
TOWARDS A PROOF THEORY OF

ANALOGICAL REASONING

M. BAAZ

VIENNA UNIVERSITY OF TECHNOLOGY

Analogical Reasoning in Mathematics

Euler became famous by deriving

∞∑
n=1

1

n2
=
π2

6
(1)

Let us consider Eulers reasoning. Consider the polynomial of even degree

b0 − b1x
2 + b2x

4 − · · · + (−1)nbnx
2n (2)

If it has the 2n roots ±β1, . . . ,±βn 6= 0 then (2) can be written as

b0

(
1− x2

β2
1

)(
1− x2

β2
2

)
· · ·
(

1− x2

β2
n

)
(3)

By comparing coefficients in (2) and (3) one obtains that

b1 = b0

(
1

β2
1

+
1

β2
2

+ · · · + 1

β2
n

)
. (4)

Next Euler considers the Taylor series

sinx

x
=

∞∑
n=0

(−1)n
x2n

(2n + 1)!
(5)

which has as roots ±π,±2π,±3π, . . . Now by way of analogy Euler assumes

that the infinite degree polynomial (5) behaves in the same way as the finite

polynomial (2). Hence in analogy to (3) he obtains

sinx

x
=

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · · (6)

and in analogy to (4) he obtains

1

3!
=

(
1

π2
+

1

4π2
+

1

9π2
+ · · ·

)
(7)

which immediately gives
∞∑
n=1

1

n2
=
π2

6
. (1)

The structure of Eulers argument is the following.

(a) (2) = (3) (mathematically derivable)

(b) (2) = (3) ⊃ (4) (mathematically derivable)

(c) (2) = (3) ⊃ (5) = (6) (analogical hypothesis)

(d) (5) = (6) ⊃ (4) (modus ponens)

(e) ((2) = (3) ⊃ (4)) ⊃ ((5) = (6) ⊃ (7)) (analogical hypothesis)

(f) (5) = (6) ⊃ (7) (modus ponens)

(g) (7) (modus ponens)

(h) (7) ⊃ (1) (mathematically derivable)

(i) (1) (modus ponens)

We will consider analogies based on

1 Generalizations wrt. invariant parts of the proofs (e.g., graphs of rule ap-

plications)

1.1 Generalizations of conclusions

1.2 Generalizations of premises

2 Generalizations wrt. semantical features

The calculus LK

logical axiom schema: A→ A

structural inferences:

Γ1 → ∆1, A A,Γ2 → ∆2cut
Γ1,Γ2 → ∆1,∆2

Γ→∆weakening left
A,Γ→∆

Γ→∆weakening right
Γ→∆, A

Γ1, A,B,Γ2→∆
exchange left

Γ1, B,A,Γ2→∆
Γ→∆1, A,B,∆2exchange right
Γ→∆1, B,A,∆2

A,A,Γ→∆
contraction left

A,Γ→∆
Γ→∆, A,A

contraction right
Γ→∆, A

logical inferences:

Γ→∆, A
¬:left ¬A,Γ→∆

A,Γ→∆
¬:right

Γ→∆,¬A

A,Γ1 ` ∆1 B,Γ2 ` ∆2∨:left
A ∨B,Γ1,Γ2 ` ∆1,∆2

Γ→∆, A
∨:right1

Γ→∆, A ∨B

A,Γ→∆
∧:left1

A ∧B,Γ→∆
Γ→∆, B

∨:right2
Γ→∆, A ∨B

B,Γ→∆
∧:left2

A ∧B,Γ→∆
Γ1 ` ∆1, A Γ2 ` ∆2, B∧:right
Γ1,Γ2 ` ∆1,∆2, A ∧B

Γ1 ` ∆1, A B,Γ2 ` ∆2⊃:left
A ⊃ B,Γ1,Γ2 ` ∆1,∆2

A,Γ→∆, B
⊃:right

Γ→∆, A ⊃ B

C(e),Γ→∆
∃:left ∃αC(α),Γ→∆

Γ→∆, C(r)
∃:right

Γ→∆,∃αC(α)

C(r),Γ→∆
∀:left ∀αC(α),Γ→∆

Γ→∆, C(e)
∀:right

Γ→∆,∀αC(α)

with the usual restrictions.

Skeleton/proof analysis

axiom

∀:left

∀:left

∀:right

cut

∀:left ∀:left

axiomaxiom

∧:right

contraction left

→ ∀x∀yP (x, y) ⊃ P (0, a) ∧ P (S0, Sa)⊃:right

The above analysis and sequent determine an (extended) proof matrix:

P (t1, t2)→ P (t1, t2)

∀βP (s1, s2)→ P (t1, t2)

∀α∀βP (r1, r2)→ P (t1, t2)

∀α∀βP (r1, r2)→ ∀γP (s, t)

P (r3, r4)→ P (r3, r4)

∀γP (s, t)→ P (r3, r4)

P (r5, r6)→ P (r5, r6)

∀γP (s, t)→ P (r5, r6)

∀γP (s, t),∀γP (s, t)→ P (r3, r4) ∧ P (r5, r6)

∀γP (s, t)→ P (r3, r4) ∧ P (r5, r6)

∀α∀βP (r1, r2)→ P (r3, r4) ∧ P (r5, r6)

Then all substitutions producing proofs can be characterized by the following

equations

r1(α) = s1 = t1 = s(e) ∧ r2(β) = s2(β) = t2 = t(e)∧
∧ s(γ1) = r3 ∧ t(γ1) = r4 ∧ s(γ2) = r5 ∧ t(γ2) = r6

(i.e., the do not occur in the matrix).

If we take into account the term structure of the end sequent, we can get rid

of the restrictions and can substitute the above equations with

r1(α) = α r2(β) = β r3 = 0 r4 = a r5 = S0 r6 = Sa.

Then, using the validity of ∃α∃β(α = s(e) ∧ β = t(e)), the condition on deriv-

ability of our formula with the proof analysis reduces to

∃st∃γ1γ2 [s(γ1) = 0 ∧ t(γ1) = a ∧ s(γ2) = S0 ∧ t(γ2) = Sa] .

If the above holds then s(γ) = γ and St(0) = t(S0) = Sa. Thus, our formula is

derivable with the considered analysis iff a is Sn0 for some n.

Theorem (Orevkov, Krajicek and Pudlak). For every r.e. set E, there is a

skeleton SE with universal or existential cuts and a sequent ΠE → ΓE, AE(a)

such that
ΠE → ΓE, A(sn(a)) is provable with SE

m
n ∈ E.

Theorem. Let S cutfree and Π(a) → Γ(a) be given. If there is a proof at

all, there is a most general proof

T

Π(t)→ Γ(t)

such that any other proof has the form

Tσ

Π(tσ)→ Γ(tσ)
.

Second Order Unification

Let L be a set of function symbols, a1, . . . , am variables. Let T = (T, Sub1, . . . ,

Subm) be the algebra of terms where T is the set of terms in L, a1, . . . , am and

for i = 1, . . . ,m

Subi(δ, σ) := δ{σ/ai}

are substitutions as binary operations on T . A second order unification is a

finite set of equations in the language T ∪ {Sub1, . . . , Subm} plus free variables

for elements of T .

Theorem. Let L contain a unary function symbol S, a constant 0, and a

binary function symbol. Let τ0 be a term variable. Then for every recursively

enumerable set E there exists a second order unification problem ΩE such

that ΩE ∪ {τ0 = Sn(0)} has a solution iff n ∈ E.

Idea

T

Π→ Γ, P (a) ∨ P (t), P (u) ∨ P (v) A,Π→ Γ

∃-r
exchange

∃-r such that a is not free anymore

contraction

cut with weakened formula

⇒ v = t{u/a}

LKB

Replace

Π→Γ, A(a)

Π→Γ,∀xA(x)
by Π→Γ, A(a1, . . . , an)

Π→Γ,∀x1, . . . , xnA(x1, . . . , xn)

A(t),Π→Γ

∀xA(x),Π→Γ
by A(t1, . . . , tn),Π→Γ

∀x1, . . . , xnA(x1, . . . , xn),Π→Γ

Π→Γ, A(t)

Π→Γ,∃xA(x)
by Π→Γ, A(t1, . . . , tn)

Π→Γ,∃x1, . . . , xnA(x1, . . . , xn)

A(a),Π→Γ

∃xA(x),Π→Γ
by A(a1, . . . , an),Π→Γ

∃x1, . . . , xnA(x1, . . . , xn),Π→Γ

n arbitrary

Theorem. Let S contain only existential and universal cuts and let

Π(a)→ Γ(a)

be given. If there is a proof at all, there is a most general proof

T

Π(t)→ Γ(t)

such that any other proof has the form

Tσ

Π(tσ)→ Γ(tσ)
.

Semiunification

A semiunification problem is given by a set of pairs of terms (s1, t1), . . . , (sn, tn).

A solution to the semiunification problem is a substitution δ such that there exist

substitutions σ1, . . . , σn such that

s1δ = t1δσ1, . . . , sn = tnδσn;

a solutions will be also called a semiunifier. A most general semiunifier is a

semiunifier δ0 such that for every semiunifier δ there exists a substitution δ′ such

that δ = δ0δ
′ (i.e., δ(x) = δ′(δ0(x))).

Theorem. If a semiunification problem has a semiunifier then it has a most

general one.

Example.

• {(x, s(x))} unsolvable

• {(y, s(x))}
solution e.g., δ = {s(s(x))/y}
most general solution δmg = {s(x′)/y}

Semiunification is undecidable!

∀xA(x) ⊃ A(t)

A′

��

A′′

��

σ

A(a) A(t) (t arbitrary)

Second-order unification problem

A′′ = A′{x/a} σ solution

∀x1, . . . , xnA(x1, . . . , xn) ⊃ A(t1, . . . , tn)

A′

��

A′′

��

σ

A(a1, . . . , an) A(t1, . . . , tn)

Semiunification problem

{(A′′, A′)} σ solution

Theorem. It is undecidable whether there is a proof with (non tree-like)

LKB-skeleton S with universal/existential cuts for any instance of Π(a)→
Γ(a).

Proposition. Let the language contain a binary function symbol f . For

every semi-unification problem Ω = {(s1, t1), . . . , (sp, tp)}, there is a proof

analysis PΩ and a sequent ΠΩ → ΛΩ, s.t. there is an LKΠΣ
B -proof realizing

PΩ with end sequent ΠΩ → ΛΩ iff Ω is solvable.

Proof. First note that the semi-unification problem can be reduced to a semi-

unification problem {(s?1, t), . . . , (s?p, t)} with s?i = f (· · · f (ai1, ai2) . . . si) . . . aip)

and t = f (· · · f (t1, t2), . . . tp), where aij are new free variables.
Let AΩ(a1, . . . , an) ≡ P (t) ∧ ((P (s?1) ∧ · · · ∧ P (s?p)) ⊃ Q), where all free

variables are among a1, . . . , an and do not occur in Q. We sketch the construction
of a proof analysis as follows:  propositional inferences

(a) AΩ(a1, . . . , an)δ → AΩ(a1, . . . , an)δ
(a+ 1) (∀x1) · · · (∀xn)AΩ(x1, . . . , xn)δ → AΩ(a1, . . . , an)δ propositional inferences including

propositional cuts from (a+ 1)

(b) (∀x1) · · · (∀xn)AΩ(x1, . . . , xn)→ P (t)δ
(b+ 1) (∀x1) · · · (∀xn)AΩ(x1, . . . , xn)→ (∀y1) · · · (∀yn)R(y1, . . . , yn) propositional inferences including

propositional cuts from (a+ 1)

(c) P (s?
1)δ, . . . , P (s?

p)δ, (∀x1) · · · (∀xn)AΩ(x1, . . . , xn)→ Q p (∀B-left)-inferences, exchanges
and contractions from (c)

(d) (∀z1) · · · (∀zs)R
′(z1, . . . , zs), (∀x1) · · · (∀xn)AΩ(x1, . . . , xn)→ Q

(e) (∀x1) · · · (∀xn)AΩ(x1, . . . , xs), (∀x1) · · · (∀xn)AΩ(x1, . . . , xn)→ Q
(e+ 1) (∀x1) · · · (∀xn)AΩ(x1, . . . , xn)→ Q

Here, (a+ 1) is obtained from (a) by (∀B:left), (b+ 1) from (b) by (∀B:right),

(e) from (b + 1) and (d) by cut, and (e + 1) from (e) by contraction. Note that

(∀y1) · · · (∀ym)R(y1, . . . , ym) ≡ (∀z1) · · · (∀zs)R′(z1, . . . , zs) by the cut rule and

hence δ is forced to be a semi-unifier. The label (a + 1) is ancestor of both sides

of the cut, the skeleton is therefore not in tree form. (The length of the skeleton

is linear in n.)

More complex cuts

Generalizations are not obtainable from the skeletons and potential end-sequents

alone

S cut-elimination
// S ′

cut-free inversion of cut-elimination
// S

Propositional Calculi

Proposition. For every Hilbert-system and every skeleton S, there is a most

general proof with a most general result if there is a proof at all in accordance

with S.

However, admit in classical logic schemata/rules of the kind

A(>) A(⊥)

A(B)

or A↔ B ⊃ (C(A)↔ C(B))

or A↔ B
C(A)↔ C(B)

Then the following holds:

Theorem. Let TAUT n be tautologies with ≤ n variables.

∀n∃k∀A ∈ TAUT n `k A

Idea

First derive uniformly all tautologies without variables (assume that > and ⊥
are present).

Let ∆A be defined by replacing all innermost

> ∧>,> ∧⊥, . . . ,> ⊃ >,> ⊃ ⊥, . . . in A by >,⊥, . . . ,>,⊥, . . .

Consider the sequence

A↔ (∆A↔ · · · (∆k−1A↔ ∆kA) · · ·)︸ ︷︷ ︸
?

l
∆A↔ ∆2A↔ (· · · (> ↔ >) · · ·)

l
∆A↔ ∆2A↔ >· · ·)︸ ︷︷ ︸

?

Therefore (A↔ ?)↔ ?, i.e., A

Now introduce variables by the case distinction (?↔ >) ∨ (?↔ ⊥).

Summary

Analogies based on generalizations wrt. invariant parts of the proofs are very

sensitive to details of the description of the invariant parts. Natural candidates

are general proofs obtained from the inversion of cut-elimination.

F5 = 4294967297 is compound:

5 · 27 + 1 ≡ 0 (mod 5 · 27 + 1)

5 · 27 ≡ −1 (mod 5 · 27 + 1)

54 · 27·4 ≡ 1 (mod 5 · 27 + 1)

54 + 24 = 5 · 27 + 1

54 ≡ −24 (mod 5 · 27 + 1)

1 ≡ 54 · 27·4 ≡ −24 · 27·4︸ ︷︷ ︸
−225

(mod (5 · 27 + 1)︸ ︷︷ ︸
641

)

The result can be derived immediately by direct division.

225
+ 1 = 641 · 6700417

Definition. A calculation in K is a finite tree of closed quantifier-free for-

mulas different from T, valid in K. The bottom formula is the result of the

calculation. If A1, . . . , Am are direct predecessors of A in the calcuation then

〈A1, . . . , Am | A〉 is a calculation step.

Example. Consider the class of Boolean Algebras B with signature

〈Val(.),=,1,−,∩,∪,→〉. Val(x) is defined by x = 1.

The following trees of formulas are calculations in B:

Val(1→ 1)

Val((1→ 1) ∪ (1→ 1))

Val(1 ∪ −1)

Val((1→ 1) ∪ −1)

Val((1→ 1) ∪ (1→ 1))

Definition. Let

〈Ā1, . . . , Ām〉 ⇒ 〈A1, . . . , Am〉

iff there exists a σ s.t. Āiσ = Ai for Āi 6= T. Let 〈A1, . . . , Am | A〉 be a

calculation step of a calculation in K.

Then 〈Ā1, . . . , Ām | Ā〉 is an abstraction of 〈A1, . . . , Am | A〉 iff

1. 〈Ā1, . . . , Ām | Ā〉 ⇒ 〈A1, . . . , Am | A〉

2. K |= ∀x1 · · · xr(
∧

Āi 6=T

Āi → Ā) s.t. x1, . . . , xr are all the free variables in

〈Ā1, . . . , Ām | Ā〉.

〈Ā1, . . . , Ām | Ā〉 is proper iff Ā 6= A. 〈Ā1, . . . , Ām | Ā〉 is general iff it is

proper and there is no abstraction 〈A′1, . . . , A′m | A′〉 s.t. 〈A′1, . . . , A′m | A′〉 ⇒
〈Ā1, . . . , Ām | Ā〉 but not 〈Ā1, . . . , Ām | Ā〉 ⇒ 〈A′1, . . . , A′m | A′〉.

Example.
Val(1→ 1)

Val((1→ 1) ∪ (1→ 1))

original calculation step general abstractions

〈Val(1→ 1)〉 〈Val(x→ x)〉

〈Val(1→ 1) | Val((1→ 1) ∪ (1→ 1))〉 〈1 | Val((x→ x) ∪ y)〉
〈1 | Val(y ∪ (x→ x))〉
〈Val(x) | Val(x ∪ y)〉
〈Val(y) | Val(y ∪ x)〉

Example.
Val(1 ∪ −1)

Val((1→ 1) ∪ −1)

Val((1→ 1) ∪ (1→ 1))

original calculation step general abstractions

〈Val(1 ∪ −1)〉 〈Val(x ∪ −x)〉

〈Val(1 ∪ −1) | Val((1→ 1) ∪ −1)〉 〈1 | Val((x→ x) ∪ y)〉
〈Val(x ∪ y) | Val((z → x) ∪ y)〉

〈Val((1→ 1) ∪ −1) | Val((1→ 1) ∪ (1→ 1))〉 〈1 | Val((x→ x) ∪ y)〉
〈1 | Val(y ∪ (x→ x))〉
〈Val(x ∪ −y) | Val(x ∪ (y → z))〉

Definition. The generalization of a calculation in K is defined as follows:

1. If there are no general abstractions for a calculation step corresponding

to a node and its immediate predecessors, then assign the matrix of the

original formula to the node and remove all nodes in the sub-tree above.

2. For every node and its immediate predecessors in the (pruned) calcu-

lation tree select a general abstraction of the corresponding calculation

step and assign the formulas of the abstraction to the nodes.

3. If T is assigned to a node, then remove this node and the sub-tree

above.

4. Unify all pairs of formulas that have been assigned to the same node;

this unification is processed simultaneously.

Theorem. Let C be a calculation in K.

1. There are finitely many generalizations G1, . . . , Gm of C with results

A11, . . . , A1n1 . A1
...

Am1, . . . , Amnm . Am

s.t. K |= ∀x1 · · · xr(
∧
Aij → Ai), for all 1 ≤ i ≤ m, 1 ≤ j ≤ ni.

2. C can be obtained from Gi by instantiation and addition of sub-calcu-

lations.

Example.
Val(1→ 1)

Val((1→ 1) ∪ (1→ 1))

Val((x→ x) ∪ y) σ = ε Val((x→ x) ∪ y)

Val(y ∪ (x→ x)) σ = ε Val(y ∪ (x→ x))

Val(x→ x)

Val(x̄)

Val(x̄ ∪ y) σ = {x̄ 7→ (x→ x)}
Val(x→ x)

Val((x→ x) ∪ y)

Val(x→ x)

Val(x̄)

Val(y ∪ x̄) σ = {x̄ 7→ (x→ x)}
Val(x→ x)

Val(y ∪ (x→ x))

Example.
Val(1 ∪ −1)

Val((1→ 1) ∪ −1)

Val((1→ 1) ∪ (1→ 1))

Val((x→ x) ∪ y) σ = ε Val((x→ x) ∪ y)

Val(y ∪ (x→ x)) σ = ε Val(y ∪ (x→ x))

Val((x→ x) ∪ y)

Val(x̄ ∪ −ȳ)
Val(x̄ ∪ (ȳ → z)) σ = {x̄ 7→ (x→ x), y 7→ −ȳ}

Val((x→ x) ∪ −ȳ)
Val((x→ x) ∪ (ȳ → z))

Val(x ∪ −x)

Val(x′ ∪ y′)
Val((z̄ → x′) ∪ y′)

Val(x̄ ∪ −ȳ)
Val(x̄ ∪ (ȳ → z)) σ = {x′ 7→ x, y′ 7→ −x, ȳ 7→ x, x̄ 7→ (z̄ → x)}

Val(x ∪ −x)
Val((z̄ → x) ∪ −x)

Val((z̄ → x) ∪ (x→ z))

We formalize Euler’s calculation in 〈Z, IN | +, ·,−, exp, r, ÎN〉. where
+ Z× Z→ Z

· Z× Z→ Z

− Z→ Z

exp Z× IN→ Z, exp(x, y) is also denoted as xy

r Z× Z× IN→ Z, where r(x, y, z) is defined by∑z−1
k=0

(
z
k

)
xkyz−k−1

i.e. (x + y)2 = x2 + r(x, y, z) · y, for z ≥ 0

ÎN IN, contains constants for all natural numbers

The calculation of Euler in the modified language:

5 · 27 + 1 =

D︷ ︸︸ ︷
5 · 27 + 1

5 · 27 = −1 +D 4 = 2 · 2

54 · 27·4 = 1 +

E︷ ︸︸ ︷
r(−1, D, 4) ·D

54 + 24 = D
54 = −24 +D

54 · 27·4 = −24 · 27·4 + 27·4 ·D
1 + E ·D = −24 · 27·4 + 27·4 ·D

27·4+4 + 1 = (−E + 27·4) ·D 7 · 4 + 4 = 25

225
+ 1 = (−E + 27·4) ·D

x1 = x1

x2 + y2 = z2

x2 = −y2 + z2

x4 · ya4
4 = (−1) + v4

x3 = y3(?)

b4 = 2 · c4

xb4
4 · ya4b4

4 = 1 + r(−1, v4, b4) · v4

Π

x8 = y8

x5 = y5(?)

x6 + y6 = z6

x6 = −y6 + z6

x7 = −y7 + z7

x7 · w7 = −(y7 · w7) + w7 · z7

x8 = z8

y8 = z8

u9 + v9 · w9 = −(xy9

9 · xz9
9) + a9 · w9

xy9+z9

9 + u9 = (−v9 + a9) · w9

xu11
11 + v11 = w11

x10 = y10(?)
u11 = y11

xy11

11 + v11 = w11

x1 7→ D̂ c4 7→ x z7 7→ D̂ a9 7→ 2uy

x2 7→ v · 2u v4 7→ D̂ x8 7→ vy · 2uy x10 7→ r + u · y

y2 7→ 1 x5 7→ vy + 2r y8 7→ 1 +

Ê︷ ︸︸ ︷
r(−1, D̂, y) ·D̂ y10 7→ 2n

z2 7→ D̂ y5 7→ D̂ z8 7→ −2r · 2uy + 2uy · D̂ x11 7→ 2
x3 7→ y x6 7→ vy u9 7→ 1 u11 7→ r + u · y
y3 7→ 2 · x y6 7→ 2r v9 7→ Ê v11 7→ 1

x4 7→ v z6 7→ D̂ w9 7→ D̂ w11 7→ −Ê + 2uy · D̂
y4 7→ 2 x7 7→ D̂ x9 7→ 2
a4 7→ u y7 7→ 2r y9 7→ r
b4 7→ y w7 7→ 2uy z9 7→ u · y

v · 2u + 1 =

D̂︷ ︸︸ ︷
v · 2u + 1

v · 2u = −1 + D̂ y = 2 · x

vy · 2uy = 1 +

Ê︷ ︸︸ ︷
r(−1, D̂, 4) ·D̂

vy + 2r = D̂

vy = −2r + D̂

vy · 2uy = −2r · 2uy + 2uy · D̂
1 + Ê · D̂ = −2r · 2uy + 2uy · D̂

2r+uy + 1 = (−Ê + 2uy) · D̂ r + u · y = y11

2y11 + 1 = (−Ê + 2uy) · D̂

The result of the generalization is

y = 2 · x, vy + 2r = D̂, r + u · y = y11 . 2y11 + 1 = (−Ê + 2uy) · D̂

Theorem. Fn can be shown to be compound using Eulers method iff the

following equations can be solved.

v2x + 2r = v · 2n+2 + 1 and (n + 2) · 2x + r = 2n

with v 6= 0, v 6= 22n−(n+2).

Proof. If follows from the result of the generalization that y = 2x, vy + 2r =

v · 2u + 1, r + u · y = 2y11. To apply the generalization to Euler’s factorization

substitute 2n for y11. Moreover it is known that all divisors of Fn are of the form

v · 2n+2 + 1, hence u 7→ n + 2. v 6= 0, v 6= 22n−(n+2) eliminates the in-genuine

divisors.

Summary

Analogies based on generalizations wrt. the underlying semantics are mathematically strong because

they represent an universal bookkeeping of all possible parameters. Theoretically, they are in general

not even calculable.

The main logical problem of legal reasoning lies in the conflict of the following:

(i) Arguments should be demonstrably sound.

(ii) Decisions have to be achieved within a priori limited time and space.

The solution is provided by minimalist systems such as English Common Law

and maximalist systems such as continental legal systems. In minimalist systems,

completeness is achieved by the admitted generation of legal norms from juridical

decisions (stare decis), which logically represent preconditions of the decisions

(ratio decidendi) in the sense of incomplete reasoning. In maximalist systems

extensive interpretations treat the inherent incompleteness of the system. The

system obtains stability by the application of teleological interpretations, which

restrict the derivable conclusions in conflicting situations.

Wambaugh’s test

“First frame carefully the supposed proposition of law. Let him then insert in

the proposition a word reversing its meaning. Let him then inquire, whether,

if the court had conceived this new proposition to be good, and had had it in

mind, the decision would have been the same. If the answer be affirmative, then,

however excellent the original proposition may be, the case is not a precedent for

that proposition, but if the answer be negative the case is a precedent for the

original proposition and possibly for the other proposition also. In short, when a

case turns only on one point the proposition or doctrine of the case, the reason

for the decision, the ratio decidendi, must be a general rule without which the

case must have been decided otherwise.”

Example (Brown versus Zürich Insurance (1997)). The plaintiff claimed com-

pensation for a car which was denied given the established principle that

a car is not insured if it is not in roadworthy condition and the fact that

the plaintiff’s car had bald tires. The formalization of this decision look as

follows.

pc plaintiff’s car

bt bald tires

rw roadworthy

I(x) x is insured

COND(x, y) x is in condition y

→ COND(pc, bt)

COND(pc, bt)→ ¬COND(pc, rw) ¬COND(pc, rw)→ ¬I(pc)

COND(pc, bt)→ ¬I(pc)

¬I(pc)

S : ? ¬COND(x, rw)→ ¬I(x)

→ COND(pc, bt) cut

kkkkkkkkkkkkkkkkkk

BBBBBBBBBB

cut

QQQQQQQQQQQQQQ

zzzzzzzzz

T = {→ COND(pc, bt),¬COND(x, rw)→ ¬I(x)}
E = {¬I(pc)}
Γ = {pc}

→ X

X → Y Y → ¬I(pc)

X → ¬I(pc)

¬I(pc)

σ = {COND(pc, bt)/X,¬COND(pc, rw)/Y }
(S, T,E,Γ) ` COND(x, bt)→ ¬COND(x, rw)

Summary

Proof theoretic methods are useful to determine weakest preconditions which are

essential to formal juridical reasoning, but less to mathematics. Not much is

known about the structure of the set of all preconditions. Here mathematics

begins.

Some References

[1] Krajicek, J. and Pudlak, P.: The number of proof lines and the size of proofs

in first order logic. Arch. Math. Logic 27 (1988) 69–84

[2] Cross, R. and Harris, J. W.: Precedent in English law, 4th edition, Claredon

Law Series, Oxford University Press 1991

[3] Baaz, M. and Zach, R.: Algorithmic structuring of cut-free proofs. Computer

Science Logic. 6th Workshop, CSL’92. San Miniato. Selected papers (Springer,

Berlin, 1993) 29–42

[4] Baaz, M.: Note on the existence of most general semiunifiers. In P. Clote and

J. Krajicek, eds., Proof Theory and Computational Complexity, pages 20-29.

Oxford Univ. Press, 1993

[5] Baaz, M. and Zach, R.: Short proofs of tautologies using the schema of equiv-

alence. Computer Science Logic. 7th Workshop, CSL’93. Swansea. Selected

papers (Springer, Berlin, 1994) 33–35

[6] Baaz, M. and Zach, R.: Generalizing theorems in real closed fields. Annals

of Pure and Applied Logic 75 (1995) 3–23

[7] Baaz, M.: Note on Formal Analogical Reasoning in the Juridical Context.

Computer Science Logic. 19th Workshop, CSL 2005. Oxford. Lecture Notes

in Computer Science 3634 (Springer 2005) 18–26

