Structured Finite Model Theory

Albert Atserias Universitat Politècnica de Catalunya Barcelona, Spain

Monday, July 16, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Part I FINITE MODEL THEORY?

Cornerstone Result of Model Theory

Theorem (Compactness Theorem)

Let T be a set of first-order sentences. The following are equivalent:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- T has a model,
- every finite subset $T_0 \subseteq T$ has a model.

When restricted to finite structures, it fails

Let $T = \{\varphi_1, \varphi_2, \ldots\}$ where

$$\varphi_n = (\exists x_1) \cdots (\exists x_n) \left(\bigwedge_{i \neq j} x_i \neq x_j \right)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

- every finite $T_0 \subseteq T$ has a finite model,
- T itself does not have a finite model.

A finite model theory?

Fact:

• The study of finite structures is important for computer science and discrete mathematics.

Unfortunately:

- Failure of the Compactness Theorem.
- No Completeness Theorem: the set of first-order sentences that are valid on finite structures is not r.e. (Trahtenbrot's Theorem).
- Most classical results fail as well, or are just meaningless.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Example 1: Łoś-Tarski Theorem

Definition A sentence φ is preserved under extensions if

$$M \models \varphi$$
 and $M \subseteq N$ implies $N \models \varphi$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example 1: Łoś-Tarski Theorem

Definition

A sentence φ is preserved under extensions if

$$M \models \varphi$$
 and $M \subseteq N$ implies $N \models \varphi$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Theorem (Łoś-Tarski Theorem)

Let φ be a first-order sentence. The following are equivalent:

- φ is preserved under extensions,
- φ is equivalent to an existential sentence.

[Tait 1952, Gurevich 1984].

Let ψ be the sentence over $\sigma = \{R^{(2)}, S^{(2)}, T^{(1)}, \max, \min\}$ saying:

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

[Tait 1952, Gurevich 1984].

Let ψ be the sentence over $\sigma = \{R^{(2)}, S^{(2)}, T^{(1)}, \max, \min\}$ saying:

< D > < 同 > < E > < E > < E > < 0 < 0</p>

• R is a linear order with endpoints max and min,

[Tait 1952, Gurevich 1984].

Let ψ be the sentence over $\sigma = \{R^{(2)}, S^{(2)}, T^{(1)}, \max, \min\}$ saying:

- R is a linear order with endpoints max and min,
- S is a partial successor relation compatible with R,

[Tait 1952, Gurevich 1984].

Let ψ be the sentence over $\sigma = \{R^{(2)}, S^{(2)}, T^{(1)}, \max, \min\}$ saying:

- R is a linear order with endpoints max and min,
- S is a partial successor relation compatible with R,
- if S is total, then T is non-empty.

 ψ is the sentence:

- R is a linear order with endpoints max and min,
- S is a partial successor relation compatible with R,
- if S is total, then T is non-empty.

Fact

 ψ is preserved under substructures on finite structures. $\neg \psi$ is preserved under extensions on finite structures.

Proof: Every proper $N \subset M$ of a finite $M \models \varphi$ has non-total S.

Fact

 $\neg \psi$ is not equivalent to an existential sentence on finite structures.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof: It has infinitely many minimal models: the finite linear orders with total successor and empty T.

Example 2: Order Invariance

Definition

 $\varphi(<)$ is order-invariant if for every M and every two linear orders $<_1$ and $<_2$ on M we have

 $(M, <_1) \models \varphi$ iff $(M, <_2) \models \varphi$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 回 > < 0 < 0</p>

Notation: $M \models \varphi$ iff $(M, <) \models \varphi$ for some <.

Example 2: Order Invariance

Definition

 $\varphi(<)$ is order-invariant if for every M and every two linear orders $<_1$ and $<_2$ on M we have

 $(M, <_1) \models \varphi$ iff $(M, <_2) \models \varphi$

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Notation: $M \models \varphi$ iff $(M, <) \models \varphi$ for some <.

Theorem (consequence to Craig's Interpolation) Order-invariant FO = FO

[Gurevich 1984]

Fact

The finite Boolean algebras with an even number of atoms are not definable in FO on finite structures.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof: An easy Enhrenfeucht-Fraïssé argument.

[Gurevich 1984]

Fact

The finite Boolean algebras with an even number of atoms are not definable in FO on finite structures.

Proof: An easy Enhrenfeucht-Fraïssé argument.

Fact

The finite Boolean algebras with an even number of atoms are definable in Order-invariant FO on finite structures.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Proof: Next slide.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Let φ be the sentence over $\{\subset, <\}$ saying:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Let φ be the sentence over $\{\subset,<\}$ saying:

ullet \subset is the partial order of a Boolean algebra,

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

Let φ be the sentence over $\{\subset, <\}$ saying:

- \subset is the partial order of a Boolean algebra,
- < is a linear order,

Let φ be the sentence over $\{\subset, <\}$ saying:

- $\bullet\ \subset$ is the partial order of a Boolean algebra,
- < is a linear order,
- there exist two complementary elements c and c such that,

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Let φ be the sentence over $\{\subset, <\}$ saying:

- \subset is the partial order of a Boolean algebra,
- < is a linear order,
- there exist two complementary elements c and \overline{c} such that,
- for every atom $a \subset c$, there exists an atom $a^+ \subset \overline{c}$ such that $a < a^+$ and there are no atoms in between,

Let φ be the sentence over $\{\subset, <\}$ saying:

- \subset is the partial order of a Boolean algebra,
- < is a linear order,
- there exist two complementary elements c and c such that,
- for every atom $a \subset c$, there exists an atom $a^+ \subset \overline{c}$ such that $a < a^+$ and there are no atoms in between,
- for every atom $a \subset \overline{c}$, there exists an atom $a^- \subset c$ such that $a^- < a$ and there are no atoms in between.

Other failures

Some other 'celebrated' failures:

- Interpolation Theorem
- Lyndon's Positivity Theorem [Ajtai-Gurevich 1984]
- Homomorphism preservation? [Now solved! Rossman 2005]

< D > < 同 > < E > < E > < E > < 0 < 0</p>

• ..

Finite Model Theory since the 1970's

Descriptive Complexity and Expressive Power [1970's-90's]: Fagin's Theorem, Immerman-Vardi Theorem, monadic- $\Sigma_1^1 \neq \text{monadic-}\Pi_1^1, \dots$

Assymptotic Probabilities [1970's-90's]: 0-1 laws, convergence laws, analysis of the random graph $G(n, n^{-\alpha})$, ...

Classical Results on Tame Classes [2000's-]: Homomorphism preservation on excluded minors, Łoś-Tarski Theorem on treewidth, order-invariance on trees, ...

Algorithmic Metatheorems [1990's-]:

Courcelle's Theorem, model-checking on bounded degree and excluded minors, approximation algorithms, ...

Methods in Finite Model Theory

Each of the four areas has its own methods. But there is one that permeates all four:

Locality of first-order logic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Let *M* be a (relational finite) structure, $a \in M$, and $r \ge 1$.

Let *M* be a (relational finite) structure, $a \in M$, and $r \ge 1$.

The Gaifman graph of M, denoted by $\mathcal{G}(M)$, is the undirected graph that has

- vertices: elements of M,
- edges: between any two elements that appear together in some tuple of *M*.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 回 > < 0 < 0</p>

Let *M* be a (relational finite) structure, $a \in M$, and $r \ge 1$.

The Gaifman graph of M, denoted by $\mathcal{G}(M)$, is the undirected graph that has

- vertices: elements of M,
- edges: between any two elements that appear together in some tuple of *M*.

The r-neighborhood of a in M is

$$N_r^M(a) = \{b: d_G(a,b) \leq r\},\$$

< D > < 同 > < E > < E > < E > < 0 < 0</p>

where $G = \mathcal{G}(M)$ and $d_G(a, b)$ denotes distance (length of the shortest path).

A first-order formula $\varphi(x)$ is called *r*-local if for every *M* and $a \in M$ we have

$$M \models \varphi(a) \Longleftrightarrow N_r^M(a) \models \varphi(a).$$

A first-order formula $\varphi(x)$ is called *r*-local if for every *M* and $a \in M$ we have

$$M\models \varphi(a) \Longleftrightarrow N_r^M(a)\models \varphi(a).$$

A basic local sentence is one of the form:

$$(\exists x_1)\ldots(\exists x_m)\left(\bigwedge_{i\neq j}d_G(x_i,x_j)>2r\wedge\bigwedge_i\psi(x_i)\right)$$

where ψ is *r*-local (typically, by relativizing to $N_r(x_i)$).

A first-order formula $\varphi(x)$ is called *r*-local if for every *M* and $a \in M$ we have

$$M\models \varphi(a) \Longleftrightarrow N_r^M(a)\models \varphi(a).$$

A basic local sentence is one of the form:

$$(\exists x_1)\ldots(\exists x_m)\left(\bigwedge_{i\neq j}d_G(x_i,x_j)>2r\wedge\bigwedge_i\psi(x_i)\right)$$

where ψ is *r*-local (typically, by relativizing to $N_r(x_i)$).

Theorem (Gaifman's Locality)

Every first-order sentence is equivalent to a Boolean combination of basic local sentences.

Part II CLASSICAL RESULTS ON TAME CLASSES

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○三 ○ ○ ○ ○

Tame classes of structures

We study classes of finite structures whose Gaifman graphs belong to classes of interest in graph theory:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Treewidth

Definition

- K_{k+1} is a k-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Treewidth

Definition

- K_{k+1} is a k-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ
Definition

- K_{k+1} is a k-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- K_{k+1} is a $\frac{k}{k-tree}$,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- K_{k+1} is a $\frac{k}{k-tree}$,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- K_{k+1} is a $\frac{k}{k-tree}$,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- K_{k+1} is a $\frac{k}{k-tree}$,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- K_{k+1} is a $\frac{k}{k-tree}$,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- K_{k+1} is a $\frac{k}{k-tree}$,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition

- K_{k+1} is a *k*-tree,
- if G is a k-tree, then adding a vertex connected to all vertices of a K_k-subgraph of G is a k-tree.

Definition (Robertson and Seymour)

The treewidth of a graph G, denoted by tw(G), is the smallest k such that G is the subgraph of a k-tree.

 \mathcal{T}_k : class of all finite structures M with $tw(\mathcal{G}(M)) \leq k$. \mathcal{D}_k : class of all finite structures M with $\Delta(\mathcal{G}(M)) \leq k$. \mathcal{P} : class of all finite structures M with planar $\mathcal{G}(M)$. \mathcal{F}_k : class of all finite structures M with $K_k \not\prec \mathcal{G}(M)$.

Łoś-Tarski Theorem on bounded treewidth

Theorem (AA.-Dawar-Grohe 2005)

Let φ be a first-order sentence and k an integer. The following are equivalent:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 1. φ is preserved under extensions on \mathcal{T}_k
- 2. φ is equivalent to an existential sentence on T_k .

Suppose φ is preserved under extensions on \mathcal{T}_k .

We want to put a bound B on the size of the minimal models of φ as a function of $|\varphi|.$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Suppose φ is preserved under extensions on \mathcal{T}_k .

We want to put a bound B on the size of the minimal models of φ as a function of $|\varphi|$.

If we succeed, then

$$\varphi \equiv \bigvee_{\substack{M \models \varphi \\ |M| \leq B}} (\exists x_1) \cdots (\exists x_{|M|}) (\text{diagram}(M)).$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 回 > < 0 < 0</p>

Combinatorial part:

Lemma

For every d and m, every sufficiently large graph G = (V, E) of treewidth at most k contains vertices $a_1, \ldots, a_k \in V$ such that $G \setminus \{a_1, \ldots, a_k\}$ contains m points b_1, \ldots, b_m with

$$d_G(b_i, b_j) > d$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

for every $i \neq j$.

Combinatorial part:

Lemma

For every d and m, every sufficiently large graph G = (V, E) of treewidth at most k contains vertices $a_1, \ldots, a_k \in V$ such that $G \setminus \{a_1, \ldots, a_k\}$ contains m points b_1, \ldots, b_m with

$$d_G(b_i, b_j) > d$$

for every $i \neq j$.

Proof requires the Sunflower Lemma of Erdös and Rado.

Apply Gaifman's locality:

Apply Gaifman's locality and write φ as a Boolean combination

$$\bigvee_{i=1}^{q} \left(\bigwedge_{j \in J_i} \tau_j \land \bigwedge_{j \in K_i} \neg \tau_j \right)$$

where each τ_j is a basic local sentence.

Model construction part:

Huge simplifying assumption: Assume φ is just a basic local sentence or its negation:

$$(\exists x_1)\ldots(\exists x_m)\left(\bigwedge_{i\neq j}d_G(x_i,x_j)>2r\wedge\bigwedge_i\psi^{\leq r}(x_i)\right)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Model construction part:

Huge simplifying assumption: Assume φ is just a basic local sentence or its negation:

$$(\exists x_1)\ldots(\exists x_m)\left(\bigwedge_{i\neq j}d_G(x_i,x_j)>2r\wedge\bigwedge_i\psi^{\leq r}(x_i)\right)$$

By closure under extensions, it cannot be the negation unless it's just false.

Model construction part:

Huge simplifying assumption: Assume φ is just a basic local sentence or its negation:

$$(\exists x_1)\ldots(\exists x_m)\left(\bigwedge_{i\neq j}d_G(x_i,x_j)>2r\wedge\bigwedge_i\psi^{\leq r}(x_i)\right).$$

By closure under extensions, it cannot be the negation unless it's just false.

From a huge minimal model M of φ we get a proper submodel.

Model construction part:

Huge simplifying assumption: Assume φ is just a basic local sentence or its negation:

$$(\exists x_1)\ldots(\exists x_m)\left(\bigwedge_{i\neq j}d_G(x_i,x_j)>2r\wedge\bigwedge_i\psi^{\leq r}(x_i)\right).$$

By closure under extensions, it cannot be the negation unless it's just false.

From a huge minimal model M of φ we get a proper submodel. Contradiction.

Model construction part:

Huge simplifying assumption: Assume φ is just a basic local sentence or its negation:

$$(\exists x_1)\ldots(\exists x_m)\left(\bigwedge_{i\neq j}d_G(x_i,x_j)>2r\wedge\bigwedge_i\psi^{\leq r}(x_i)\right).$$

By closure under extensions, it cannot be the negation unless it's just false.

From a huge minimal model M of φ we get a proper submodel. Contradiction.

General case requires building a chain of submodels.

We build a chain of proper submodels of M:

$$M_0 \subseteq M_1 \subseteq \cdots \subseteq M_t,$$

where M_0 is the 'exceptional neighborhoods of M' (which is small).

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

We build a chain of proper submodels of M:

$$M_0 \subseteq M_1 \subseteq \cdots \subseteq M_t$$
,

where M_0 is the 'exceptional neighborhoods of M' (which is small).

By closure under extensions of φ , if M_t is not yet a model of φ , then it must be distinguished from $M + M_t$ by some

$$\left(\bigwedge_{j\in J_t}\tau_j\wedge\bigwedge_{j\in K_t}\neg\tau_j\right)$$

We build M_{t+1} out of the witnesses as follows.

The extension M_{t+1} will have the following properties:

(ロ)、<</p>

The extension M_{t+1} will have the following properties:

(ロ)、<</p>

•
$$M_{t+1} \subseteq M$$

The extension M_{t+1} will have the following properties:

- $M_{t+1} \subseteq M$
- M_{t+1} is a small disjoint extension of M_t (so $M_{t+1} \subset M$)

(ロ)、(型)、(E)、(E)、 E、 の(の)

The extension M_{t+1} will have the following properties:

- $M_{t+1} \subseteq M$
- M_{t+1} is a small disjoint extension of M_t (so $M_{t+1} \subset M$)
- the positive part $\bigwedge \tau_j$ is satisfied by every disjoint extension of M_{t+1} (by adding the witnesses of $M + M_t \models \bigwedge \tau_j$)

The extension M_{t+1} will have the following properties:

- $M_{t+1} \subseteq M$
- M_{t+1} is a small disjoint extension of M_t (so $M_{t+1} \subset M$)
- the positive part $\bigwedge \tau_j$ is satisfied by every disjoint extension of M_{t+1} (by adding the witnesses of $M + M_t \models \bigwedge \tau_j$)
- the negative part $\bigwedge \neg \tau_j$ is falsified by every disjoint extension of M_{t+1} (by adding the witnesses of $\neg \tau_j$, if any is still falsified).

The extension M_{t+1} will have the following properties:

- $M_{t+1} \subseteq M$
- M_{t+1} is a small disjoint extension of M_t (so $M_{t+1} \subset M$)
- the positive part $\bigwedge \tau_j$ is satisfied by every disjoint extension of M_{t+1} (by adding the witnesses of $M + M_t \models \bigwedge \tau_j$)
- the negative part $\bigwedge \neg \tau_j$ is falsified by every disjoint extension of M_{t+1} (by adding the witnesses of $\neg \tau_j$, if any is still falsified).

If the construction exhausts all disjuncts of φ , then

$$M_{last} + M \not\models \varphi$$

くしゃ (雪) (目) (日) (日) (日)

A contradiction.

Preservation under extensions on other classes

Same methods apply to other classes of structures:

Theorem (AA.-Dawar-Grohe 2005)

The preservation-under-extensions property holds for:

- classes $\mathcal{K} \subseteq \mathcal{D}_k$ closed under \subseteq and +,
- classes $\mathcal{K} \subseteq \mathcal{T}_1$ closed under \subseteq and +,
- classes T_k for every fixed k.

Preservation under extensions on other classes

Same methods apply to other classes of structures:

Theorem (AA.-Dawar-Grohe 2005)

The preservation-under-extensions property holds for:

- classes $\mathcal{K} \subseteq \mathcal{D}_k$ closed under \subseteq and +,
- classes $\mathcal{K} \subseteq \mathcal{T}_1$ closed under \subseteq and +,
- classes T_k for every fixed k.

Question:

What about planar graphs?

Counterexample for planar graphs

 ψ is the sentence:

there are at least two different white points such that either some point is not connected to both, or every black point has exactly two black neighbors.

< ロ > < 同 > < 回 > < 回 >

Other preservation theorems

Homomorphisms vs existential-positive sentences.

Theorem (AA.-Dawar-Kolaitis 2004)

The preservation-under-homomorphisms property holds for:

- classes $\mathcal{K} \subseteq \mathcal{D}_k$ closed under \subseteq and +
- classes $\mathcal{K} \subseteq \mathcal{F}_k$ closed under \subseteq and +.

Other preservation theorems

Homomorphisms vs existential-positive sentences.

Theorem (AA.-Dawar-Kolaitis 2004)

The preservation-under-homomorphisms property holds for:

- classes $\mathcal{K} \subseteq \mathcal{D}_k$ closed under \subseteq and +
- classes $\mathcal{K} \subseteq \mathcal{F}_k$ closed under \subseteq and +.

Note 1: Second includes bounded treewidth and planar graphs.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Note 2: For \mathcal{F}_k , the hard part is the combinatorial part. Uses finite Ramsey theory.

Note 3: Also uses Gaifman's locality.

Order invariance on restricted classes

Recall: Order-invariant FO is more powerful than FO on finite structures.

Upper bound: Order-invariant FO $\subseteq \Sigma_1^1 \cap \Pi_1^1$.

Theorem (Benedikt-Segoufin 2006) The following hold:

• Order-invariant FO = FO on T_1

- Order-invariant FO \subset MSO on \mathcal{T}_k
- Order-invariant $FO \subseteq MSO$ on \mathcal{D}_k .

Order invariance on restricted classes

Recall: Order-invariant FO is more powerful than FO on finite structures.

Upper bound: Order-invariant FO $\subseteq \Sigma_1^1 \cap \Pi_1^1$.

Theorem (Benedikt-Segoufin 2006)

The following hold:

- Order-invariant FO = FO on T₁
- Order-invariant FO \subseteq MSO on \mathcal{T}_k
- Order-invariant $FO \subseteq MSO$ on \mathcal{D}_k .

Open: Are inclusions proper in the last two cases?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof Ingredients

A word structure is a finite colored linear order. Let \mathcal{W} be the class of word structures (over $\{0,1\}$ say).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで
Proof Ingredients

A word structure is a finite colored linear order. Let \mathcal{W} be the class of word structures (over $\{0,1\}$ say).

Theorem (McNaughton-Papert)

Let $L \subseteq W$ be a class of word structures (a language). The following are equivalent:

- L is first-order definable on $\mathcal W$
- there exists p such that for every $u, v, w \in W$ we have

$$uv^{p}w \in L \iff uv^{p+1}w \in L$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Proof Ingredients

First ingredient: An analogue of the McNaugthon-Papert theorem for trees [Benedikt and Segoufin 2005]

Second ingredient: Locality theorem for Order-invariant FO:

Theorem (Grohe-Schwentick 2000)

Let \mathcal{K} be a class of finite structures and let $\varphi(x_1, \ldots, x_k)$ be a first-order formula that is order-invariant on \mathcal{K} . There exists an integer r such that, for every $M \in \mathcal{K}$ and $\mathbf{a}, \mathbf{b} \in M^k$, if

$$N_r^M(\mathbf{a})\cong N_r^M(\mathbf{b})$$

then for every linear order < on M,

$$(M,<)\models\varphi(\mathbf{a})\leftrightarrow\varphi(\mathbf{b}).$$

Part III ALGORITHMIC META-THEOREMS

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○三 ○ ○ ○ ○

Combinatorial Optimization Problems

MAX INDEPENDENT SET:

Given a graph G = (V, E), find the largest independent set of G (largest set of pairwise non-adjacent points).

From the logic point of view, this problem asks for the largest set $X \subseteq V$ such that

$$(G,X) \models (\forall x)(\forall y)(X(x) \land X(y) \rightarrow \neg E(x,y))$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

General framework

MAX: For a fixed FO sentence $\varphi(X)$ that is negative in X. Given a finite structure M, find the largest set $X \subseteq M$ such that $M \models \varphi(X)$.

MIN: For a fixed FO sentence $\varphi(X)$ that is positive in X.

Given a finite structure M, find the smallest set $X \subseteq M$ such that $M \models \varphi(X)$.

General framework

MAX: For a fixed FO sentence $\varphi(X)$ that is negative in X. Given a finite structure M, find the largest set $X \subseteq M$ such that $M \models \varphi(X)$.

MIN: For a fixed FO sentence $\varphi(X)$ that is positive in X. Given a finite structure M, find the smallest set $X \subseteq M$ such that $M \models \varphi(X)$.

Let $C \ge 1$. For a maximization problem, we say that an algorithm is a *C*-approximation algorithm if it returns a solution *A* such that

 $|A| \leq OPT \leq C \cdot |A|.$

Hardness and Easiness to Approximate

The MAX INDEPENDENT SET problem is a hard optimization problem:

Theorem (consequence to the PCP Theorem 1990's) For every constant $C \ge 1$, there is no polynomial-time C-approximation algorithm for MAX INDEPENDENT SET, unless P = NP.

Hardness and Easiness to Approximate

The MAX INDEPENDENT SET problem is a hard optimization problem:

Theorem (consequence to the PCP Theorem 1990's) For every constant $C \ge 1$, there is no polynomial-time C-approximation algorithm for MAX INDEPENDENT SET, unless P = NP.

Note: On planar graphs, MAX INDEPENDENT SET, MIN VERTEX COVER, ... have polynomial-time *C*-approximation algorithms for every C > 1.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Hardness and Easiness to Approximate

The MAX INDEPENDENT SET problem is a hard optimization problem:

Theorem (consequence to the PCP Theorem 1990's) For every constant $C \ge 1$, there is no polynomial-time C-approximation algorithm for MAX INDEPENDENT SET, unless P = NP.

Note: On planar graphs, MAX INDEPENDENT SET, MIN VERTEX COVER, ... have polynomial-time *C*-approximation algorithms for every C > 1.

Question:

Is this is a general phenomenon?

Algorithm meta-theorem for optimization problems

Recall: \mathcal{F}_k is the class of structures M with $K_k \not\prec \mathcal{G}(M)$.

Theorem (Dawar-Grohe-Kreutzer-Schweikardt 2006) For every FO-sentence $\varphi(X)$ that is positive (resp. negative) in X, every $k \ge 2$, and every C > 1, there exists a polynomial-time *C*-approximation algorithm for MAX $\varphi(X)$ (resp. MIN $\varphi(X)$) when the inputs are restricted to \mathcal{F}_k .

Algorithm meta-theorem for optimization problems

Recall: \mathcal{F}_k is the class of structures M with $K_k \not\prec \mathcal{G}(M)$.

Theorem (Dawar-Grohe-Kreutzer-Schweikardt 2006) For every FO-sentence $\varphi(X)$ that is positive (resp. negative) in X, every $k \ge 2$, and every C > 1, there exists a polynomial-time *C*-approximation algorithm for MAX $\varphi(X)$ (resp. MIN $\varphi(X)$) when the inputs are restricted to \mathcal{F}_k .

Examples:

- MAX INDEPENDENT SET on graphs of bounded genus
- MIN VERTEX COVER on planar graphs
- MIN DOMINATING SET on bounded treewidth graphs

• ...

Proof has two main parts:

- A new locality theorem for monotone formulas
- An adaptation of Baker's layer decomposition algorithmic technique

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Monotone Locality Theorem

Theorem (Monotone locality theorem)

Every first-order sentence $\varphi(X)$ that is positive (resp. negative) in X is equivalent to a Boolean combination of basic local sentences that is positive (resp. negative) in X.

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Monotone Locality Theorem

Theorem (Monotone locality theorem)

Every first-order sentence $\varphi(X)$ that is positive (resp. negative) in X is equivalent to a Boolean combination of basic local sentences that is positive (resp. negative) in X.

Note: The proof of this locality result is **not** an modification of Gaifman's original theorem.

Surprisingly, the proof required the ideas that were developped for the Łoś-Tarski Theorem restricted to structures of bounded degree!

くしゃ (雪) (目) (日) (日) (日)

Other Algorithmic Meta-Theorems

The precursor of all algorithmic meta-theorems is:

Theorem (Courcelle 1980's)

Every MSO-definable property is decidable in linear time when the inputs are restricted to T_k .

Other Algorithmic Meta-Theorems

The precursor of all algorithmic meta-theorems is:

Theorem (Courcelle 1980's)

Every MSO-definable property is decidable in linear time when the inputs are restricted to T_k .

Examples:

- 3-COLORABILITY
- BOOLEAN SATISFIABILITY

• ...

Proof does not use locality.

Two alternative proofs: (1) tree-automata, (2) Feferman-Vaught composition techniques.

Part IV CONCLUDING REMARKS

Concluding remarks

The class of all finite structures is not well-behaved. But tame subclasses are.

From the point of view of applications to computer science and discrete mathematics, this is precisely what one is expected to do.

- Structures as modelling databases (arbitrary shape?)
- Structures as modelling program traces (arbitrary shape?)
- Structures of interest for combinatorics (trees, topological embeddings, ...).

Concluding remarks

A few open problems:

- Lyndon's positivity theorem on tame classes?
- Order invariance on T_k ? Further classes?
- Algorithmic meta-theorems for larger classes?
- Limits to algorithmic meta-theorems?
- More locality theorems? For structures with functions?

< D > < 同 > < E > < E > < E > < 0 < 0</p>

• Finite model theory of well-behaved finite algebras?