The Algebraic structure of
 Quasi-DEGREES

Ilnur Batyrshin
Kazan State University
ilnurb@yandex.ru

July 18, 2007

Definition (Tennenbaum)

A set A is quasi-reducible to a set $B\left(A \leq_{Q} B\right)$, if there is a computable function g such that for all $x \in \omega$,

$$
x \in A \Leftrightarrow W_{g(x)} \subseteq A .
$$

Example

- If $A \leq_{m} B$ via computable function $f(x)$ then $A \leq_{Q} B$ via computable function $g(x)$ such that $W_{g(x)}=\{f(x)\}$
- If $A \leq_{Q} B$ via computable function $g(x)$ then $\omega-A \leq_{e} \omega-B$ via c.e. set $W=\left\{<x, 2^{y}>\mid x \in \omega, y \in W_{g(x)}\right\}$, i.e. $(\forall x)\left(x \in \omega-A \Leftrightarrow \exists u\left(<x, u>\in W \& D_{u} \subseteq \omega-B\right)\right)$
- If a c.e. set $W \leq_{Q} A$ then $W \leq_{T} A$

Quasi-REDUCIBILITY AND ALGEBRA

Theorem (Dobritsa, unpublished)
For every set of natural number X there is a word problem with the same Quasi-degree as that of X.

Theorem (Belegradek, 1974)
For any computably presented groups G and H, if G is a subgroup of every algebraically closed group of which H is a subgroup, then G 's word problem must be quasi-reducible to that of H.

Quasi-Reducibility and Post's problem

Question (Post, 1944)
Does there exist a computably enumerable set A with $\emptyset<_{T} A<T \emptyset^{\prime}$?
Theorem (Degtev, 1973)
There exists a noncomputable semirecursive η-maximal set.
Theorem (Marchenkov, 1976)

- No η-hyperhypersimple set is Q-complete.
- Let A be c.e. and semirecursive, $B \leq_{T} A$. Then $B \leq_{Q} A$.

Corollary (Positive solution of Post's Problem)
There exists a computably enumerable set A with $\emptyset<_{T} A<_{T} \emptyset^{\prime}$.

Quasi-Reducibility and Algorithmic complexity

Theorem (Kummer, 1996)
Every Q-complete set A has hard instances.
Corollary (Kummer, 1996)
Every strongly effective simple set has hard instances.
Theorem (Batyrshin, 2006)
The set $\mathcal{K}=\left\{(x, n) \mid x \in 2^{<\omega}, n \in \omega, K(x) \leq n\right\}$ is Q-complete.
Corollary (Batyrshin, 2006)
The halting probability $\Omega_{U}=\sum_{x \in \operatorname{dom}(U)} 2^{-|x|}$ is Q-complete.

The algebraic structure of Quasi-Degrees

Theorem (Downey, LaForte, Nies, 1998)
There exists a noncomputable c.e. set A a c.e. B with $A \equiv_{T} B$ such that A and B form a minimal pair in the c.e Q-degrees.

Theorem (Downey, LaForte, Nies, 1998)
For every c.e. $C \not \equiv 0$ there exists an c.e. set A, which is non-branching in the c.e. Q-degrees, such that $C \not \mathbb{Z}_{Q} A$.

Theorem (Downey, LaForte, Nies, 1998)
For every pair of c.e. sets $B<{ }_{Q} A$ there exists an c.e. set C with $B<{ }_{Q} B \oplus C<_{Q} A$.

The algebraic structure of Quasi-Degrees

Theorem (Arslanov, Omanadze, ta in 2007, IJM) There exists an n-c.e set M of properly n-c.e. Q-degree.

Theorem (Arslanov, Omanadze, ta in 2007, IJM)
For any $n \geq 2$ there is a (2n)-c.e. set M of properly ($2 n$)-c.e. Q-degree such that for any c.e. W, if $W \leq_{Q} M$ then W is computable.

Theorem (Arslanov, Omanadze, ta in 2007, IJM)
Let V be a c.e. set such that $V<_{Q} K$. Then there exist c.e. sets A and B such that $V<_{Q} A-B<_{Q} K$ and the Q-degree of $A-B$ does not contain c.e. sets.

The algebraic structure of Quasi-Degrees

Theorem (Arslanov, Batyrshin, Omanadze, ta)
Let A and B be c.e. sets such that $A-B \not \equiv 0$. Then A is a disjoint union of c.e. sets A_{0} and A_{1} such that $A_{i}-B \leq_{Q} A-B$ and $A_{i}-B \not \leq_{Q} A_{1-i}-B, i=0,1$.

Corollary
Given a d.c.e set $A-B \not \equiv 0$ there exist two Q-incomparable d-c.e below it.

The algebraic structure of Quasi-Degrees

Theorem (Arslanov, Batyrshin, Omanadze, Ta)
There is a c.e. set $A<_{Q} K$ such that for all noncomputable c.e. sets W_{e} there is a noncomputable c.e. set X_{e} such that $X \leq_{Q} A$ and $X \leq_{Q} W_{e}$.

Theorem (Arslanov, Batyrshin, Omanadze, ta)
Let A be a c.e. set such that $K \not \mathbb{Z}_{Q} A$. Then there exist noncomputable c.e. sets A_{0} and A_{1} such that $A \oplus A_{i} \not Z_{Q} A \oplus A_{1-i}, i=0,1$, and A_{0} and A_{1} for a minimal pair in the c.e. Q-degrees.

The algebraic structure of Quasi-Degrees

Theorem
For every pair of c.e. degrees $\mathbf{a}<_{\mathbf{Q}} \mathbf{b}$ there exists a properly d.c.e. degree $\mathbf{d}, \mathbf{a}<_{\mathbf{Q}} \mathbf{d}<_{\mathbf{Q}} \mathbf{b}$ such that intervals $(\mathbf{a}, \mathbf{d}]$ and $[\mathbf{d}, \mathbf{b})$ don't contain c.e. degrees.

Corollary
Given a c.e. degree a with $\mathbf{0}<_{\mathbf{Q}} \mathbf{a}<_{\mathbf{Q}} \mathbf{0}^{\prime}$ there exists a d.c.e degree \mathbf{d} such that $\mathbf{a} \not z_{\mathbf{Q}} \mathbf{d}$ and $\mathbf{d} z_{\mathbf{Q}} \mathbf{a}$.

The algebraic structure of Quasi-Degrees

Theorem

For every pair of d.c.e. degrees $\mathbf{a}<_{\mathbf{Q}} \mathbf{b}$ either the interval (\mathbf{a}, \mathbf{b}) don't contain c.e. degrees or there exists a d.c.e. degree \mathbf{d}, $\mathbf{a}<_{\mathbf{Q}} \mathbf{d}<_{\mathbf{Q}} \mathbf{b}$ such that intervals $(\mathbf{a}, \mathbf{d}]$ and $[\mathbf{d}, \mathbf{b})$ don't contain c.e. degrees.

Corollary
For every d.c.e degree $\mathbf{a}>\mathbf{0}$ there exist a d.c.e degree $\mathbf{b}<_{\mathbf{Q}} \mathbf{a}$ such that the interval $[\mathbf{b}, \mathbf{a})$ don't contain c.e. degrees.

