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Substructural logics (of Ono 2003) = logics of residuated lattices
This talk focuses on the following subclass:

Deductive fuzzy logics = Ono’'s substructural logics with
(i) exchange (commutative conjunction)

(ii) prelinearity ... = (p —¢Y) VvV (Y — @)

They include the usual systems of t-norm fuzzy logics:
t ukasiewicz logic, Godel-Dummett logic, Hajek’s BL, ...

Some definitions and results can be extended to broader classes
of substructural logics

For simplicity, in this talk we assume
weakening and full propositional language (&,—,A,V,0,1)



Recall:
Substructural logics have two naturally defined conjunctions and
disjunctions:

A ... weak / lattice / “additive” conjunction
PRY—x = ¢ — (Y—x)
® ... strong / group / “multiplicative” conjunction

AN —=x = (p—=x)V @ —x)

Y@1Y = both ¢ and o
w ANy = any of ¢ and ¢

Denote p®...® ¢ by "

n




First-order substructural logics:
Easy to define V,d as the lattice infima and suprema A,V
Rasiowa: An Algebraic Approach to Non-Classical Logics, 1974

(Vx)p(x) — p(t) if t free for z in p(x)
p(t) — (Fz)p(z) "
(Vz)(x — ¢(z)) = (x = (Vz)p(z)) if z not free in p(z)
(Vz)(p(z) — x) — (Fx)p(z) — x) "
o/ (Yz)p

Subtlety:
In incomplete lattices, the required A,\ need not be defined
Logics of complete lattices need not be axiomatizable (BL, t.)
— use Rasiowa’s interpretations = Hajek's safe structures

= those in which all necessary A,\ exist



A,V are the weak quantifiers:
= (Vx)o(x) — p(a) A p(b) A ...
7 (Vz)p(z) — pa) @ p(b) ® ...

vV = ANY (rather than ALL):
(Vx)p(x) implies any single instance of ¢(x),
but not all of them at once (ie, with ®)

Question: How should strong quantifiers be defined?

e Long-standing problem in substructural logics
e Without strong quantifiers,
substructural quantification theory is incomplete
e First-order substructural logics with only weak quantifiers
are viewed as a cheat by many



Requirements of strong quantifiers
(to be well-defined, well-behaved, and well-motivated)

e [0 be universal, a quantifier 'l should satisfy:

If = o(z), then = (Mz)p(x)
e [0 be multiplicative, Tl should satisfy:

= (Nz)e(z) — Q) ¢(t) for any multiset M of terms
teM

e To be semantically well-defined, the truth value of (MNx)y(x)
in @ model M should be determined by the truth values of
o(a) for all individuals a € M (truth-functionality):

1(Nz)e(z)as, = Fn({{a, [[p(a)llpr,) [ a € M})
e It is natural to assume monotony:

I (@) pr0 < [((a)lpr, for all a € M
then | (Mz)e(a)llps,y < 1(M2)9 ()] 5




On single-element universes, truth-functional quantifiers
reduce to unary propositional connectives

= Strong quantifiers generate unary connectives * such that
= ©* — " for all n
if ol < [l then |le*[| < |4
if = ¢ then = ¢*
We call them exponentials here
(cf. Girard's exponentials; better terminology?)

For a strong quantifier I1, define:

0N =q4f (Mz)p if x is not free in ¢

Vice versa, if * is an exponential, then
(Myex)p(x) =gr [(Vx)p(x)]* is a strong quantifier
not (Vx)yp*(x)



Examples:

e Girard’'s exponentials (! in linear logic):

Introduced proof-theoretically

Essentially, just o — ¢ and v —!lp®!lp required

Truth value: any ®-idempotent below ¢

not necessarily the weakest one

e Globalization

Jx =1 iff x = 1, otherwise Lz =0

Adding [J to a fuzzy logic need not vield a fuzzy logic

e Baaz A operator
T he strongest exponential preserving fuzziness
Coincides with globalization in linear algebras
Too strong unless Crisp(p™*) is required
(notice: conditions of Girard’s ! satisfied by [, A)



e Montagna's storage operator
(Journal of Logic and Computation, 2004)

©* = the largest ®-idempotent below ¢
(in algebras where it exists)

However, exponentials need not be idempotent
= still unnecessarily strong,
unless repeatable usage is required of ¢*, too

PR * =%, ()" ="

Question:
optimal (ie, the weakest) exponential (or strong quantifier)...?



The condition of optimality of % is expressed by
the infinitary rule {¢ — ¢ |n € w}F Y — ©*

This defines the optimal (weakest) exponential %
(as far as we know, not studied in fuzzy logic as yet)

The corresponding multiplicative quantifier:
(Qz)p(x) =g ((Vx)p(z))”
In semantics: ¥ =g iréf o (in “w-safe” algebras)
ncw
Not every algebra can be extended with ¥

(cf Chang’'s MV-algebra: co-infinitesimals have no inf),
but if it can, then % is its weakest exponential



Example:
¥ = "™ in n-contractive logics (ie, such that = ¢" — go”"H)

In general, Montagna's * differs from ¢
Counter-example by Montagna (2004)

If they exist,
©* is the nearest ®-idempotent below ¢
©* is the supremum of the first Archimedean class below ¢

Recall: ¢ is introduced by an infinitary rule

Question: Can it be axiomatized (or approximated) finitarily?



Consider an operator “ with the following axioms and rules:
- gpw — @
= ((p = ¥¥) = ©¥) V (¥ — (¢¥)?)
b=, ((p =) =PIV (b = ) Fop — ¥

Then ¥ satisfies the rules for ¥
In semantics, ¥ coincides with ¢ if the latter is defined

However, ¥ need not be defined even if ¢ is
(in Chang's MV-algebra: ¢¥ = Ay, while ¢¥ is undefined)



Recall: In semantics, quantifiers are fuzzy sets of fuzzy sets

Why:
— quantifiers are operators on predicates
— semantic values of predicates are fuzzy sets
= quantifiers take fuzzy sets to truth values
= quantifiers are fuzzy sets of fuzzy sets

Recall: Sets of sets is the domain of higher-order logic

Notice: A system of Henkin-style higher-order fuzzy logic
(based on the weak quantifiers Vv, 3 only!)
has recently been developed
Behounek, Cintula: Fuzzy class theory. Fuzzy Sets and Systems 2004

= Multiplicative quantifiers can conveniently be studied
in higher-order fuzzy logic



Propositional fuzzy logic:
any well-behaved expansion of MTLA

First-order fuzzy logic (with weak quantifiers only)
add Rasiowa’s axioms for V, d, crisp identity =

Henkin-style second-order fuzzy logic

— theory in 1st-order fuzzy logic:
e Sorts of objects (x,vy,...), fuzzy sets (X,Y,...), tuples
e Axioms for tuples (crisp)
e Primitive membership predicate &
e Comprehension axioms (32)(Vx) A(x € Z < ) for all ¢
e Extensionality axiom (V) A(r e A<~ 2 e B) - A=208

Henkin-style higher-order fuzzy logic: iterate for all orders

Intended models = fuzzy subsets of all orders in a domain V



Fact: The definition of the weakest exponential ¢ can be inter-
nalized in higher-order fuzzy logic. The weakest multiplicative
quantifier is thus definable in higher-order fuzzy logic.

Subtlety: Henkin-style = non-standard models
= possibly non-standard semantics of the defined notions

Moral:
The lattice quantifiers V,d suffice for developing higher-order
fuzzy logic, in which multiplicative quantifiers become definable

= Multiplicative quantifiers need not be present as primitives
in first-order fuzzy logic: they can be bypassed by using lattice
quantifiers, developing higher-order fuzzy logic by means of the
latter, and defining the former within its framework

A similar approach should work for other substructural logics



