
(2) Jesli p jest liczba pierwsza, to ideal pZ <7 jest maksymalny.
(3) Pierscien Z[i] jest euklidesowy i np. wiemy ze element 1+ i € Z[i] jest nierozktadalny.
Stad ideal (1 + i) <0 Z[i] jest maksymalny.

Udowodnimy teraz ogolny wynik, z ktorego (oraz z Przyktadu [I5.5(1)) wynika Twierdzenie
14.24]
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Twierdzenie 15.6. Niech R bedzie pierscieniem przemiennym z jedynkqg oraz I < R. Wtedy
mamy:

1 jest ideatem maksymalnym & R/I jest ciatem.

Dowdd. Pierécien jest ciatem wtedy i tylko wtedy, gdy 0 # 1 oraz kazdy niezerowy element jest
odwracalny. Latwo zauwazy¢, ze:

I#R << R/I#{0} <<  Opg#lgr

Czyli mozemy zatozy¢, ze [ # R.
,=" Zalozmy, 7ze I jest idealem maksymalnym i wezmy o € R/I, takie ze o # 0. Mamy
pokaza¢, ze « € (R/I)*. Niech r € R bedzie, taki ze « = r+ I. Poniewaz a # 0, tak wiec r ¢ 1.
Rozwazmy zbior:

J={z+ylzel ye(r}
Latwo zauwazy¢, ze:

J4R oraz IC.J

Poniewaz r € J \ I, tak wiec [ ; J. Poniewaz I jest idealem maksymalnym dostajemy, ze
J = R oraz:

leJ = Jreldye(r) 1l=x+y.
Poniewaz y € (r), tak wiec istnieje a € R, takie ze y = ar i dostajemy:
l=z+ar

Liczymy teraz:
. I)= I I) = I = 14+1=1p),.
o (@t =(r Do+ =ard I 1+1 =1y
re
Stad o € (R/I)*, co nalezalo pokazac.
»<=" Zatozmy, ze R/I jest cialem i wezmy J < R, taki ze [ ; J. Mamy pokazac¢, ze J = R.
Uzywajac Uwagi [14.5(1) wystarczy pokazaé, ze 1 € R. Wezmy a € J \ I. Wtedy mamy:
a+[7é[:03/1 = CL—FIG(R/[)*

R/T jest cialem

Tak wiec istnieje b € R, takie ze:
l+I=(a+1)b+I)=ab+ 1.
Czyli mamy:
r:=1—abel,
tak wiec dostajemy:
1= r + ab € J,

—~  —~~

elcJ eJ
co mieliSmy pokazac. O
Przyklad 15.7. Wiemy, ze wielomiany:

X2+ X +1 € 7Zy[X], X%+ 1 € Z3[X]

sa nierozkladalne, poniewaz sa stopnia 2 i nie maja pierwiastkow (Twierdzenie [13.5). Tak wiec
z Twierdzenia dostajemy, ze idealy:

(X2 + X + 1) < Zy[X], (X% +1) < Z3[X]
sa maksymalne i z Twierdzenia wynika, ze piercienie:
Zo[X]/(X? + X +1), Z5[X]/(X*+1)
sa cialami. Z Twierdzenia (o postaci normalnej) otrzymujemy, ze
| Zo[X]/(X* + X +1)| = 4, | Zs[X]/(X? + 1) =9,

czyli otrzymalismy ciata mocy 4 i 9. Mozna pokazac, ze powyzsze cialo mocy 4 jest izomorficzne

z clalem z Przyktadu [10.2)(3).
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Wiemy, ze idealy maksymalne mozna otrzymac z elementéw nierozkladalnych. Nastepujace
twierdzenie, ktorego dowod pomijamy, pokazuje ze idealéw maksymalnych jest bardzo duzo.

Twierdzenie 15.8. Kazdy ideal wtasciwy rozszerza sie do ideatu maksymalnego.

Uwaga 15.9. (1) Dzieki Twierdzeniu wiemy, ze w kazdym pierécieniu R jest duzo
ideatow maksymalnych, tak wiec uzywajac Twierdzenia [15.6| otrzymujemy tez duzo ho-
momorfizmoéw ilorazowych R — R/I, gdzie pierscien ilorazowy R/I jest ciatem.

(2) Dowod Twierdzenia korzysta z aksjomatu wyboru, czyli wiemy ze idealy maksy-
malne istnieja, ale by¢ moze nie jesteSmy w stanie ich konkretnie wskazac.

Na koniec tego wyktadu koncentrujemy sie na ciatach. Niech K bedzie cialem. Zauwazmy, ze
jesli K = 7, to mamy:

1+21:O,
a jesli K = Q, to mamy:
VYn >0 1+...+1#0.
—_——
n razy

Interesuje nas ile razy trzeba doda¢ do siebie 1 w K aby otrzymac¢ 0 i czy to w ogble moze
sie zdarzyc¢.

Definicja 15.10. Wezmy n > 0. Méwimy, ze charakterystyka ciala K to n, co oznaczamy
char(K) = n, gdy n jest najmniejsza liczba dodatnia, taka ze:
1+...+1=0.
—_——
n razy
Jesli takie n nie istnieje, to przyjmujemy ze char(K) = 0.

Przyktad 15.11. Niech p bedzie liczba pierwsza.
(1) char(Z,) = p.
(2) char(Q) = 0.
(3) char(Z,(X)) = P
(1) char(Q(X)) =
(5) char(C) = 0.

W Przyktadzie [15.11] charakterystyka danego cialo to zawsze liczba pierwsza lub 0. Zoba-
czymy teraz, ze tak jest zawsze.

Twierdzenie 15.12. Niech K bedzie cialem. Wtedy charakterystyka K to liczba pierwsza lub
0.

Dowdd. Zalozmy, ze n := char(K) # 0. Pokazemy, ze n jest liczba pierwsza. Wiemy, ze n jest
najmniejsza liczbg dodatnia, taka ze:

1+...+1=0.

—_—

n razy

Poniewaz 1 # 0, tak wiec n > 2. Niech p bedzie dowolnym dzielnikiem pierwszym n. Pokazemy,
ze n = p. Zalézmy nie wprost, ze n # p i niech:

n

m:= —.

p

Wtedy 1 < m,p < n i mamy:
1+..+)-1+...+4)=1-1+...41-1=1+...4+41=0.

4 .

~~ ~~ ™ v
p razy m razy pm = n razy n razy
Definiujemy teraz:
a=1+...4+1, b:=1+...4+1.
——— ————
p razy m razy
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Poniewaz m,n < p, tak wiec a # 0 # b. Ale ab = 0, czyli np. a jest dzielnikiem zera, co przeczy
temu, ze kazde cialo jest dziedzina. 0

Czesto spotykalisémy sie z sytuacja, ze mieliSmy podpierscien R ciala K, taki ze R tez byt
cialem np.:

QCcRcC.
Ponizej ogolna definicja.

Definicja 15.13. Niech K bedzie ciatem i FF C K. Mowimy, ze F jest podciatem K, gdy:

(i) F jest podpierscieniem z jedynka ciata K;

(ii) dla kazdego a € F'\ {0} mamy a™! € F.
Uwaga 15.14. Nastepujace obserwacje sa oczywiste.

(1) Podciala ciata K to dokladnie te podpierscienie K, ktore sa cialami.

(2) Jesli F jest podcialem ciala K, to mamy:

char(F) = char(K).
Definicja 15.15. Jesli F' jest podcialem ciala K, to mowimy tez, ze inkluzja F' C K jest
rozszerzeniem ciaf.
Zauwazmy, ze czesto spotykamy sie z sytuacja, gdy wielomian F' € F[X] nie ma pierwiastkow

w ciele F', ale istnieje rozszerzenie cial F' C K, takie ze F' ma pierwiastki w K.
Przyklad 15.16. (1) Wielomian X2 — 2 nie ma pierwiastkow w ciele Q, ale ma pierwiastki

w ciele R.
(2) Wielomian X? + 1 nie ma pierwiastkow w ciele R, ale ma pierwiastki w ciele C.

Twierdzenie 15.17. Niech F bedzie ciatem oraz W € F[X]\ F. Wtedy istnieje rozszerzenie
ciat F' C K, takie ze W ma pierwiastek w K.

Dowdd. Poniewaz F[X] jest pierScieniem euklidesowym i W € F[X]\ F, tak wiec (z Twier-
dzenia [12.8) W rozklada si¢ na iloczyn wielomianéw nierozktadalnych w pierscieniu F[X]. W
szczegolnosei istnieje wielomian nierozktadalny Wy € F[X], taki ze W, | W. Niech:

K := F[X]/(Wy).

7 Twierdzenia [14.24] K jest cialem. Rozwazmy homomorfizm « : F' — K, ktory jest ztozeniem
nastepujacych homomorfizmow:

F S plx) ememetm, g — PIX]/(Wo).

ilorazowy
Z ¢wiczen wiemy, ze dowolny homomorfizm pomiedzy ciatami jest ,1-17, czyli « jest ,1-17.
Dlatego mozna przyjaé, ze o to inkluzja i ze mamy rozszerzenie ciat F' C K.
Niech teraz:

r:=X+ Wy € K.

Wtedy mamy:
Wi(x) =W (X + (W) =W(X)+ Wy) =W+ (W) = (W) =0k,
poniewaz Wy | W, czyli W € (Wy). Stad x jest pierwiastkiem W w ciele K. O
Przyklad 15.18. Wezmy:
F =R, W=W,=X>+1¢€R[X]

Wtedy wiemy, ze:

R[X]/(X*+1)=C.
Przy powyzszym izomorfizmie element z := X +(X?+1) € R[X]/(X?+1) z dowodu Twierdzenia

15.17| przechodzi na jednostke urojona i € C oraz mamy W (i) = 0.
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Definicja 15.19. Cialo K nazywamy algebraicznie domknietym, gdy kazdy niestaly wielomian
W € K[X] ma pierwiastek w K.

Przyklad 15.20 (Zasadnicze Twierdzenie Algebry). Cialo C jest algebraicznie domkniete.

Mozna sie spyta¢, czy istnieja jakie§ inne (niz C) ciata algebraicznie domkniete. Ponownie
jest ich bardzo duzo, ale nie mozna ich konkretnie wskazac¢, o czym mowi ponizsze twierdzenie,
ktorego dowodéd pomijamy.

Twierdzenie 15.21. Niech F' bedzie ciatem. Wtedy istnieje rozszerzenie cial F' C K, takie Ze
K jest algebraicznie domkniete.

Idea dowodu. Uzywajac Twierdzenia [15.17] znajdujemy rozszerzenia, w ktorych istnieja pier-
wiastki wielomianéw i robimy to wiele, wiele razy ... (indukcja pozaskonczona). O

Uwaga 15.22. Ciala algebraicznie domkniete sa nieskonczone.
Dowdd. Jesli cialo F' = {ay,...,a,} jest skonczone, to wielomian
F=X-a) ...-(X—a,) +1€F[X]
nie ma pierwiastkow w F. U
Ciata algebraicznie domkniete sg ,duze”. Zajmiemy sie teraz ,hajmniejszymi” ciatami.
Fakt 15.23. Ciato Q nie ma Zadnych podcial wtasciwych.

Dowdd. Niech K bedzie podcialem Q. Mamy pokaza¢, ze K = Q. Poniewaz K jest podciatem,
tak wiec 1 € K. Wezmy dowolny x € Q. Wtedy istnieja n € Z, m € N+, takie ze:
[n| razy

—
n +(1+...4+1)
J— = Tr = .
m 1+...+1
—_——

m razy

Poniewaz K jest podciatem Q oraz 1 € K, tak wiec z € K. Czyli dostajemy, ze K = @, co
nalezato pokazac. 0

Definicja 15.24. Cialo F' nazywamy ciatem prostym, gdy F' nie ma zadnych podcial wtasci-
wych.

Przyklad 15.25. (1) Q jest cialem prostym.
(2) Jesli p jest liczba pierwsza, to Z, jest cialem prostym, bo dla kazdego r € Z, mamy:
r=14,...4+,1.
T/

Twierdzenie 15.26. Jesli F' jest ciatem prostym, to wtedy FF = Q lub F' = 7, dla pewnej
liczby pierwszej p.

Dowdd. Rozwazamy dwa przypadki.

char(F) = 0.

Pokazemy, ze F' = (). Niech:

n razy
+(1+4...+1)
14+...+1
—_—

m razy

Fo = € F|ln,m>0,U{0}.

Latwo sprawdzi¢ (uzywajac zalozenia o charakterystyce F'), ze:

e [{ jest podciatem F,
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Poniewaz F jest cialem prostym, dostajemy ze F' = Fy, czyli FF =2 Q.

char(F') # 0.

Z Twierdzenia |15.12] wiemy ze char(F) = p, gdzie p jest liczba pierwszg. Pokazemy, ze F = Z,.
Niech:

For=q14+... 41 F|0<n<ppuU{0}.
—_——
n razy

Latwo sprawdzi¢ (uzywajac zalozenia o charakterystyce F'), ze:

e F| jest podcialem F,

([ ] FO = Zp.
Poniewaz I’ jest cialem prostym, dostajemy ze I’ = Iy, czyli F' = 7, 0
Whiosek 15.27. Z dowodu Twierdzenia wynika tez, ze jesli F' jest dowolnym ciatem, to
wstnieje gedyne podciato Fy C F, takie ze Fy jest ciatem prostym. To podciato Fy nazywamy
podciatem prostym ciata F'.

Uwaga 15.28. (1) Jesli char(F) = 0, to podciato proste F' jest izomorficzne z Q.
(2) Jesli char(F) = p > 0, to podcialo proste F jest izomorficzne z Z,,.

Na koniec zajmiemy sie cialami skonczonymi. Zauwazmy, ze nie pojawito sie dotychczas ciato
mocy 6. Ponizsze twierdzenie mowi, ze nie jest to przypadek.

Twierdzenie 15.29. Jesli F' jest ciatem skoriczonym, to |F| jest potegq liczby pierwszej.

Dowadd. Niech Fjy bedzie podcialem prostym ciala F'. Poniewaz cialo F' jest skoficzone, tak wiec
cialo Iy jest rowniez skoficzone. Z Twierdzenia [15.26| dostajemy, ze Iy = 7, dla pewnej liczby
pierwszej p. Wtedy F' staje sie przestrzenia liniowa nad F{ i niech:

n = dimg, (F).
Poniewaz F' jest skonczone, tak wiec n jest liczbg naturalng i dostajemy ze
| =R ="
czyli |F| jest potega liczby pierwszej. O

Whniosek 15.30. Nie istniejg ciata mocy 6, poniewaz 6 nie jest potegq liczby pierwszej.
Dowody dwoéch kolejnych twierdzen pomijamy.
Twierdzenie 15.31. Dia kazdej liczby pierwszej p i kazdego n > O istnieje ciato F, takie ze:
|F| = p".
Twierdzenie 15.32. Jesli Fy, F5 to ciala skoriczone oraz |Fy| = |F3|, to wtedy
L= F,.

Whniosek 15.33. Widzimy, zZe dla kazdej liczby pierwszej p i kazdego n > 0 istnieje jedyne (z
doktadnosciq do izomorfizmu) ciato F, takie ze |F| = p™. Cialo to oznaczane jest przez I pn.

KONIEC WYKLADU
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