On Ershov Semilattices of Degrees of Σ -Definability of Structures

Alexey Stukachev

Sobolev Institute of Mathematics Novosibirsk, Russia

Theory KPU, admissible sets, $\mathbb{HF}(\mathfrak{M})$

Let $\sigma' = \sigma \cup \{ U^1, \in^2, \emptyset \}$, where σ is a finite signature.

Definition

The class of Δ_0 -formulas of signature σ' is the least class of formulas containing all atomic formulas of signature σ' and closed under $\land, \lor, \neg, \exists x \in y$ and $\forall x \in y$.

Definition

The class of Σ -formulas of signature σ' is the least class of formulas containing all Δ_0 -formulas of signature σ' and closed under $\land, \lor, \exists x \in y, \forall x \in y$ and $\exists x$.

Definition

The **axioms of KPU** (for signature σ') are the universal closures of the following formulas:

Empty set: $\neg \exists x (x \in \emptyset) \land \neg U(\emptyset)$

Extensionality: $(\neg U(a) \land \neg U(b)) \rightarrow (\forall x (x \in a \leftrightarrow x \in b) \rightarrow a = b)$ **Foundation**: $\exists x \varphi(x) \rightarrow \exists x [\varphi(x) \land \forall y \in x \neg \varphi(y)]$ for all formulas $\varphi(x)$ in which y does not occurs free

Pair: $\exists a(x \in a \land y \in a)$

Union: $\exists b \forall y \in a \forall x \in y (x \in b)$

 Δ_0 -Separation: $\exists b \forall x (x \in b \leftrightarrow x \in a \land \varphi(x))$ for all Δ_0 -formulas $\varphi(x)$ in which b does not occurs free

Δ_0 -Collection:

 $\forall x \in a \exists y \varphi(x, y) \rightarrow \exists b \forall x \in a \exists y \in b \varphi(x, y) \text{ for all } \Delta_0 \text{-formulas } \varphi(x) \text{ in which } b \text{ does not occurs free.}$

Admissible sets

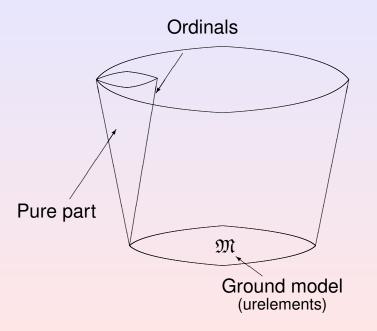
Let Tran(a) be the formula $\forall x \in a \forall y \in x(y \in a)$ and let

$$\operatorname{Ord}(a) \rightleftharpoons \operatorname{Tran}(a) \land \forall x \in a \operatorname{Tran}(x).$$

Definition

A structure \mathbb{A} of signature σ' is called an admissible set if

- 1) $\mathbb{A} \models \mathrm{KPU}$
- 2) Ord $\mathbb{A} = \{a \mid \mathbb{A} \models \operatorname{Ord}(a)\}$ is wellfounded



 $\mathbb{HF}(\mathfrak{M})$

For a set *M*, consider the set HF(M) of hereditary finite sets over *M* defined as follows: $HF(M) = \bigcup_{n \in \omega} HF_n(M)$, where

 $\begin{aligned} \mathrm{HF}_0(M) &= \{ \varnothing \} \cup M, \\ \mathrm{HF}_{n+1}(M) &= \mathrm{HF}_n(M) \cup \{ a \mid a \text{ is a finite subset of } \mathrm{HF}_n(M) \}. \end{aligned}$

For a structure $\mathfrak{M} = \langle M, \sigma^{\mathfrak{M}} \rangle$ of signature σ , hereditary finite superstructure

$$\mathbb{HF}(\mathfrak{M}) = \langle \mathrm{HF}(M); \sigma^{\mathfrak{M}}, U, \in, \varnothing \rangle$$

is a structure of signature σ' (with $\mathbb{HF}(\mathfrak{M}) \models U(a) \iff a \in M$).

 $\mathbb{HF}(\mathfrak{M})$ is the least admissible set over \mathfrak{M} .

Computability on admissible sets

Definition

For an admissible set $\mathbb{A} = \langle A, (\sigma')^{\mathbb{A}} \rangle$ of signature σ' , a subset $R \subseteq A$ is called a Σ -set in \mathbb{A} if, for some Σ -formula $\Phi(x, \bar{y})$ of signature σ' and some $\bar{c} \in A^{<\omega}$,

$$R = \{ a \in A | \mathbb{A} \models \Phi(a, \bar{c}) \}.$$

 $R \subseteq A$ is called a Δ -set in \mathbb{A} if R and $A \setminus R$ are Σ -sets in \mathbb{A} . For a subset $R \subseteq \omega$ of natural numbers,

R is a Σ -set in $\mathbb{HF}(\emptyset) \iff R$ is computably enumerable,

R is a Δ -set in $\mathbb{HF}(\emptyset) \iff R$ is computable.

Σ-definability of structures in admissible sets

Let \mathfrak{M} be a structure of relational computable signature $\langle P_0^{n_0}, \ldots, P_k^{n_k}, \ldots \rangle$ and let \mathbb{A} be an admissible set.

Definition

 \mathfrak{M} is called Σ -definable in \mathbb{A} if there exists a computable sequence of Σ -formulas $\varphi(x_0, y), \psi(x_0, x_1, y), \psi^*(x_0, x_1$ $\varphi_0(x_0,\ldots,x_{n_0-1},y), \varphi_0^*(x_0,\ldots,x_{n_0-1},y),\ldots,\varphi_k(x_0,\ldots,x_{n_k-1},y),$ $\varphi_k^*(x_0,\ldots,x_{n_k-1},y),\ldots$ such that, for some parameter $a \in A$, $M_0 \coloneqq \varphi^{\mathbb{A}}(x_0, a) \neq \varnothing, \ \eta \coloneqq \psi^{\mathbb{A}}(x_0, x_1, a) \cap M_0^2$ is a congruence on the structure $\mathfrak{M}_0 \coloneqq \langle M_0, P_0^{\mathfrak{M}_0}, \ldots, P_k^{\mathfrak{M}_0}, \ldots \rangle$, where $P_{\nu}^{\mathfrak{M}_{0}} \coloneqq \varphi_{\nu}^{\mathbb{A}}(x_{0},\ldots,x_{n_{\nu}-1}) \cap M_{0}^{n_{k}}, \ k \in \omega,$ $\psi^{*\mathbb{A}}(x_0, x_1, a) \cap M_0^2 = M_0^2 \setminus \psi^{\mathbb{A}}(x_0, x_1, a),$ $\varphi_{k}^{*\mathbb{A}}(x_{0},\ldots,x_{n_{k}-1},a)\cap M_{0}^{n_{k}}=M_{0}^{n_{k}}\setminus \varphi_{k}^{\mathbb{A}}(x_{0},\ldots,x_{n_{k}-1})$ for all $k \in \omega$, and the structure \mathfrak{M} is isomorphic to the quotient structure $\mathfrak{M}_0 \neq \eta$. For a countable structure \mathfrak{M} , the following are equivalent:

- \mathfrak{M} is constructivizable (computable);
- \mathfrak{M} is Σ -definable in $\mathbb{HF}(\emptyset)$.

For arbitrary structures \mathfrak{M} and \mathfrak{N} , we denote by $\mathfrak{M} \leq_{\Sigma} \mathfrak{N}$ the fact that \mathfrak{M} is Σ -definable in $\mathbb{HF}(\mathfrak{N})$.

For arbitrary cardinal α , let \mathcal{K}_{α} be the class of all structures (of computable signatures) of cardinality $\leq \alpha$. We define on \mathcal{K}_{α} an equivalence relation \equiv_{Σ} as follows: for $\mathfrak{M}, \mathfrak{N} \in \mathcal{K}_{\alpha}$,

 $\mathfrak{M} \equiv_{\Sigma} \mathfrak{N} \text{ if } \mathfrak{M} \leqslant_{\Sigma} \mathfrak{N} \text{ and } \mathfrak{N} \leqslant_{\Sigma} \mathfrak{M}.$

A structure

$$\mathcal{S}_{\Sigma}(\alpha) = \langle \mathcal{K}_{\alpha} / \equiv_{\Sigma}, \leqslant_{\Sigma} \rangle$$

is an upper semilattice with the least element, and, for any $\mathfrak{M},\mathfrak{N}\in\mathcal{K}_{\alpha},$

$$[\mathfrak{M}]_{\Sigma} \vee [\mathfrak{N}]_{\Sigma} = [(\mathfrak{M}, \mathfrak{N})]_{\Sigma},$$

where $(\mathfrak{M}, \mathfrak{N})$ denotes the model-theoretic pair of \mathfrak{M} and \mathfrak{N} .

Theorem (Ershov 1985, 1994) For the field \mathbb{C} of complex numbers,

- $\mathbb{C} \leq \Sigma S$ for any infinite set S;
- $\mathbb{C} \leq_{\Sigma} \mathbb{L}$ for any dense linear order \mathbb{L} of cardinality 2^{ω} .

For the field \mathbb{R} of real numbers,

• $\mathbb{R} \leq \Sigma \mathbb{L}$ for any linear order \mathbb{L} .

Definition We call a theory T c-simple (computably simple) if

- 1) T is decidable;
- 2) T is ω -categorical and model complete;
- 3) the family of prime formulas is decidable.

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

Theorem (S. 2002)

Let T be a c-simple theory and \mathfrak{M} be any computable model of T.

- i) T has uncountable model Σ-definable in HIF(L) for some L ⊨ DLO iff there exists an infinite computable set of order indiscernibles in M.
- T has uncountable model Σ-definable in HIF(S) for some infinite set S iff there exists an infinite computable set of total indiscernibles in M.

Corollary (S. 2002)

There exists a c-simple theory (of infinite signature) such that none of it's uncountable models is Σ -definable in $\mathbb{HF}(\mathbb{L})$ for any uncountable dense linear order \mathbb{L} .

Definition The rank of inner constructivizability of an admissible set \mathcal{A} is the ordinal

 $\operatorname{cr}(\mathcal{A}) = \inf\{\operatorname{rnk}(B) | \mathcal{A} \text{ is constructivizable inside } B\}.$

The next theorem gives the precise estimates of the rank of inner constructivizability for hereditary finite superstructures.

Theorem (S. 2005)

Suppose \mathfrak{M} is a structure of computable signature. Then 1) if \mathfrak{M} is finite then $\operatorname{cr}(\mathbb{HF}(\mathfrak{M})) = \omega$, 2) if \mathfrak{M} is infinite then $\operatorname{cr}(\mathbb{HF}(\mathfrak{M})) \leq 2$.

Theorem (S. 2005) $cr(\mathbb{HF}(\mathbb{R})) = 1.$ Morozov results (2007) on countable models Σ -definable (without parameters!) in $\mathbb{HF}(\mathbb{R})$:

- 1) any such model is hyperarithmetic;
- for any hyperarithmetical degree *d*, there is a countable model M Σ-definable in HIF(R) such that any presentation of M has degree bigger than *d*.

For arbitrary structure \mathfrak{M} of a computable signature σ and an admissible set \mathbb{A} with $M \subseteq U(\mathbb{A})$, we say that \mathfrak{M} is **decidable in** \mathbb{A} if

$$\{ \langle arphi, ar{m}
angle \mid arphi \in \mathit{F}_{\sigma}, \, ar{m} \in \mathit{M}^{<\omega}, \, \mathfrak{M} \models arphi(ar{m}) \, \}$$

is Σ -subset of \mathbb{A} . In the same way the notions of *n*-decidable and **computable** (i.e. 0-decidable) structures in \mathbb{A} could be defined.

If \mathfrak{M} is 1-decidable in $\mathbb{HF}(\mathfrak{M})$ when $\mathbb{HF}(\mathfrak{M})$ has universal Σ -function and reduction property, but not necessarily uniformization property.

(日) (日) (日) (日) (日) (日) (日)

Let \mathfrak{M} be a structure of signature σ , signature σ_* consists of all symbols from σ and function symbols $f_{\varphi}(x_1, \ldots, x_n)$ for all \exists -formulas $\varphi(x_0, x_1, \ldots, x_n) \in F_{\sigma}$. A structure \mathfrak{M}_* of signature σ_* is called **existential Skolem expansion of** \mathfrak{M} if $|\mathfrak{M}_*| = |\mathfrak{M}|$, $\mathfrak{M} \upharpoonright_{\sigma} = \mathfrak{M}_* \upharpoonright_{\sigma}$, and for any \exists -formula $\varphi(x_0, x_1, \ldots, x_n) \in F_{\sigma}$

$$\mathfrak{M}_* \models \forall x_1 \dots \forall x_n (\exists x \varphi(x, x_1, \dots, x_n) \rightarrow$$

$$\rightarrow \varphi(f_{\varphi}(x_1,\ldots,x_n),x_1,\ldots,x_n)).$$

Theorem (S. 1996)

Let \mathfrak{M} be 1-decidable in $\mathbb{HF}(\mathfrak{M})$. Then $\mathbb{HF}(\mathfrak{M})$ has the uniformization property iff some existential Skolem expansion of \mathfrak{M} is computable in $\mathbb{HF}(\mathfrak{M})$.

Corollary (S. 1996, indep. Korovina 1996 for $\mathbb{HF}(\mathbb{R})$) $\mathbb{HF}(\mathbb{R})$ and $\mathbb{HF}(\mathbb{Q}_p)$ have the uniformization property and a universal Σ -function.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Let $\mathfrak M$ be a structure of a computable signature and let $\mathbb A$ be an admissible set.

Definition

A presentation of \mathfrak{M} in \mathbb{A} is any structure \mathcal{C} such that $\mathcal{C} \cong \mathfrak{M}$ and the domain of \mathcal{C} is a subset of A.

We can treat (the atomic diagram of) a presentation C as a subset of A, using some Gödel numbering of the atomic formulas of the signature of \mathfrak{M} .

Definition

The problem of presentability of \mathfrak{M} in \mathbb{A} is the set $Pr(\mathfrak{M}, \mathbb{A})$ consisting of the atomic diagrams of all possible presentations of \mathfrak{M} in \mathbb{A} :

 $Pr(\mathfrak{M}, \mathbb{A}) = \{ \mathcal{C} \mid \mathcal{C} \text{ is a presentation of } \mathfrak{M} \text{ in } \mathbb{A} \}$

Denote by $\underline{\mathfrak{M}}$ the set $Pr(\mathfrak{M}, \mathbb{HF}(\emptyset))$ of all presentations of \mathfrak{M} in the least admissible set.

A mass problem (Yu. T. Medvedev, 1955) is any set of total functions from ω to ω . A mass problem can be considered as a set of "solutions" (in form of functions from ω to ω) of some "informal problem".

Examples of mass problems: suppose $A, B \subseteq \omega$

- 1) the *problem of solvability* of a set *A* is the mass problem $S_A = \{\chi_A\}$, where χ_A is the characteristic function of *A*
- 2) the problem of enumerability of a set A is the mass problem

$$\mathcal{E}_{\mathcal{A}} = \{f: \omega \to \omega \mid \operatorname{rng}(f) = \mathcal{A}\}$$

3) the problem of separability of sets A, B is the mass problem

$$\mathcal{P}_{A,B} = \{f : \omega \to 2 \mid f^{-1}(0) = A, f^{-1}(1) = B\}$$

Let \mathfrak{M} be a countable structure, and $A \subseteq \omega$, $A \neq \emptyset$. The following are equivalent:

- 1) $\mathcal{E}_A \leqslant_w \underline{\mathfrak{M}}$
- 2) $\mathcal{E}_{A} \leqslant (\mathfrak{M}, \bar{m})$ for some $\bar{m} \in M^{<\omega}$
- 3) A is Σ -definable in $\mathbb{HF}(\mathfrak{M})$

Theorem

Let \mathfrak{M} be a countable structure, and $A \subseteq \omega$. The following are equivalent:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

- 1) $S_A \leq_w \underline{\mathfrak{M}}$
- 2) $\mathcal{S}_{\mathcal{A}} \leqslant (\mathfrak{M}, \bar{m})$ for some $\bar{m} \in M^{<\omega}$
- 3) A is \triangle -definable in $\mathbb{HF}(\mathfrak{M})$

Definition

Let \mathfrak{M} be a countable structure. \mathfrak{M} is said to have a degree (e-degree) if there exists a least degree in the class of *T*-degrees (e-degrees) of all possible presentations of \mathfrak{M} in $\mathbb{HF}(\emptyset)$.

Theorem

For a countable \mathfrak{M} , \mathfrak{M} has a degree (e-degree) iff, for some $\mathcal{C} \in \mathfrak{M}$, \mathcal{C} is Δ -definable (Σ -definable) in $\mathbb{HF}(\mathfrak{M})$.

Let \mathcal{D} denotes the semilattice of Turing degrees of unsolvability. A mapping $i : \mathcal{D} \to \mathcal{S}_{\Sigma}$ is defined as follows: for any *T*-degree **a**, let

 $i(\mathbf{a}) = [\mathfrak{M}_{\mathbf{a}}]_{\Sigma}$, where $\mathfrak{M}_{\mathbf{a}}$ has degree \mathbf{a} .

Let \mathcal{D}_e denotes the semilattice of enumeration degrees. A mapping $j : \mathcal{D}_e \to \mathcal{S}_{\Sigma}$ is defined as follows: for any *e*-degree **a**, let

$$j(\mathbf{a}) = [\mathfrak{M}_{\mathbf{a}}]_{\Sigma}$$
, where $\mathfrak{M}_{\mathbf{a}}$ has e-degree \mathbf{a} .

(日) (日) (日) (日) (日) (日) (日)

Proposition

 $\begin{array}{l} \text{Mappigs } i: \mathcal{D} \rightarrow \mathcal{S}_{\Sigma} \text{ and } j: \mathcal{D}_{e} \rightarrow \mathcal{S}_{\Sigma} \text{ are semilattice} \\ \text{embeddings. So, } \mathcal{D} \hookrightarrow \mathcal{D}_{e} \hookrightarrow \mathcal{S}_{\Sigma}. \end{array}$

Σ -operators

A mapping $F : P(A)^n \to P(A)$ $(n \in \omega)$ is called a Σ -operator if there is a Σ -formula $\Phi(x_0, \ldots, x_{n-1}, y)$ of the signature $\sigma_{\mathbb{A}}$ such that for all $S_0, \ldots, S_{n-1} \in P(A)$

$$F(S_0,...,S_{n-1}) = \{ a \mid \exists a_0,...,a_{n-1} \in A \}$$

$$(\bigwedge_{i < n} a_i \subseteq S_i \land \mathbb{A} \models \Phi(a_0, \ldots, a_{n-1}, a))\}.$$

Suppose $B, C \subseteq A$. B is $e\Sigma$ -reducible to C ($B \leq_{e\Sigma} C$) if there exists a unary Σ -operator F such that $C \in \delta_c(F)$ and B = F(C).

B is $T\Sigma$ -reducible to *C* ($B \leq_{T\Sigma} C$) if there exist binary Σ -operators F_0 and F_1 such that $\langle C, A \setminus C \rangle \in \delta_c(F_0) \cap \delta_c(F_1)$ for which $B = F_0(C, A \setminus C)$ and $A \setminus B = F_1(C, A \setminus C)$. An operator $F : P(A) \rightarrow P(A)$ is strongly continuous in $S \in P(A)$, if

for any $a \subseteq F(S)$, $a \in A$, there exists $a' \subseteq S$, $a' \in A$, s.t. $a \subseteq F(a')$.

For operator $F : P(A)^n \to P(A)$, $\delta_c(F)$ is the set of elements of $P(A)^n$ in which F is strongly continuous.

A set $S \in P(A)^n$ is called a Σ_* -set if $S \in \delta_c(F)$ for any Σ -operator $F : P(A)^n \to P(A)$.

It is easy to show that in $\mathbb{HF}(\mathfrak{M})$ any subset is a Σ_* -set.

Uniform reducibilities

Suppose $\mathcal{X}, \mathcal{Y} \subseteq P(A)$. \mathcal{X} is Medvedev reducible to \mathcal{Y} ($\mathcal{X} \leq \mathcal{Y}$) if there exist binary Σ -operators F_0 and F_1 such that, for all $Y \in \mathcal{Y}, \langle Y, A \setminus Y \rangle \in \delta_c(F_0) \cap \delta_c(F_1)$ and, for some $X \in \mathcal{X}, X = F_0(Y, A \setminus Y)$ and $A \setminus X = F_1(Y, A \setminus Y)$.

 \mathcal{X} is Dyment reducible to \mathcal{Y} ($\mathcal{X} \leq_{e} \mathcal{Y}$) if there exists a unary Σ -operator F such that, for all $Y \in \mathcal{Y}$, $Y \in \delta_{c}(F)$ and $F(\mathcal{Y}) \subseteq \mathcal{X}$.

 \mathcal{X} is Muchnik reducible to \mathcal{Y} ($\mathcal{X} \leq_w \mathcal{Y}$) if, for any $Y \in \mathcal{Y}$, there exist binary Σ -operators F_0 and F_1 such that $\langle Y, A \setminus Y \rangle \in \delta_c(F_0) \cap \delta_c(F_1)$ and, for some $X \in \mathcal{X}$, $X = F_0(Y, A \setminus Y)$ and $A \setminus X = F_1(Y, A \setminus Y)$.

For countable structure \mathfrak{M} consider classes

$$\begin{split} \mathcal{K}_{\Sigma}(\mathfrak{M}) &= \{\mathfrak{N} \mid \mathfrak{N} \text{ is } \Sigma \text{-definable in } \mathbb{HF}(\mathfrak{M}) \} \\ \mathcal{K}_{e}(\mathfrak{M}) &= \{\mathfrak{N} \mid \underline{\mathfrak{N}} \leqslant_{e} (\mathfrak{M}, \overline{m}) \text{ for some } \overline{m} \in M^{<\omega} \} \\ \mathcal{K}(\mathfrak{M}) &= \{\mathfrak{N} \mid \underline{\mathfrak{N}} \leqslant (\mathfrak{M}, \overline{m}) \text{ for some } \overline{m} \in M^{<\omega} \} \\ \mathcal{K}_{ew}(\mathfrak{M}) &= \{\mathfrak{N} \mid \underline{\mathfrak{N}} \leqslant_{ew} \mathfrak{M} \} \\ \mathcal{K}_{w}(\mathfrak{M}) &= \{\mathfrak{N} \mid \underline{\mathfrak{N}} \leqslant_{w} \mathfrak{M} \} \end{split}$$

For any structure \mathfrak{M} ,

$$\mathcal{K}_{\Sigma}(\mathfrak{M}) \subseteq \mathcal{K}_{e}(\mathfrak{M}) \subseteq \mathcal{K}(\mathfrak{M}) \subseteq \mathcal{K}_{w}(\mathfrak{M}),$$

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

as well as $\mathcal{K}_{e}(\mathfrak{M}) \subseteq \mathcal{K}_{ew}(\mathfrak{M}) \subseteq \mathcal{K}_{w}(\mathfrak{M})$. In general, all these inclusions are proper.

For any $* \in \{e, , w, ew\}$, define the relation \leq_* on \mathcal{K}_{ω} in the following way: $\mathfrak{M} \leq_* \mathfrak{N}$ if and only if $\mathcal{K}_*(\mathfrak{M}) \subseteq \mathcal{K}_*(\mathfrak{N})$, and let $\mathcal{S}_* = \langle \mathcal{K}_{\omega} / \equiv_*, \leq_* \rangle$ be a structure of degrees of presentability corresponding to this reducibility relation.

Theorem

Each of S_* , $* \in \{e, ., w, ew\}$, is an upper semilattice with 0, and there are following embeddings (\hookrightarrow) and homomorphisms (\rightarrow)

$$\mathcal{D} \hookrightarrow \mathcal{D}_{\boldsymbol{e}} \hookrightarrow \mathcal{S}_{\boldsymbol{\Sigma}} \to \mathcal{S}_{\boldsymbol{e}} \to \mathcal{S} \hookrightarrow \mathcal{M}.$$

For arbitrary structures \mathfrak{M} and \mathfrak{M}' of the same signature and any $n \in \omega$, we denote by $\mathfrak{M} \preccurlyeq_n^{\operatorname{HF}} \mathfrak{M}'$ the fact that $\mathbb{HF}(\mathfrak{M}) \preccurlyeq_n \mathbb{HF}(\mathfrak{M}')$. It is easy to verify that, for n < 2, $\mathfrak{M} \preccurlyeq_n^{\operatorname{HF}} \mathfrak{M}'$ if and only if $\mathfrak{M} \preccurlyeq_n \mathfrak{M}'$. For n = 2, $\mathfrak{M} \preccurlyeq_2^{\operatorname{HF}} \mathfrak{M}'$ if and only if $\mathfrak{M} \leqslant \mathfrak{M}'$ and for any computable sequence $\{\varphi_{mn}(\bar{x}_m, \bar{y}_n, \bar{z}) | m, n \in \omega\}$ of quantifier-free formulas of signature $\sigma_{\mathfrak{M}}$ and any $\bar{m} \in M^{<\omega}$,

$$\mathfrak{M}' \models \bigvee_{m \in \omega} \exists \bar{x}_m \bigwedge_{n \in \omega} \forall \bar{y}_n \varphi_{mn}(\bar{x}_m, \bar{y}_n, \bar{z})$$

implies that

$$\mathfrak{M} \models \bigvee_{m \in \omega} \exists \bar{x}_m \bigwedge_{n \in \omega} \forall \bar{y}_n \varphi_{mn}(\bar{x}_m, \bar{y}_n, \bar{z}).$$

Definition

A structure \mathfrak{M} is called locally constructivizable of level n $(1 < n \leq \omega)$, if, for any tuple $\overline{m} \in M^{<\omega}$, there exist a constructivizable structure \mathfrak{N} and a tuple $\overline{n} \in N^{<\omega}$ such that $(\mathfrak{M}, \overline{m}) \equiv_n^{\mathrm{HF}} (\mathfrak{N}, \overline{n})$. Structure \mathfrak{M} is called uniformly locally constructivizable of level n $(1 < n \leq \omega)$ if there exists a constructivizable structure \mathfrak{N} such that $\mathfrak{M} \preccurlyeq_n^{\mathrm{HF}} \mathfrak{N}$.

Example:
$$(\omega_1^{CK}, \leqslant) \preccurlyeq^{HF} (\omega_1^{CK}(1+\eta), \leqslant).$$

Proposition

If $\mathfrak{M} \leq_{\Sigma} \mathfrak{N}$ and \mathfrak{N} is (uniformly) locally constructivizable of level $n \ (1 < n \leq \omega)$ then \mathfrak{M} is also (uniformly) locally constructivizable of level n.

Proposition

Let a structure \mathfrak{N} be such that \mathfrak{N} is locally constructivizable of level 1, and let $\mathfrak{M} \leq_{\Sigma} \mathfrak{N}$. Then there exists a partial constructivizable structure \mathfrak{M}' such that $\mathfrak{M} \leq_{\exists} \mathfrak{M}'$.

For structures \mathfrak{M} and \mathfrak{N} , we denote by $\mathfrak{M} \leq_{\exists} \mathfrak{N}$ the fact that for any $\bar{m} \in M^{<\omega}$ there is $\bar{n} \in N^{<\omega}$ such that $\operatorname{Th}_{\exists}(\mathfrak{M}, \bar{m}) \leq_{e} \operatorname{Th}_{\exists}(\mathfrak{N}, \bar{n}).$

Proposition

For arbitrary structures \mathfrak{M} and \mathfrak{N} , $\mathfrak{N} \in \mathcal{K}_w(\mathfrak{M})$ implies that $\mathfrak{N} \leq_{\exists} \mathfrak{M}$. In particular, if \mathfrak{M} is locally constructivizable, then any $\mathfrak{N} \in \mathcal{K}_w(\mathfrak{M})$ is also locally constructivizable.

If a structure \mathfrak{M} is locally constructivizable of level n > 1 and not constructivizable, then there is a structure $\mathfrak{M}_0 \in \mathcal{K}(\mathfrak{M})$ which is locally constructivizable of level 1 sharply. In particular, $\mathcal{K}_{\Sigma}(\mathfrak{M}) \subsetneq \mathcal{K}(\mathfrak{M})$.

Theorem There exist a structure \mathfrak{M} and a relation $P \subseteq M$ such that $(\mathfrak{M}, P) \equiv \mathfrak{M}$, but (\mathfrak{M}, P) is not Σ -definable in $\mathbb{HF}(\mathfrak{M})$.

Theorem (Ash, Knight, Manasse, Slaman; Chisholm) Let \mathfrak{M} be a countable structure and let $P \subseteq M^n$. Then the following are equivalent:

(日) (日) (日) (日) (日) (日) (日)

1) *P* is Σ -definable in $\mathbb{HF}(\mathfrak{M})$;

2) for any $C \in (\mathfrak{M}, P)$, R^{C} is $C \upharpoonright \sigma_{\mathfrak{M}}$ -c.e.

There exist a structure \mathfrak{M} and a relation $P \subseteq M$ such that $(\mathfrak{M}, P) \equiv \mathfrak{M}$, but (\mathfrak{M}, P) is not Σ -definable in $\mathbb{HF}(\mathfrak{M})$.

Theorem (Ash, Knight, Manasse, Slaman; Chisholm) Let \mathfrak{M} be a countable structure and let $P \subseteq M^n$. Then the following are equivalent:

(日) (日) (日) (日) (日) (日) (日)

- 1) *P* is Σ -definable in $\mathbb{HF}(\mathfrak{M})$;
- 2) for any $C \in (\mathfrak{M}, P)$, R^{C} is $C \upharpoonright \sigma_{\mathfrak{M}}$ -c.e.

For any countable structures \mathfrak{M} and \mathfrak{N} and any $R \subseteq \mathbb{HF}(\mathfrak{N})$, the following are equivalent:

- 1) for any presentation C of \mathfrak{M} in $\mathbb{HF}(\mathfrak{N})$, $R \leq_{e\Sigma} C$;
- 2) *R* is Σ -definable in $\mathbb{HF}(\mathfrak{M}, \mathfrak{N})$.

Definition

Let \mathfrak{M} and \mathfrak{N} be a countable structures. \mathfrak{M} is said to have a degree (e-degree) over \mathfrak{N} if there exists a least degree in the class of $T\Sigma$ -degrees (e Σ -degrees) of all possible presentations of \mathfrak{M} in $\mathbb{HF}(\mathfrak{N})$.

(日) (日) (日) (日) (日) (日) (日)

Let \mathfrak{M} and \mathfrak{N} be a countable structure. The following are equivalent:

- 1) \mathfrak{M} has a degree (e-degree) over \mathfrak{N} ;
- 2) some presentation $C \subseteq HF(N)$ of \mathfrak{M} is Δ -definable (Σ -definable) in $\mathbb{HF}(\mathfrak{M}, \mathfrak{N})$.

Corollary

For a countable $\mathfrak{M}, \mathfrak{M}$ has a degree (e-degree) iff, for some $\mathcal{C} \in \mathfrak{M}, \mathcal{C}$ is Δ -definable (Σ -definable) in $\mathbb{HF}(\mathfrak{M})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Proposition

If \mathfrak{M} has a degree (e-degree) over \mathfrak{N} and \mathfrak{N} is Σ -definable in $\mathbb{HF}(\mathfrak{N}')$ then \mathfrak{M} has a degree (e-degree) over \mathfrak{N}' .

Proposition

For any countable structure \mathfrak{A} there exists a structure \mathfrak{M} which has a degree but is not Σ -definable in $\mathbb{HF}(\mathfrak{A})$.

Theorem If m has a degree then

$$\mathcal{K}_{\Sigma}(\mathfrak{M}) = \mathcal{K}_{e}(\mathfrak{M}) = \mathcal{K}(\mathfrak{M}) = \mathcal{K}_{w}(\mathfrak{M}).$$

Theorem If m has an e-degree then

$$\mathcal{K}_{\Sigma}(\mathfrak{M}) = \mathcal{K}_{e}(\mathfrak{M}) = \mathcal{K}_{ew}(\mathfrak{M})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

◆□→ ◆□→ ◆目→ ◆目→ ○ ● ●