> Ilnur Batyrshin Kazan State University ilnurb@yandex.ru

> > July 18, 2007

DEFINITION (TENNENBAUM)

A set A is quasi-reducible to a set B ($A \leq_Q B$), if there is a computable function g such that for all $x \in \omega$,

$$x \in A \Leftrightarrow W_{g(x)} \subseteq A.$$

EXAMPLE

- If A ≤_m B via computable function f(x) then A ≤_Q B via computable function g(x) such that W_{g(x)} = {f(x)}
- If A ≤_Q B via computable function g(x) then ω − A ≤_e ω − B via c.e. set W = {< x, 2^y > |x ∈ ω, y ∈ W_{g(x)}}, i.e. (∀x)(x ∈ ω − A ⇔ ∃u(< x, u >∈ W&D_u ⊆ ω − B))

• If a c.e. set $W \leq_Q A$ then $W \leq_T A$

QUASI-REDUCIBILITY AND ALGEBRA

THEOREM (DOBRITSA, UNPUBLISHED)

For every set of natural number X there is a word problem with the same Quasi-degree as that of X.

THEOREM (BELEGRADEK, 1974)

For any computably presented groups G and H, if G is a subgroup of every algebraically closed group of which H is a subgroup, then G's word problem must be quasi-reducible to that of H.

QUASI-REDUCIBILITY AND POST'S PROBLEM

QUESTION (POST, 1944)

Does there exist a computably enumerable set A with $\emptyset <_T A <_T \emptyset'$?

THEOREM (DEGTEV, 1973)

There exists a noncomputable semirecursive η -maximal set.

THEOREM (MARCHENKOV, 1976)

- No η -hyperhypersimple set is Q-complete.
- Let A be c.e. and semirecursive, $B \leq_T A$. Then $B \leq_Q A$.

COROLLARY (POSITIVE SOLUTION OF POST'S PROBLEM) There exists a computably enumerable set A with $\emptyset <_T A <_T \emptyset'$.

QUASI-REDUCIBILITY AND ALGORITHMIC COMPLEXITY

THEOREM (KUMMER, 1996)

Every Q-complete set A has hard instances.

COROLLARY (KUMMER, 1996)

Every strongly effective simple set has hard instances.

THEOREM (BATYRSHIN, 2006) The set $\mathcal{K} = \{(x, n) | x \in 2^{<\omega}, n \in \omega, K(x) \le n\}$ is Q-complete. COROLLARY (BATYRSHIN, 2006) The halting probability $\Omega_U = \sum_{x \in dom(U)} 2^{-|x|}$ is Q-complete.

THEOREM (DOWNEY, LAFORTE, NIES, 1998) There exists a noncomputable c.e. set A a c.e. B with $A \equiv_T B$ such that A and B form a minimal pair in the c.e Q-degrees.

THEOREM (DOWNEY, LAFORTE, NIES, 1998)

For every c.e. $C \not\equiv 0$ there exists an c.e. set A, which is non-branching in the c.e. Q-degrees, such that $C \not\leq_Q A$.

THEOREM (DOWNEY, LAFORTE, NIES, 1998)

For every pair of c.e. sets $B <_Q A$ there exists an c.e. set C with $B <_Q B \oplus C <_Q A$.

THEOREM (ARSLANOV, OMANADZE, TA IN 2007, IJM) *There exists an n-c.e set M of properly n-c.e. Q-degree.*

THEOREM (ARSLANOV, OMANADZE, TA IN 2007, IJM) For any $n \ge 2$ there is a (2n)-c.e. set M of properly (2n)-c.e. Q-degree such that for any c.e. W, if $W \le_Q M$ then W is computable.

THEOREM (ARSLANOV, OMANADZE, TA IN 2007, IJM) Let V be a c.e. set such that $V <_Q K$. Then there exist c.e. sets A and B such that $V <_Q A - B <_Q K$ and the Q-degree of A - Bdoes not contain c.e. sets.

THEOREM (ARSLANOV, BATYRSHIN, OMANADZE, TA) Let A and B be c.e. sets such that $A - B \neq 0$. Then A is a disjoint union of c.e. sets A_0 and A_1 such that $A_i - B \leq_Q A - B$ and $A_i - B \leq_Q A_{1-i} - B$, i = 0, 1.

COROLLARY

Given a d.c.e set $A - B \neq 0$ there exist two Q-incomparable d-c.e below it.

THEOREM (ARSLANOV, BATYRSHIN, OMANADZE, TA) There is a c.e. set $A <_Q K$ such that for all noncomputable c.e. sets W_e there is a noncomputable c.e. set X_e such that $X \leq_Q A$ and $X \leq_Q W_e$.

THEOREM (ARSLANOV, BATYRSHIN, OMANADZE, TA) Let A be a c.e. set such that $K \not\leq_Q A$. Then there exist noncomputable c.e. sets A_0 and A_1 such that $A \oplus A_i \not\leq_Q A \oplus A_{1-i}, i = 0, 1$, and A_0 and A_1 for a minimal pair in the c.e. Q-degrees.

THEOREM

For every pair of c.e. degrees $\mathbf{a} <_{\mathbf{Q}} \mathbf{b}$ there exists a properly d.c.e. degree \mathbf{d} , $\mathbf{a} <_{\mathbf{Q}} \mathbf{d} <_{\mathbf{Q}} \mathbf{b}$ such that intervals $(\mathbf{a}, \mathbf{d}]$ and $[\mathbf{d}, \mathbf{b})$ don't contain c.e. degrees.

COROLLARY

Given a c.e. degree **a** with $0 <_Q a <_Q 0'$ there exists a d.c.e degree **d** such that $a \not\leq_Q d$ and $d \not\leq_Q a$.

Theorem

For every pair of d.c.e. degrees $\mathbf{a} <_{\mathbf{Q}} \mathbf{b}$ either the interval (\mathbf{a}, \mathbf{b}) don't contain c.e. degrees or there exists a d.c.e. degree \mathbf{d} , $\mathbf{a} <_{\mathbf{Q}} \mathbf{d} <_{\mathbf{Q}} \mathbf{b}$ such that intervals $(\mathbf{a}, \mathbf{d}]$ and $[\mathbf{d}, \mathbf{b})$ don't contain c.e. degrees.

COROLLARY

For every d.c.e degree a > 0 there exist a d.c.e degree $b <_Q a$ such that the interval [b, a) don't contain c.e. degrees.