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Theory KPU, admissible sets, HF(M)

Let σ′ = σ ∪ {U1,∈2,∅}, where σ is a finite signature.

Definition
The class of ∆0-formulas of signature σ′ is the least class of
formulas containing all atomic formulas of signature σ′ and
closed under ∧,∨,¬, ∃x ∈ y and ∀x ∈ y.

Definition
The class of Σ-formulas of signature σ′ is the least class of
formulas containing all ∆0-formulas of signature σ′ and closed
under ∧,∨, ∃x ∈ y, ∀x ∈ y and ∃x.



Definition
The axioms of KPU (for signature σ′) are the universal
closures of the following formulas:

Empty set: ¬∃x(x ∈ ∅) ∧ ¬U(∅)

Extensionality:
(¬U(a) ∧ ¬U(b)) → (∀x(x ∈ a ↔ x ∈ b) → a = b)
Foundation: ∃xϕ(x) → ∃x [ϕ(x) ∧ ∀y ∈ x¬ϕ(y)] for all
formulas ϕ(x) in which y does not occurs free
Pair: ∃a(x ∈ a ∧ y ∈ a)

Union: ∃b∀y ∈ a∀x ∈ y(x ∈ b)

∆0-Separation: ∃b∀x(x ∈ b ↔ x ∈ a ∧ ϕ(x)) for all
∆0-formulas ϕ(x) in which b does not occurs free
∆0-Collection:
∀x ∈ a∃y ϕ(x , y) → ∃b∀x ∈ a∃y ∈ bϕ(x , y) for all
∆0-formulas ϕ(x) in which b does not occurs free.



Admissible sets

Let Tran(a) be the formula ∀x ∈ a∀y ∈ x(y ∈ a) and let

Ord(a) 
 Tran(a) ∧ ∀x ∈ a Tran(x).

Definition
A structure A of signature σ′ is called an admissible set if

1) A |= KPU

2) OrdA = {a | A |= Ord(a)} is wellfounded
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HF(M)

For a set M, consider the set HF(M) of hereditary finite sets
over M defined as follows: HF(M) =

⋃
n∈ω

HFn(M), where

HF0(M) = {∅} ∪M,
HFn+1(M) = HFn(M) ∪ {a | a is a finite subset of HFn(M)}.

For a structure M = 〈M, σM〉 of signature σ, hereditary finite
superstructure

HF(M) = 〈HF(M);σM,U,∈,∅〉

is a structure of signature σ′ (with HF(M) |= U(a) ⇐⇒ a ∈ M).

HF(M) is the least admissible set over M.



Computability on admissible sets

Definition
For an admissible set A = 〈A, (σ′)A〉 of signature σ′, a subset
R ⊆ A is called a Σ-set in A if, for some Σ-formula Φ(x , ȳ) of
signature σ′ and some c̄ ∈ A<ω,

R = {a ∈ A|A |= Φ(a, c̄)}.

R ⊆ A is called a ∆-set in A if R and A \ R are Σ-sets in A.
For a subset R ⊆ ω of natural numbers,

R is a Σ-set in HF(∅) ⇐⇒ R is computably enumerable,

R is a ∆-set in HF(∅) ⇐⇒ R is computable.



Σ-definability of structures in
admissible sets

Let M be a structure of relational computable signature
〈Pn0

0 , . . . ,Pnk
k , . . .〉 and let A be an admissible set.

Definition
M is called Σ-definable in A if there exists a computable
sequence of Σ-formulas ϕ(x0, y), ψ(x0, x1, y), ψ∗(x0, x1, y),
ϕ0(x0, . . . , xn0−1, y), ϕ∗0(x0, . . . , xn0−1, y), . . . , ϕk (x0, . . . , xnk−1, y),
ϕ∗k (x0, . . . , xnk−1, y), . . . such that, for some parameter a ∈ A,
M0 � ϕA(x0,a) 6= ∅, η � ψA(x0, x1,a) ∩M2

0 is a congruence
on the structure M0 � 〈M0,P

M0
0 , . . . ,PM0

k , . . .〉, where
PM0

k � ϕA
k (x0, . . . , xnk−1) ∩Mnk

0 , k ∈ ω,
ψ∗A(x0, x1,a) ∩M2

0 = M2
0 \ ψA(x0, x1,a),

ϕ∗A
k (x0, . . . , xnk−1,a) ∩Mnk

0 = Mnk
0 \ ϕA

k (x0, . . . , xnk−1) for all
k ∈ ω, and the structure M is isomorphic to the quotient
structure M0�η.



For a countable structure M, the following are equivalent:
• M is constructivizable (computable);
• M is Σ-definable in HF(∅).

For arbitrary structures M and N, we denote by M 6Σ N the
fact that M is Σ-definable in HF(N).



For arbitrary cardinal α, let Kα be the class of all structures (of
computable signatures) of cardinality 6 α. We define on Kα an
equivalence relation ≡Σ as follows: for M,N ∈ Kα,

M ≡Σ N if M 6Σ N and N 6Σ M.

A structure
SΣ(α) = 〈Kα/ ≡Σ,6Σ〉

is an upper semilattice with the least element, and, for any
M,N ∈ Kα,

[M]Σ ∨ [N]Σ = [(M,N)]Σ,

where (M,N) denotes the model-theoretic pair of M and N.



Theorem (Ershov 1985, 1994)
For the field C of complex numbers,
• C 66Σ S for any infinite set S;
• C 6Σ L for any dense linear order L of cardinality 2ω.

For the field R of real numbers,
• R 66Σ L for any linear order L.



Definition
We call a theory T c-simple (computably simple) if

1) T is decidable;
2) T is ω-categorical and model complete;
3) the family of prime formulas is decidable.



Theorem (S. 2002)
Let T be a c-simple theory and M be any computable model of
T .

i) T has uncountable model Σ-definable in HF(L) for some
L |= DLO iff there exists an infinite computable set of order
indiscernibles in M.

ii) T has uncountable model Σ-definable in HF(S) for some
infinite set S iff there exists an infinite computable set of
total indiscernibles in M.

Corollary (S. 2002)
There exists a c-simple theory (of infinite signature) such that
none of it’s uncountable models is Σ-definable in HF(L) for any
uncountable dense linear order L.



Definition
The rank of inner constructivizability of an admissible set A is
the ordinal

cr(A) = inf{rnk(B)|A is constructivizable inside B}.

The next theorem gives the precise estimates of the rank of
inner constructivizability for hereditary finite superstructures.

Theorem (S. 2005)
Suppose M is a structure of computable signature. Then
1) if M is finite then cr(HF(M)) = ω,
2) if M is infinite then cr(HF(M)) 6 2.

Theorem (S. 2005)
cr(HF(R)) = 1.



Morozov results (2007) on countable models Σ-definable
(without parameters!) in HF(R):

1) any such model is hyperarithmetic;
2) for any hyperarithmetical degree d , there is a countable

model M Σ-definable in HF(R) such that any presentation
of M has degree bigger than d .



For arbitrary structure M of a computable signature σ and an
admissible set A with M ⊆ U(A), we say that M is decidable in
A if

{ 〈ϕ, m̄〉 | ϕ ∈ Fσ, m̄ ∈ M<ω, M |= ϕ(m̄) }

is Σ-subset of A. In the same way the notions of n-decidable
and computable (i.e. 0-decidable) structures in A could be
defined.

If M is 1-decidable in HF(M) when HF(M) has universal
Σ-function and reduction property, but not necessarily
uniformization property.



Let M be a structure of signature σ, signature σ∗ consists of all
symbols from σ and function symbols fϕ(x1, . . . , xn) for all
∃-formulas ϕ(x0, x1, . . . , xn) ∈ Fσ. A structure M∗ of signature
σ∗ is called existential Skolem expansion of M if |M∗| = |M|,
M �σ= M∗ �σ, and for any ∃-formula ϕ(x0, x1, . . . , xn) ∈ Fσ

M∗ |= ∀x1 . . .∀xn(∃xϕ(x , x1, . . . , xn) →

→ ϕ(fϕ(x1, . . . , xn), x1, . . . , xn)).

Theorem (S. 1996)
Let M be 1-decidable in HF(M). Then HF(M) has the
uniformization property iff some existential Skolem expansion
of M is computable in HF(M).



Corollary (S. 1996, indep. Korovina 1996 for HF(R) )
HF(R) and HF(Qp) have the uniformization property and a
universal Σ-function.



Let M be a structure of a computable signature and let A be an
admissible set.

Definition
A presentation of M in A is any structure C such that C ∼= M

and the domain of C is a subset of A.
We can treat (the atomic diagram of) a presentation C as a
subset of A, using some Gödel numbering of the atomic
formulas of the signature of M.

Definition
The problem of presentability of M in A is the set Pr(M,A)
consisting of the atomic diagrams of all possible presentations
of M in A:

Pr(M,A) = { C | C is a presentation of M in A }
Denote by M the set Pr(M,HF(∅)) of all presentations of M in
the least admissible set.



A mass problem (Yu. T. Medvedev, 1955) is any set of total
functions from ω to ω. A mass problem can be considered as a
set of ”solutions” (in form of functions from ω to ω) of some
”informal problem”.

Examples of mass problems: suppose A,B ⊆ ω

1) the problem of solvability of a set A is the mass problem
SA = {χA}, where χA is the characteristic function of A

2) the problem of enumerability of a set A is the mass problem

EA = {f : ω → ω | rng(f ) = A}

3) the problem of separability of sets A,B is the mass problem

PA,B = {f : ω → 2 | f−1(0) = A, f−1(1) = B}



Theorem
Let M be a countable structure, and A ⊆ ω, A 6= ∅. The
following are equivalent:

1) EA 6w M

2) EA 6 (M, m̄) for some m̄ ∈ M<ω

3) A is Σ-definable in HF(M)

Theorem
Let M be a countable structure, and A ⊆ ω. The following are
equivalent:

1) SA 6w M

2) SA 6 (M, m̄) for some m̄ ∈ M<ω

3) A is ∆-definable in HF(M)



Definition
Let M be a countable structure. M is said to have a degree
(e-degree) if there exists a least degree in the class of
T -degrees (e-degrees) of all possible presentations of M in
HF(∅).

Theorem
For a countable M, M has a degree (e-degree) iff, for some
C ∈ M, C is ∆-definable (Σ-definable) in HF(M).



Let D denotes the semilattice of Turing degrees of unsolvability.
A mapping i : D → SΣ is defined as follows: for any T -degree a,
let

i(a) = [Ma]Σ, where Ma has degree a.

Let De denotes the semilattice of enumeration degrees. A
mapping j : De → SΣ is defined as follows: for any e-degree a,
let

j(a) = [Ma]Σ, where Ma has e-degree a.

Proposition
Mappigs i : D → SΣ and j : De → SΣ are semilattice
embeddings. So, D ↪→ De ↪→ SΣ.



Σ-operators

A mapping F : P(A)n → P(A) (n ∈ ω) is called a Σ-operator if
there is a Σ-formula Φ(x0, . . . , xn−1, y) of the signature σA such
that for all S0, . . . ,Sn−1 ∈ P(A)

F (S0, . . . ,Sn−1) = { a | ∃a0, . . . ,an−1 ∈ A

(
∧

i<n
ai ⊆ Si ∧ A |= Φ(a0, . . . ,an−1,a))}.

Suppose B,C ⊆ A. B is eΣ-reducible to C (B 6eΣ C) if there
exists a unary Σ-operator F such that C ∈ δc(F ) and B = F (C).

B is TΣ-reducible to C (B 6TΣ C) if there exist binary
Σ-operators F0 and F1 such that 〈C,A \C〉 ∈ δc(F0) ∩ δc(F1) for
which B = F0(C,A \ C) and A \ B = F1(C,A \ C).



An operator F : P(A) → P(A) is strongly continuous in
S ∈ P(A), if

for any a ⊆ F (S), a ∈ A, there exists a′ ⊆ S, a′ ∈ A, s.t. a ⊆ F (a′).

For operator F : P(A)n → P(A), δc(F ) is the set of elements of
P(A)n in which F is strongly continuous.

A set S ∈ P(A)n is called a Σ∗-set if S ∈ δc(F ) for any
Σ-operator F : P(A)n → P(A).

It is easy to show that in HF(M) any subset is a Σ∗-set.



Uniform reducibilities

Suppose X ,Y ⊆ P(A). X is Medvedev reducible to Y (X 6 Y)
if there exist binary Σ-operators F0 and F1 such that, for all
Y ∈ Y, 〈Y ,A \ Y 〉 ∈ δc(F0) ∩ δc(F1) and, for some X ∈ X ,
X = F0(Y ,A \ Y ) and A \ X = F1(Y ,A \ Y ).

X is Dyment reducible to Y (X 6e Y) if there exists a unary
Σ-operator F such that, for all Y ∈ Y, Y ∈ δc(F ) and F (Y) ⊆ X .

X is Muchnik reducible to Y (X 6w Y) if, for any Y ∈ Y, there
exist binary Σ-operators F0 and F1 such that
〈Y ,A \ Y 〉 ∈ δc(F0) ∩ δc(F1) and, for some X ∈ X ,
X = F0(Y ,A \ Y ) and A \ X = F1(Y ,A \ Y ).



For countable structure M consider classes
KΣ(M) = {N | N is Σ-definable in HF(M)}
Ke(M) = {N | N 6e (M, m̄) for some m̄ ∈ M<ω}
K(M) = {N | N 6 (M, m̄) for some m̄ ∈ M<ω}
Kew (M) = {N | N 6ew M}
Kw (M) = {N | N 6w M}

For any structure M,

KΣ(M) ⊆ Ke(M) ⊆ K(M) ⊆ Kw (M),

as well as Ke(M) ⊆ Kew (M) ⊆ Kw (M). In general, all these
inclusions are proper.



For any ∗ ∈ {e, ,w ,ew}, define the relation 6∗ on Kω in the
following way: M 6∗ N if and only if K∗(M) ⊆ K∗(N), and let
S∗ = 〈Kω/ ≡∗,6∗〉 be a structure of degrees of presentability
corresponding to this reducibility relation.

Theorem
Each of S∗, ∗ ∈ {e, ,w ,ew}, is an upper semilattice with 0, and
there are following embeddings (↪→) and homomorphisms (→)

D ↪→ De ↪→ SΣ → Se → S ↪→M.



For arbitrary structures M and M′ of the same signature and
any n ∈ ω, we denote by M 4HF

n M′ the fact that
HF(M) 4n HF(M′). It is easy to verify that, for n < 2,
M 4HF

n M′ if and only if M 4n M′. For n = 2, M 4HF
2 M′ if and

only if M 6 M′ and for any computable sequence
{ϕmn(x̄m, ȳn, z̄)|m,n ∈ ω} of quantifier-free formulas of
signature σM and any m̄ ∈ M<ω,

M′ |=
∨

m∈ω

∃x̄m
∧
n∈ω

∀ȳnϕmn(x̄m, ȳn, z̄)

implies that

M |=
∨

m∈ω

∃x̄m
∧
n∈ω

∀ȳnϕmn(x̄m, ȳn, z̄).



Definition
A structure M is called locally constructivizable of level n
(1 < n 6 ω), if, for any tuple m̄ ∈ M<ω, there exist a
constructivizable structure N and a tuple n̄ ∈ N<ω such that
(M, m̄) ≡HF

n (N, n̄). Structure M is called uniformly locally
constructivizable of level n (1 < n 6 ω) if there exists a
constructivizable structure N such that M 4HF

n N.

Example: (ωCK
1 ,6) 4HF (ωCK

1 (1 + η),6).

Proposition
If M 6Σ N and N is (uniformly) locally constructivizable of level
n (1 < n 6 ω) then M is also (uniformly) locally
constructivizable of level n.



Proposition
Let a structure N be such that N is locally constructivizable of
level 1, and let M 6Σ N. Then there exists a partial
constructivizable structure M′ such that M 4∃ M′.



For structures M and N, we denote by M 6∃ N the fact that for
any m̄ ∈ M<ω there is n̄ ∈ N<ω such that
Th∃(M, m̄) 6e Th∃(N, n̄).

Proposition
For arbitrary structures M and N, N ∈ Kw (M) implies that
N 6∃ M. In particular, if M is locally constructivizable, then any
N ∈ Kw (M) is also locally constructivizable.



Theorem
If a structure M is locally constructivizable of level n > 1 and
not constructivizable, then there is a structure M0 ∈ K(M)
which is locally constructivizable of level 1 sharply. In particular,
KΣ(M)  K(M).



Theorem
There exist a structure M and a relation P ⊆ M such that
(M,P) ≡ M, but (M,P) is not Σ-definable in HF(M).

Theorem (Ash, Knight, Manasse, Slaman; Chisholm)
Let M be a countable structure and let P ⊆ Mn. Then the
following are equivalent:

1) P is Σ-definable in HF(M);
2) for any C ∈ (M,P), RC is C � σM-c.e.



Theorem
There exist a structure M and a relation P ⊆ M such that
(M,P) ≡ M, but (M,P) is not Σ-definable in HF(M).

Theorem (Ash, Knight, Manasse, Slaman; Chisholm)
Let M be a countable structure and let P ⊆ Mn. Then the
following are equivalent:

1) P is Σ-definable in HF(M);
2) for any C ∈ (M,P), RC is C � σM-c.e.



Theorem
For any countable structures M and N and any R ⊆ HF(N), the
following are equivalent:

1) for any presentation C of M in HF(N),
R 6eΣ C;

2) R is Σ-definable in HF(M,N).

Definition
Let M and N be a countable structures. M is said to have a
degree (e-degree) over N if there exists a least degree in the
class of TΣ-degrees (eΣ-degrees) of all possible presentations
of M in HF(N).



Theorem
Let M and N be a countable structure. The following are
equivalent:

1) M has a degree (e-degree) over N;
2) some presentation C ⊆ HF (N) of M is

∆-definable (Σ-definable) in HF(M,N).

Corollary
For a countable M, M has a degree (e-degree) iff, for some
C ∈ M, C is ∆-definable (Σ-definable) in HF(M).



Proposition
If M has a degree (e-degree) over N and N is Σ-definable in
HF(N′) then M has a degree (e-degree) over N′.

Proposition
For any countable structure A there exists a structure M which
has a degree but is not Σ-definable in HF(A).



Theorem
If M has a degree then

KΣ(M) = Ke(M) = K(M) = Kw (M).

Theorem
If M has an e-degree then

KΣ(M) = Ke(M) = Kew (M).




