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Philosophical Logic

I Philosophical Logic is not distinguished from
Mathematical Logic either in methods or in subject
matter (it is, in each case, the study of formal languages
by mathematical methods), but rather in inspiration.

I Traditionally, Philosophical Logic derived its problems
from the analysis of philosophical issues. In this,
Philosophical Logic was part and parcel with the
linguistic turn in philosophy — the idea that many
traditional philosophical problems can be explained (or
explained away) by linguistic analysis. Logic — this time
simpliciter — provided the formal tools for philosophical
analysis.

I This enterprise was not initially regarded as
conceptually distinct from the application of logical tools
to the analysis of mathematical reasoning. This unity
was reflected in 1936 when the ASL was founded — it
was all, perhaps redundantly, symbolic logic.
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The logic of possibility and necessity

I Modal Logic has quintessentially philosophical origins
in the study of the alethic modalities: possibility and
necessity.

I Philosophers have dealt with modalities ever since
Aristotle, but especially with Leibniz and Kant (both
of whom recognized the duality of possibility and
necessity).

I Modal logic began with Lewis & Langford’s Symbolic
Logic (!) (1932). L&L argued against Russell’s use of
the material conditional A ⊃ B in Principia in favor of
necessary implication 2(A ⊃ B).

I This has led to the development of the philosopher’s
favorite style (“plain vanilla”) of (mono-) modal logic
and its different system, K, T, B, S4, S5, . . .
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Modal Logics

I Just like there is more to quantifiers than ∃ and ∀, so
there is more to modal logic than 2 and 3.

I One useful characterization of modal logic is that is
perhaps the simplest way to describe relational
structures, i.e., structures of the form (A,R), where
R ⊆ A2.

I Of course there are many ways to talk about
relational structures, beginning with first- and
second-order logic. Modal logic differs from all these
by taking an internal viewpoint, i.e., by asking what
the structure looks like from within.

I The difference is that not all of the structure (A,R)
may be accessible from any given point a ∈ A. This
expressive limitation has proved immensely fruitful.

I A further characterization is due to Tarski, who
analyzed modal logic in terms of Boolean algebras
with operators.
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Transition systems

I Perhaps the deepest and broadest characterization
regards modal logic as the theory of various kinds of
transitions (represented by 2) between states of a
given system.

I 2A is true at state s iff A is true at every state s′ ← s.
(Dually for 3A).

I As an immediate consequence, the schema K is valid:
2(A ⊃ B) ⊃ (2A ⊃ 2B).

I Correspondence theory is the characterization of given
properties of→ by means of linguistic schemata, e.g.:

I Transitivity is characterized by the schema 4:
2A ⊃ 22A

I Euclideanness: ∀s, t, u : if s→ t and s→ u then t→ u
by the schema 5: 3A ⊃ 23A

I Converse well-foundedness (not a first-order
condition!) by the Löb schema 2(2A→ A)→ 2A (in
the context of 4).
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Beyond Basic Modal Logic

I The view of modal logic as the theory of state
transitions subsumes other accounts:

1. The alethic modality 2 connects a state s to a state s′

representing a state of affairs that is possible relative
to s.

2. The deontic modality © connects a state s to a state s′

where all s-obligations are fulfilled.
3. The epistemic modality K connects a state s to a state

s′ which is consistent with what the agent knows at s.
I The account can also be generalized along several

different directions:
1. Allowing more than one kind of transition

(poly-modal logic or labeled transition systems);
2. Constraining the number of out-going arrows from s

(graded modalities);
3. Using binary modalities such as until(p, q).
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Semantic Networks

I In the 1970’s a number of direct (i.e., not logic-based)
approaches were developed for the representation of
specialized knowledge bases.

I Among these are semantic networks, where nodes
refer to classes of individuals, edges represent IS-A

(subsumption) links, as well as, possibly value
restrictions.

I Such networks support assertions obtained by
chaining through IS-A links, and they provide a
simple yet powerful mechanism for knowledge
representation.

I The problem is that such networks lack a
well-defined semantics.



A semantic network
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Description Logics

I Description Logics, initially known also as
terminological systems, provide a mathematically
precise representation for this kind of networks.

I Description logics are used to provide “ontologies” for
many different fields, from medicine, to software
enginnering, to library science.

I The language of DL is built up from concepts C,D, . . .
(1-place preds) and roles (2-place preds) R, S, . . . by
means of several operations:

C,D → c > C u D ¬C ∀R . C

I Notice that in this version of DL only atomic roles are
allowed, but we have full negation.
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Semantics for DL

I Given a non-empty, possibly infinite domain U, we
define an interpretation E assigning subsets of U to
atomic concepts and subsets of U2 to (atomic) roles.
The interpretation can then be lifted as follows:

I E [>] = U
I E [C u D] = E [C] ∩ E [D]
I E [¬C] = U \ E [C]
I E [∀R .C] = {d ∈ U : ∀e ∈ U(〈d, e〉 ∈ E [R]→ e ∈ E [C])}

I We can then take ∃, t, and ⊥ as defined . . .
I . . . or extend the language by number restrictions:

E [≤ nR] = {d : card{e : E [R](d, e)} ≤ n}

I and non-atomic, i.e., compound, roles (more about
this later).
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Examples in DL

I The set of all women: Person u Female

I The set of all parents: Person u ∃HasChild .>
I The set of parents of only daughters:

Person u ∀HasChild .Female

I the set of all childless people: Person u ∀HasChild .⊥
I the set of parents of only children:

Person u ∃HasChild .>u ≤ 1HasChild

Notice that all these statements are variable-free.
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From Description Logic to Modal Logic

I It was first noticed by K. Schild (1991) that it is
natural to interpret the domain U as a set of possible
worlds and concepts C as propositions, i.e., sets of
possible worlds at which the proposition holds.

I On this interpretation, the ∀ . operator of DL (with
only atomic roles) becomes a modal operator and
each atomic role r becomes an accessibility relation.

I This way we obtain a translation into Km,
multi-modal K.
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Axiomatizing DL

I Say that D subsumes C, written |= C v D, iff
E [C] ⊆ E [D] for every interpretation E .

I Similarly say that C and D are equivalent, written
|= C = D, iff E [C] = E [D] for every interpretation E .

I Subsumption is reducible to equivalence for C v D iff
C u D = C

I We are interested in axiomatizing the equational
theory of DL (with atomic roles only).

I The translation into Km immediately gives the
following axioms:

I Axioms forcing (>,u,¬) to be a Boolean Algebra;
I ∀R .> = >
I ∀R .(C u D) = (∀R .C) u (∀R .D).
I From Km we also obtain that subsumption is (not only

decidable, but) PSPACE-complete.
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Propositional Dynamic Logic

I PDL is based on Vaughan Pratt’s idea to associate
with each non-deterministic program α a distinct
modality [α].

I PDL takes the idea of multiple modalities very
seriously and applies it to the analysis and
representation of computation.

I The language of PDL is built up from formulas and
programs, recursively defined:

A,B → a 0 ¬A A ∨ B [α]A

α, β → p (α ; β) (α ∪ β) α∗ A?

I The abbreviations 1, ∧,→, and 〈α〉 are as usual.
I Standard programming constructs can be

represented, e.g.:
I if A then α else β as ((A? ; α) ∪ ((¬A? ; β)
I while A do α as ((A? ; α)∗ ; ¬A?)
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Kripke semantics for PDL

I A model structure M for PDL is a triple (W,V,R),
where W is set of worlds, V maps atomic propositions
into subsets of W and R maps atomic programs into
subsets of W2.

I V and R can be lifted to complex formulas and
programs by simultaneous recursion. Here are the
clauses for R:

R(α ; β)(u, v) ⇐⇒ ∃w[R(α)(u,w) & R(β)(w, v)
R(α ∪ β)(u, v) ⇐⇒ R(α)(u, v) or R(β)(u, v)

R(α∗)(u, v) ⇐⇒ 〈u, v〉 is in the trasitive
closure of R(α)

R(A?)(u, v) ⇐⇒ u = v & u ∈ V(A)
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Axiomatizing PDL

I The following set of axioms is sound and complete
for PDL:

1. [α ; β]A↔ [α][β]A
2. [α ∪ β]A↔ [α]A ∧ [β]A
3. [α∗]A↔ A ∧ [α][α∗]A
4. [A?]B↔ (A→ B)

I with the following rule:

A→ [α]A
A→ [α∗]A

I The last axiom does not allow the eliminations of
tests from PDL!

I Moreover, PDL has the finite model property and is
therefore decidable. Satisfiability for PDL is in fact
NEXPTIME-complete.
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Variants of PDL

I There are many variants and extensions for PDL. We
mention two.

I PDL with deterministic programs: then R(α) is a
partial function on W.

I DPDL is axiomatized by adding to PDL the single
axiom schema:

〈α〉A→ [α]A

I PDL with converse: we introduce a converse operator
on accessibility relations, α−1, where R(α−1)(u, v)
holds iff R(α)(v, u).

I An axiomatization is obtained by adding the axioms:

A→ [α]〈α−1〉A
A→ [α−1]〈α〉A

I PDL with converse is not significantly different in
complexity from PDL.
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Description Logics with Compound Roles

I We extend DL to allow for compound roles:

R, S → r R ◦ S R t S R∗ R−1 id(C)

where id(C) is the identity on C, and extend the
semantic interpretation function E accordingly.

I The converse operator −1 commutes with t, ◦, and ∗

and so it only need be applied to atomic roles.
I Also define R+ := R ◦ R∗ and self := id(>).

I This version of DL is just a notational variant of PDL
with converse — roles are re-interpreted as
non-deterministic programs; e.g:

1. ∀R .C: C holds whenever R terminates;
2. R1 ◦ R2: run R1 and then R2;
3. R1 t R2: non-det’ly run one of R1, R2;
4. R∗: non-det’ly pick n ≥ 0 and run R ◦ · · · ◦ R︸ ︷︷ ︸

n times

.
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Axiomatizing DL with Compound Roles

I The correspondence with converse PDL also gives an
axiomatization:

1. ∀(R t S) .C = (∀R .C) u (∀S .C)
2. ∀(R ◦ S) .C = ∀R .∀S .C
3. ∀id(C) .D = ¬C t D
4. ∀R∗ .C = C u ∀(R+) .C
5. C u ∀R∗ .(¬C t ∀R .C) v ∀R∗ .C
6. C v ∀r∃r−1 .C
7. C v ∀r−1∃r .C

I Just like converse PDL, DL with compound roles has
the finite model property. Subsumption is therefore
decidable, in fact decidable in NEXPTIME.

I Note that the finite model property is lost with
intersection of roles:

∀r∗ .((∃r .>) u ∀(r+ u self) .⊥

is an axiom of infinity giving an acyclic r-chain.
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The modal µ-calculus

I The modal µ-calculus significantly extends PDL by
introducing a least fixed-point operator µ. The result
is strictly more expressive than PDL while still
EXPTIME (-complete).

I Formulas are built up from propositional variables
and propositional as well as program constants:

φ, ψ → x 0 p φ ∨ ψ ¬φ 〈a〉φ µx .φ(x),

the last clause with the proviso that X must occur
positively in φ. Notice that only atomic programs are
needed.

I We can define 1, ∧,→ and [a] as usual, as well
greatest fixed-points:

νx .φ(x) := ¬µx .¬φ(¬x)
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Semantics of the modal µ-calculus

I As in PDL, a model M is a triple (W,V,R), with
V(0) = ∅. A (partial) valuation assigns subsets of W
to (some of) the variables x, y, z, . . .

I If A = A1, . . . ,An is a partial valuation (with each
Ai ⊆ W) and φ(x) is a formula (with x = x1, . . . , xn),
the extension φM(A) of φ is defined inductively by
putting xM

i (A) = Ai and pM(A) = V(p), and

¬φM(A) = W \ φM(A),
(φ ∨ ψ)M(A) = φM(A) ∪ ψM(A),
〈a〉φM(A) = {w ∈ W : ∃v ∈ φM(A) . R(a)(v,w)},

µx .φ(x)M(A) =
⋂
{B ⊆ W : φM(B,A) ⊆ B}

I The last line is justified because if x is positive in φ
then φM defines a monotone operator over P(W),
and so by the Knaster-Tarski theorem it has a least as
well as a greatest fixed point.
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Expressive power of the modal µ-calculus

I PDL is properly subsumed by the modal µ-calculus.
I Some fixed points can be represented in PDL, viz.,

those of the form 〈a∗〉φ.
I In fact, 〈a∗〉φ is the least fixed point of the operator
φ ∨ 〈a〉x, and is therefore represented by

µx .φ ∨ 〈a〉x
I The operator φ ∨ 〈a〉x is continuous in x (commutes

with
⋃

) and it therefore closes at the ordinal ω.
I Consider instead

µx .[a]x = {w : there are no infinite a-paths out of w}

I The operator [a]x is not continuous: it closes at ω + 1
on the tree of all sequences 〈n, s〉, where n > 0 and s
is a finite word over a 1-letter alphabet of length ≤ n,
with 〈〉 as a top node.

I In fact µx .[a]x is not equivalent to any PDL-formula.
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Second-order propositional bi-modal logic

I The language of 2S5 is obtained from propositional
variables, connectives, two distinct S5-modalities, 21

and 22 , and propositional quantifiers ∀p.
I A model M is, as before, a tuple (W,R1,R2,V), where

each Ri is an equivalence over W, and V assigns
subsets of W to the propositional variables.

I Propositional quantifiers are given the standard
interpretation, in that they range over P(W).

I M,w |= ∀pφ iff M[X/p] |= φ for every X ⊆ W, where
M[X/p] assigns X to p and is otherwise like M.

I In 2S5 we can write, for instance:

∀p21 (p→ ∃q32 q)
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The complexity of 2S5

I The mono-modal case: mono-modal S5 with
propositional quantifiers can be interpreted into monadic
second-order logic and is therefore decidable (as proved
independently by D. Kaplan and K. Fine in 1970).

I Asymmetric modal logics: each of the modal logics K,
B, T, K4, S4, when augmented with propositional
quantifiers (with the standard interpretation) becomes
equivalent to full second-order logic. The asymmetric
nature of the accessibility relation allows to define a
notion of order that can be used to represent
second-order logic.

I The bi-modal case: The set of validities 2S5 is
effectively equivalent to full second-order logic (under
the standard interpretation), and hence not
axiomatizable (Antonelli & Thomason, 2001). In this
respect, the decidability of second-order S5 is an
anomaly, and the poly-modal case is the more natural
one.
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The epistemic interpretation

I S5 is a natural first candidate for epistemic
modalities.

I S5 conveys that knowledge implies truth, as well as
both positive (4) and negative (5) introspection:

2φ→ φ
2φ→ 22φ
¬2φ→ 2¬2φ

I In the case of multiple agents, each reasoning about
the others’ as well as his or her own knowledge, one
needs multiple modalities.

I In fact, certain reasoning tasks require common
knowledge (puzzle of the muddy children).
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Common Knowledge

I Agents i and j have common knowledge (CK) of a
proposition p iff the following proposition q is true:

p, and both i and j know that q.

I The inherent circularity can be analyzed iteratively as
the infinite conjunction:

p∧2i p∧2j p∧2i 2i p∧2j 2j p∧2i 2j p∧2j 2i p∧ . . .

I Agents i and j have common knowledge that p (at a
world w) iff p is true at all worlds v that can be
reached from w by a finite sequence of i- and j-links.

I Thus common knowledge requires the transitive
closure of the Ri relations. Such transitive closure is
explicitly definable in 2S5, which provides a natural
framework for the formalization of this kind of
reasoning tasks.
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Conclusion

I We have come full circle: we started out with some
quintessentially philosophical issues (the nature of
possibility and necessity), then moved on to the analysis
of transition systems of many different kinds.

I This has led us to re-evaluate the significance of the
poly-modal framework and how distinctly different it
can be from the mono-modal case.

I In turn, this leads to further extending the propositional
language at the second-order, in search of more and
more expressive resources.

I And finally we come to the application of the resulting
logical framework to the analysis of philosophical
problems, such as the nature of reflective knowledge.

I Thus we should re-evaluate well-entrenched distinctions
between philosophical, mathematical, computational
logic:

It’s all just (symbolic) logic.
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