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Survey

1. Basic Concepts

• Computable Analysis

• Computable Borel Measurability

• The Representation Theorem

2. Classification of Topological Operations

• Representations of Closed Subsets

• Topological Operations

3. Classification of Theorems from Functional Analysis

• Uniformity versus Non-Uniformity

• Open Mapping and Closed Graph Theorem

• Banach’s Inverse Mapping Theorem

• Hahn-Banach Theorem
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Computable Analysis

• Computable analysis is the Turing machine based approach to

computability in analysis.
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Computable Analysis

• Computable analysis is the Turing machine based approach to

computability in analysis.

• Turing has devised his machine model in order to describe

computations on real numbers.

• Banach, Mazur, Grzegorczyk and Lacombe have built a theory of

computable real number functions on top of this.

• This theory has been further extended by Pour-El and Richards,

Hauck, Nerode, Kreitz, Weihrauch and many others.

• The representation based approach to computable analysis allows to

describe computations in a large class of topological space that

suffice for most applications in analysis.
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Synergetic Effects

• Tool box of representations can be used to express results of high

degrees of uniformity.
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Synergetic Effects

• Tool box of representations can be used to express results of high

degrees of uniformity.

• Higher types can be constructed freely (cartesian closed category).

• Conservative extension of (effective) Borel measurability to spaces

other than metric ones (even asymmetric spaces).

• Notion of reducibility and completeness for measurable maps.

• Non-uniform results for the arithmetical hierarchy are easy corollaries

of completeness results.

• Natural characterizations of the degree of difficulty of theorems in

analysis.

• Uniform model to express computability, continuity and

measurability and to provide counterexamples.

• Axiomatic choices do not matter.
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Turing Machines

Definition 1 A function F :⊆ NN → NN is called computable, if there

exists a Turing machine with one-way output tape which transfers each

input p ∈ dom(F ) into the corresponding output F (p).

M
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�

�

�

�

Vasco Brattka Department of Mathematics & Applied Mathematics · University of Cape Town 17



Turing Machines

Definition 1 A function F :⊆ NN → NN is called computable, if there

exists a Turing machine with one-way output tape which transfers each

input p ∈ dom(F ) into the corresponding output F (p).

M

3 . 1 4 1 5 9 2 6 5 ...

9 . 8 6 9 ...

p

q = F (p)

�

�

�

�

Proposition 2 Any computable function F :⊆ NN → NN is continuous

with respect to the Baire topology on NN.
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Computable Functions

Definition 3 A representation of a set X is a surjective function

δ :⊆ NN → X .
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Computable Functions

Definition 3 A representation of a set X is a surjective function

δ :⊆ NN → X .

Definition 4 A function f :⊆ X → Y is called (δ, δ′)–computable, if

there exists a computable function F :⊆ NN → NN such that
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Computable Functions

Definition 3 A representation of a set X is a surjective function

δ :⊆ NN → X .

Definition 4 A function f :⊆ X → Y is called (δ, δ′)–computable, if

there exists a computable function F :⊆ NN → NN such that

δ′F (p) = fδ(p) for all p ∈ dom(fδ).
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X �

F

f
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δ′δ
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�

Definition 5 If δ, δ′ are representations of X, Y , respectively, then there

is a canonical representation [δ → δ′] of the set of (δ, δ′)–continuous

functions f : X → Y .
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Admissible Representations

Definition 6 A representation δ of a topological space X is called

admissible, if δ is continuous and if the identity id : X → X is

(δ′, δ)–continuous for any continuous representation δ′ of X .
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Admissible Representations

Definition 6 A representation δ of a topological space X is called

admissible, if δ is continuous and if the identity id : X → X is

(δ′, δ)–continuous for any continuous representation δ′ of X .

Definition 7 If δ, δ′ are admissible representations of (sequential)

topological spaces X, Y , then [δ → δ′] is a representation of

C(X, Y ) := {f : X → Y : f continuous}.
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Admissible Representations

Definition 6 A representation δ of a topological space X is called

admissible, if δ is continuous and if the identity id : X → X is

(δ′, δ)–continuous for any continuous representation δ′ of X .

Definition 7 If δ, δ′ are admissible representations of (sequential)

topological spaces X, Y , then [δ → δ′] is a representation of

C(X, Y ) := {f : X → Y : f continuous}.

• The representation [δ → δ′] just includes sufficiently much

information on operators T in order to evaluate them effectively.

• A computable description of an operator T with respect to [δ → δ′]
corresponds to a “program” of T .

• The underlying topology induced on C(X, Y ) is typically the

compact-open topology.
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The Category of Admissibly Represented Spaces

Theorem 8 (Schröder) The category of admissibly represented

sequential T0–spaces is cartesian closed.
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The Category of Admissibly Represented Spaces

Theorem 8 (Schröder) The category of admissibly represented

sequential T0–spaces is cartesian closed.

(weak) limit spaces

sequential T0–spaces

topological spaces
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Computable Metric Spaces

Definition 9 A tuple (X, d, α) is called a computable metric space, if

1. d : X × X → R is a metric on X ,

2. α : N → X is a sequence which is dense in X ,

3. d ◦ (α × α) : N2 → R is a computable (double) sequence in R.

Vasco Brattka Department of Mathematics & Applied Mathematics · University of Cape Town 27



Computable Metric Spaces

Definition 9 A tuple (X, d, α) is called a computable metric space, if

1. d : X × X → R is a metric on X ,

2. α : N → X is a sequence which is dense in X ,

3. d ◦ (α × α) : N2 → R is a computable (double) sequence in R.

Definition 10 Let (X, d, α) be a computable metric space. The Cauchy

representation δX :⊆ NN → X of X is defined by

δX(p) := lim
i→∞

αp(i)

for all p such that (αp(i))i∈N converges and d(αp(i), αp(j)) < 2−i for

all j > i (and undefined for all other input sequences).
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Examples of Computable Metric Spaces

Example 11 The following are computable metric spaces:

1. (Rn, dRn , αRn) with the Euclidean metric

dRn(x, y) :=
pPn

i=1 |xi − yi|2

and a standard numbering αRn of Qn.

2. (K(Rn), dK, αK) with the set K(Rn) of non-empty compact subsets of

Rn and the Hausdorff metric

dK(A, B) := max
˘
supa∈A infb∈B dRn(a, b), supb∈B infa∈A dRn(a, b)

¯

and a standard numbering αK of the non-empty finite subsets of Qn.

3. (C(Rn), dC, αC) with the set C(Rn) of continuous functions f : Rn → R,

dC(f, g) :=
P∞

i=0 2−i−1 supx∈[−i,i]n |f(x)−g(x)|
1+supx∈[−i,i]n |f(x)−g(x)|

and a standard numbering αC of Q[x1, ..., xn].
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Kreitz-Weihrauch Representation Theorem

Theorem 12 Let X, Y be computable metric spaces and let

f :⊆ X → Y be a function. Then the following are equivalent:

1. f is continuous,

2. f admits a continuous realizer F :⊆ NN → NN.

NN �

X �

F

f

�

δYδX

NN

Y
�
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Question: Can this theorem be generalized to Borel measurable

functions?
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Borel Hierarchy

• Σ0
1(X) is the set of open subsets of X ,

• Π0
1(X) is the set of closed subsets of X ,

• Σ0
2(X) is the set of Fσ subsets of X ,

• Π0
2(X) is the set of Gδ subsets of X , etc.

• ∆0
k(X) := Σ0

k(X) ∩ Π0
k(X).

����������������������������������������������������������������������������������������������������
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Representations of Borel Classes

Definition 13 Let (X, d, α) be a separable metric space. We define

representations δΣ0
k(X) of Σ0

k(X), δΠ0
k(X) of Π0

k(X) and δ∆0
k(X) of

∆0
k(X) for k ≥ 1 as follows:

• δΣ0
1(X)(p) :=

⋃
〈i,j〉∈range(p)

B(α(i), j),

• δΠ0
k(X)(p) := X \ δΣ0

k(X)(p),

• δΣ0
k+1(X)〈p0, p1, ...〉 :=

∞⋃
i=0

δΠ0
k(X)(pi),

• δ∆0
k(X)〈p, q〉 = δΣ0

k(X)(p) : ⇐⇒ δΣ0
k(X)(p) = δΠ0

k(X)(q),

for all p, pi, q ∈ NN.
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Effective Closure Properties of Borel Classes

Proposition 14 Let X, Y be computable metric spaces. The following
operations are computable for any k ≥ 1:

1. Σ0
k ↪→ Σ0

k+1, Σ0
k ↪→ Π0

k+1, Π0
k ↪→ Σ0

k+1, Π0
k ↪→ Π0

k+1, A �→ A (injection)

2. Σ0
k → Π0

k, Π0
k → Σ0

k, A �→ Ac := X \ A (complement)

3. Σ0
k × Σ0

k → Σ0
k, Π0

k × Π0
k → Π0

k, (A, B) �→ A ∪ B (union)

4. Σ0
k × Σ0

k → Σ0
k, Π0

k × Π0
k → Π0

k, (A, B) �→ A ∩ B (intersection)

5. (Σ0
k)N → Σ0

k, (An)n∈N �→ S∞
n=0 An (countable union)

6. (Π0
k)N → Π0

k, (An)n∈N �→ T∞
n=0 An (countable intersection)

7. Σ0
k(X) × Σ0

k(Y ) → Σ0
k(X × Y ), (A, B) �→ A × B (product)

8. (Π0
k(X))N → Π0

k(XN), (An)n∈N �→ ×∞
n=0An (countable product)

9. Σ0
k(X × N) → Σ0

k(X), A �→ {x ∈ X : (∃n)(x, n) ∈ A} (countable projection)

10. Σ0
k(X × Y ) × Y → Σ0

k(X), (A, y) �→ Ay := {x ∈ X : (x, y) ∈ A} (section)
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Borel Measurable Operations

Definition 15 Let X, Y be separable metric spaces. An operation

f : X → Y is called

• Σ0
k–measurable, if f−1(U) ∈ Σ0

k(X) for any U ∈ Σ0
1(Y ),
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Borel Measurable Operations

Definition 15 Let X, Y be separable metric spaces. An operation

f : X → Y is called

• Σ0
k–measurable, if f−1(U) ∈ Σ0

k(X) for any U ∈ Σ0
1(Y ),

• effectively Σ0
k–measurable or Σ0

k–computable, if the map

Σ0
k(f−1) : Σ0

1(Y ) → Σ0
k(X), U �→ f−1(U)

is computable.
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Borel Measurable Operations

Definition 15 Let X, Y be separable metric spaces. An operation

f : X → Y is called

• Σ0
k–measurable, if f−1(U) ∈ Σ0

k(X) for any U ∈ Σ0
1(Y ),

• effectively Σ0
k–measurable or Σ0

k–computable, if the map

Σ0
k(f−1) : Σ0

1(Y ) → Σ0
k(X), U �→ f−1(U)

is computable.

Definition 16 Let X, Y be separable metric spaces. We define

representations δΣ0
k(X→Y ) of Σ0

k(X → Y ) by

δΣ0
k(X→Y )(p) = f : ⇐⇒ [δΣ0

1(Y ) → δΣ0
k(X)](p) = Σ0

k(f−1)

for all p ∈ NN, f : X → Y and k ≥ 1. Let δΣ0
k(X→Y ) denote the

restriction to Σ0
k(X → Y ).
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Effective Closure Properties of Borel Measurable Operations

Proposition 17 Let W, X, Y and Z be computable metric spaces. The
following operations are computable for all n, k ≥ 1:

1. Σ0
n(Y → Z) × Σ0

k(X → Y ) → Σ0
n+k−1(X → Z), (g, f) �→ g ◦ f (composition)

2. Σ0
k(X → Y ) × Σ0

k(X → Z) → Σ0
k(X → Y × Z), (f, g) �→ (x �→ f(x) × g(x))

(juxtaposition)

3. Σ0
k(X → Y )×Σ0

k(W → Z) → Σ0
k(X ×W → Y ×Z), (f, g) �→ f × g (product)

4. Σ0
k(X → Y N) → Σ0

k(X × N → Y ), f �→ f∗ (evaluation)

5. Σ0
k(X × N → Y ) → Σ0

k(X → Y N), f �→ [f ] (transposition)

6. Σ0
k(X → Y ) → Σ0

k(XN → Y N), f �→ fN (exponentiation)

7. Σ0
k(X × N → Y ) → Σ0

k(X → Y )N, f �→ (n �→ (x �→ f(x, n))) (sequencing)

8. Σ0
k(X → Y )N → Σ0

k(X × N → Y ), (fn)n∈N �→ ((x, n) �→ fn(x))

(de-sequencing)
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Representation Theorem

Theorem 18 Let X, Y be computable metric spaces, k ≥ 1 and let

f : X → Y be a total function. Then the following are equivalent:

1. f is (effectively) Σ0
k–measurable,

2. f admits an (effectively) Σ0
k–measurable realizer F :⊆ NN → NN.

Proof.
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Representation Theorem

Theorem 18 Let X, Y be computable metric spaces, k ≥ 1 and let

f : X → Y be a total function. Then the following are equivalent:

1. f is (effectively) Σ0
k–measurable,

2. f admits an (effectively) Σ0
k–measurable realizer F :⊆ NN → NN.

Proof.
N

N �

X �

F

f

�

δYδX

N
N

Y
�

The proof is based on effective versions of the

• Kuratowski-Ryll-Nardzewski Selection Theorem,

• Bhattacharya-Srivastava Selection Theorem. �
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Weihrauch Reducibility of Functions

Definition 19 Let X, Y, U, V be computable metric spaces and consider

functions f :⊆ X → Y and g :⊆ U → V . We say that

• f is reducible to g, for short f�t g, if there are continuous functions

A :⊆ X × V → Y and B :⊆ X → U such that

f(x) = A(x, g ◦ B(x))

for all x ∈ dom(f),

• f is computably reducible to g, for short f�c g, if there are

computable A, B as above.

• The corresponding equivalences are denoted by ∼=t and ∼=c .
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Weihrauch Reducibility of Functions

Definition 19 Let X, Y, U, V be computable metric spaces and consider

functions f :⊆ X → Y and g :⊆ U → V . We say that

• f is reducible to g, for short f�t g, if there are continuous functions

A :⊆ X × V → Y and B :⊆ X → U such that

f(x) = A(x, g ◦ B(x))

for all x ∈ dom(f),

• f is computably reducible to g, for short f�c g, if there are

computable A, B as above.

• The corresponding equivalences are denoted by ∼=t and ∼=c .

Proposition 20 The following holds for all k ≥ 1:

1. f�t g and g is Σ0
k–measurable =⇒ f is Σ0

k–measurable,

2. f�c g and g is Σ0
k–computable =⇒ f is Σ0

k–computable.
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Completeness Theorem for Baire Space

Definition 21 For any k ∈ N we define Ck : NN → NN by

Ck(p)(n) :=


 0 if (∃nk)(∀nk−1)... p〈n, n1, ..., nk〉 �= 0

1 otherwise

for all p ∈ NN and n ∈ N.
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Completeness Theorem for Baire Space

Definition 21 For any k ∈ N we define Ck : NN → NN by

Ck(p)(n) :=


 0 if (∃nk)(∀nk−1)... p〈n, n1, ..., nk〉 �= 0

1 otherwise

for all p ∈ NN and n ∈ N.

Theorem 22 Let k ∈ N. For any function F :⊆ NN → NN we obtain:

1. F�t Ck ⇐⇒ F is Σ0
k+1–measurable,

2. F�c Ck ⇐⇒ F is Σ0
k+1–computable.

Proof. Employ the Tarski-Kuratowski Normal Form in the appropriate

way. �
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Realizer Reducibility

Definition 23 Let X, Y, U, V be computable metric spaces and consider

functions f : X → Y and g : U → V . We define

f�t g : ⇐⇒ fδX�t g δU

and we say that f is realizer reducible to g, if this holds. Analogously,

we define f�c g with �c instead of �t . The corresponding equivalences

≈t and ≈c are defined straightforwardly.
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Realizer Reducibility

Definition 23 Let X, Y, U, V be computable metric spaces and consider

functions f : X → Y and g : U → V . We define

f�t g : ⇐⇒ fδX�t g δU

and we say that f is realizer reducible to g, if this holds. Analogously,

we define f�c g with �c instead of �t . The corresponding equivalences

≈t and ≈c are defined straightforwardly.

Theorem 24 Let X, Y be computable metric spaces and let k ∈ N. For

any function f : X → Y we obtain:

1. f�t Ck ⇐⇒ f is Σ0
k+1–measurable,

2. f�c Ck ⇐⇒ f is Σ0
k+1–computable.
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Characterization of Realizer Reducibility

Definition 25 Let X, Y, U, V be computable metric spaces, let F be a

set of functions F : X → Y and let G be a set of functions G : U → V .

We define

F�t G : ⇐⇒ (∃A, B computable)(∀G ∈ G)(∃F ∈ F)

(∀x ∈ dom(F )) F (x) = A(x, GB(x)),

where A :⊆ X × V → Y and B :⊆ X → U . Analogously, one can define

�c with computable A, B.
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Characterization of Realizer Reducibility

Definition 25 Let X, Y, U, V be computable metric spaces, let F be a

set of functions F : X → Y and let G be a set of functions G : U → V .

We define

F�t G : ⇐⇒ (∃A, B computable)(∀G ∈ G)(∃F ∈ F)

(∀x ∈ dom(F )) F (x) = A(x, GB(x)),

where A :⊆ X × V → Y and B :⊆ X → U . Analogously, one can define

�c with computable A, B.

Proposition 26 Let X, Y, U, V be computable metric spaces and let

f : X → Y and g : U → V be functions. Then

f�c g ⇐⇒ {F : F � f}�c {G : G � g}.

An analogous statement holds with respect to �t and �t .
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Completeness of the Limit

Proposition 27 Let X be a computable metric space and consider

c := {(xn)n∈N ∈ XN : (xn)n∈N ∈ XN converges} as computable metric

subspace of XN. The ordinary limit map

lim : c → X, (xn)n∈N �→ lim
n→∞ xn

is Σ0
2–computable and it is even Σ0

2–complete, if there is a computable

embedding ι : {0, 1}N ↪→ X .
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Completeness of the Limit

Proposition 27 Let X be a computable metric space and consider

c := {(xn)n∈N ∈ XN : (xn)n∈N ∈ XN converges} as computable metric

subspace of XN. The ordinary limit map

lim : c → X, (xn)n∈N �→ lim
n→∞ xn

is Σ0
2–computable and it is even Σ0

2–complete, if there is a computable

embedding ι : {0, 1}N ↪→ X .

Proof. On the one hand, Σ0
2–computability follows from

lim−1(B(x, r)) =

( ∞⋃
n=0

Xn × B(x, r − 2−n)N

)
∩ c ∈ Σ0

2(c)

and on the other hand, Σ0
2–completeness follows from

C1�c lim{0,1}N �c limX .
�
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Lower Bounds for Unbounded Closed Linear Operators

Theorem 28 Let X, Y be computable Banach spaces and let

f :⊆ X → Y be a closed linear and unbounded operator. Let (en)n∈N

be a computable sequence in dom(f) whose linear span is dense in X

and let f(en)n∈N be computable in Y . Then C1�c f .
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Lower Bounds for Unbounded Closed Linear Operators

Theorem 28 Let X, Y be computable Banach spaces and let

f :⊆ X → Y be a closed linear and unbounded operator. Let (en)n∈N

be a computable sequence in dom(f) whose linear span is dense in X

and let f(en)n∈N be computable in Y . Then C1�c f .

Corollary 29 (First Main Theorem of Pour-El and Richards) Under

the same assumptions as above f maps some computable input x ∈ X

to a non-computable output f(x).
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Arithmetic Complexity of Points and the Invariance Theorem

Definition 30 Let X be a computable metric space and let x ∈ X .

Then x is called ∆0
n–computable, if there is a ∆0

n–computable p ∈ NN

such that x = δX(p).
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Arithmetic Complexity of Points and the Invariance Theorem

Definition 30 Let X be a computable metric space and let x ∈ X .

Then x is called ∆0
n–computable, if there is a ∆0

n–computable p ∈ NN

such that x = δX(p).

Theorem 31 Let X, Y be computable metric spaces.

• If f : X → Y is Σ0
k–computable, then it maps ∆0

n–computable

inputs x ∈ X to ∆0
n+k−1–computable outputs f(x) ∈ Y .
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Arithmetic Complexity of Points and the Invariance Theorem

Definition 30 Let X be a computable metric space and let x ∈ X .

Then x is called ∆0
n–computable, if there is a ∆0

n–computable p ∈ NN

such that x = δX(p).

Theorem 31 Let X, Y be computable metric spaces.

• If f : X → Y is Σ0
k–computable, then it maps ∆0

n–computable

inputs x ∈ X to ∆0
n+k−1–computable outputs f(x) ∈ Y .

• If f is even Σ0
k–complete and k ≥ 2, then there is some

∆0
n–computable input x ∈ X for any n ≥ 1 which is mapped to

some ∆0
n+k−1–computable output f(x) ∈ Y which is not

∆0
n+k−2–computable.
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Arithmetic Complexity of Points and the Invariance Theorem

Definition 30 Let X be a computable metric space and let x ∈ X .

Then x is called ∆0
n–computable, if there is a ∆0

n–computable p ∈ NN

such that x = δX(p).

Theorem 31 Let X, Y be computable metric spaces.

• If f : X → Y is Σ0
k–computable, then it maps ∆0

n–computable

inputs x ∈ X to ∆0
n+k−1–computable outputs f(x) ∈ Y .

• If f is even Σ0
k–complete and k ≥ 2, then there is some

∆0
n–computable input x ∈ X for any n ≥ 1 which is mapped to

some ∆0
n+k−1–computable output f(x) ∈ Y which is not

∆0
n+k−2–computable.

Corollary 32 An Σ0
2–computable map f maps computable inputs

x ∈ X to outputs f(x) that are computable in the halting problem ∅′. If

f is even Σ0
2–complete, then there is some computable x which is

mapped to a non-computable f(x).
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Completeness of Differentiation

Proposition 33 (von Stein) Let C(k)[0, 1] be the computable metric

subspace of C[0, 1] which contains the k–times continuously

differentiable functions f : [0, 1] → R. The operator of differentiation

dk : C(k)[0, 1] → C[0, 1], f �→ f (k)

is Σ0
k+1–complete.
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Completeness of Differentiation

Proposition 33 (von Stein) Let C(k)[0, 1] be the computable metric

subspace of C[0, 1] which contains the k–times continuously

differentiable functions f : [0, 1] → R. The operator of differentiation

dk : C(k)[0, 1] → C[0, 1], f �→ f (k)

is Σ0
k+1–complete.

Corollary 34 The operator of differentiation d : C(1)[0, 1] → C[0, 1] is

Σ0
2–complete.
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Completeness of Differentiation

Proposition 33 (von Stein) Let C(k)[0, 1] be the computable metric

subspace of C[0, 1] which contains the k–times continuously

differentiable functions f : [0, 1] → R. The operator of differentiation

dk : C(k)[0, 1] → C[0, 1], f �→ f (k)

is Σ0
k+1–complete.

Corollary 34 The operator of differentiation d : C(1)[0, 1] → C[0, 1] is

Σ0
2–complete.

Corollary 35 (Ho) The derivative f ′ : [0, 1] → R of any computable

and continuously differentiable function f : [0, 1] → R is computable in

the halting problem ∅′.
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Completeness of Differentiation

Proposition 33 (von Stein) Let C(k)[0, 1] be the computable metric

subspace of C[0, 1] which contains the k–times continuously

differentiable functions f : [0, 1] → R. The operator of differentiation

dk : C(k)[0, 1] → C[0, 1], f �→ f (k)

is Σ0
k+1–complete.

Corollary 34 The operator of differentiation d : C(1)[0, 1] → C[0, 1] is

Σ0
2–complete.

Corollary 35 (Ho) The derivative f ′ : [0, 1] → R of any computable

and continuously differentiable function f : [0, 1] → R is computable in

the halting problem ∅′.

Corollary 36 (Myhill) There exists a computable and continuously

differentiable function f : [0, 1] → R whose derivative f ′ : [0, 1] → R is

not computable.
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Survey

1. Basic Concepts

• Computable Analysis

• Computable Borel Measurability

• The Representation Theorem

2. Classification of Topological Operations

• Representations of Closed Subsets

• Topological Operations

3. Classification of Theorems from Functional Analysis

• Uniformity versus Non-Uniformity

• Open Mapping and Closed Graph Theorem

• Banach’s Inverse Mapping Theorem

• Hahn-Banach Theorem
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Some Topological Operations

1. Union: ∪ : A(X) ×A(X) → A(X), (A, B) �→ A ∪ B,

2. Intersection: ∩ : A(X) ×A(X) → A(X), (A, B) �→ A ∩ B,

3. Complement: c : A(X) → A(X), A �→ Ac,

4. Interior: i : A(X) → A(X), A �→ A◦,

5. Difference: D : A(X) ×A(X) → A(X), (A, B) �→ A \ B,

6. Symmetric Difference:

∆ : A(X) ×A(X) → A(X), (A, B) �→ A∆B,

7. Boundary: ∂ : A(X) → A(X), A �→ ∂A,

8. Derivative: d : A(X) → A(X), A �→ A′.

All results in the second part of the talk are based on joint work with

Guido Gherardi, University of Siena, Italy.
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R.e. and Recursive Closed Subsets

Definition 37 Let (X, d, α) be a computable metric space and let

A ⊆ X a closed subset. Then

• A is called r.e. closed, if {(n, r) ∈ N × Q : A ∩ B(α(n), r) �= ∅} is

r.e.

• A is called co-r.e. closed, if there exists an r.e. set I ⊆ N × Q such

that X \ A =
⋃

(n,r)∈I B(α(n), r).

• A is called recursive closed, if A is r.e. and co-r.e. closed.
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R.e. and Recursive Closed Subsets

Definition 38 Let (X, d, α) be a computable metric space and let

A ⊆ X a closed subset. Then

• A is called r.e. closed, if {(n, r) ∈ N × Q : A ∩ B(α(n), r) �= ∅} is

r.e.

• A is called co-r.e. closed, if there exists an r.e. set I ⊆ N × Q such

that X \ A =
⋃

(n,r)∈I B(α(n), r).

• A is called recursive closed, if A is r.e. and co-r.e. closed.
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Some Hyperspace Representations

Definition 39 Let (X, d, α) be a computable metric space. We define

representations of A(X) := {A ⊆ X : A closed and non-empty}:
1. ψ+(p) = A : ⇐⇒ p is a “list” of all 〈n, k〉 with A ∩ B(α(n), k) �= ∅,
2. ψ−(p) = A : ⇐⇒ p is a “list” of 〈ni, ki〉 with X \ A =

∞S

i=0

B(α(ni), ki),

3. ψ〈p, q〉 = A : ⇐⇒ ψ+(p) = A and ψ−(q) = A,

for all p, q ∈ NN and A ∈ A(X).
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Some Hyperspace Representations

Definition 39 Let (X, d, α) be a computable metric space. We define
representations of A(X) := {A ⊆ X : A closed and non-empty}:
1. ψ+(p) = A : ⇐⇒ p is a “list” of all 〈n, k〉 with A ∩ B(α(n), k) �= ∅,
2. ψ−(p) = A : ⇐⇒ p is a “list” of 〈ni, ki〉 with X \ A =

∞S

i=0

B(α(ni), ki),

3. ψ〈p, q〉 = A : ⇐⇒ ψ+(p) = A and ψ−(q) = A,

for all p, q ∈ NN and A ∈ A(X).

Remark 40 • The representation ψ+ of A(Rn) is admissible with respect

to the lower Fell topology (with subbase elements {A : A ∩ U �= ∅} for

any open U). The computable points are exactly the r.e. closed subsets.

• The representation ψ− of A(Rn) is admissible with respect to the upper

Fell topology (with subbase elements {A : A ∩ K = ∅} for any compact

K). The computable points are exactly the co-r.e. closed subsets.

• The representation ψ of A(Rn) is admissible with respect to the Fell

topology. The computable points are exactly the recursive closed subsets.
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Borel Lattice of Closed Set Representations for Polish Spaces

ψdist

ψ

ψdist
−

ψ−

��

�

ψ= ψ>

��

ψ+ ≡ ψdist
+ ≡ ψrange �

�

�

����

	 





�

�
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Borel Lattice of Closed Set Representations for Polish Spaces

ψdist

ψ

ψdist
−

ψ−

��

�

ψ= ψ>

��

ψ+ ≡ ψdist
+ ≡ ψrange �

�

�

����

	 





�

�

• Straight arrows stand for computable reductions.

• Curved arrows stand for Σ0
2–computable reductions.
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Borel Lattice of Closed Set Representations for Polish Spaces

ψdist

ψ

ψdist
−

ψ−

��

�

ψ= ψ>

��

ψ+ ≡ ψdist
+ ≡ ψrange �

�

�

����

	 





�

�

• Straight arrows stand for computable reductions.

• Curved arrows stand for Σ0
2–computable reductions.

• The Borel structure induced by the final topologies of all

representations except ψ− is the Effros Borel structure.

• If X is locally compact, then this also holds true for ψ−.
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Intersection

Theorem 41 Let X be a computable metric space. Then intersection

∩ : A(X) ×A(X) → A(X), (A, B) �→ A ∩ B is

1. computable with respect to (ψ−, ψ−, ψ−),

2. Σ0
2–computable with respect to (ψ+, ψ+, ψ−),

3. Σ0
2–computable w.r.t. (ψ−, ψ−, ψ), if X is effectively locally compact,

4. Σ0
3–computable w.r.t. (ψ+, ψ+, ψ), if X is effectively locally compact,

5. Σ0
3–hard with respect to (ψ+, ψ+, ψ+), if X is complete and perfect,

6. Σ0
2–hard with respect to (ψ,ψ, ψ+), if X is complete and perfect,

7. not Borel measurable w.r.t. (ψ,ψ, ψ+), if X is complete but not Kσ.

Vasco Brattka Department of Mathematics & Applied Mathematics · University of Cape Town 70



Closure of the Complement

Theorem 42 Let (X, d) be a computable metric space. Then the

closure of the complement c : A(X) → A(X), A �→ Ac is

1. computable with respect to (ψ−, ψ+),

2. Σ0
2–computable with respect to (ψ+, ψ+) and (ψ−, ψ),

3. Σ0
2–complete with respect to (ψ+, ψ+), if X is complete and perfect,

4. Σ0
2–complete with respect to (ψ,ψ−), if X is complete, perfect and

proper.
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Closure of the Complement

Theorem 42 Let (X, d) be a computable metric space. Then the

closure of the complement c : A(X) → A(X), A �→ Ac is

1. computable with respect to (ψ−, ψ+),

2. Σ0
2–computable with respect to (ψ+, ψ+) and (ψ−, ψ),

3. Σ0
2–complete with respect to (ψ+, ψ+), if X is complete and perfect,

4. Σ0
2–complete with respect to (ψ,ψ−), if X is complete, perfect and

proper.

Corollary 43 Let X be a computable, perfect and proper Polish space.

Then there exists a recursive closed A ⊆ X such that Ac is not co-r.e.

closed, but Ac is always co-r.e. closed in the halting problem ∅′. There

exists a r.e. closed A ⊆ X such that Ac is not r.e. closed, but Ac is

always r.e. closed in the halting problem ∅′.
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Closure of the Interior

Theorem 44 Let X be a computable metric space. Then the closure of

the interior i : A(X) → A(X), A �→ A◦ is

1. Σ0
2–computable with respect to (ψ−, ψ+),

2. Σ0
3–computable with respect to (ψ+, ψ+) and (ψ−, ψ),

3. Σ0
3–complete with respect to (ψ+, ψ+), if X is complete and perfect,

4. Σ0
3–complete with respect to (ψ,ψ−), if X is complete, perfect and

proper,

5. Σ0
2–complete with respect to (ψ,ψ+), if X is complete, perfect and

proper.
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Closure of the Interior

Theorem 44 Let X be a computable metric space. Then the closure of
the interior i : A(X) → A(X), A �→ A◦ is

1. Σ0
2–computable with respect to (ψ−, ψ+),

2. Σ0
3–computable with respect to (ψ+, ψ+) and (ψ−, ψ),

3. Σ0
3–complete with respect to (ψ+, ψ+), if X is complete and perfect,

4. Σ0
3–complete with respect to (ψ,ψ−), if X is complete, perfect and

proper,

5. Σ0
2–complete with respect to (ψ,ψ+), if X is complete, perfect and

proper.

Corollary 45 Let X be a computable, perfect and proper Polish space.

Then there exists a recursive closed A ⊆ X such that A◦ is not r.e.

closed, but A◦ is always r.e. closed in the halting problem ∅′. There

exists a recursive closed A ⊆ X such that A◦ is not even co-r.e. closed

in the halting problem ∅′, but A◦ is always co-r.e. closed in ∅′′.
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Boundary

Theorem 46 Let X be a computable metric space. Then the boundary

∂ : A(X) → A(X), A �→ ∂A is

1. computable with respect to (ψ,ψ+), if X is effectively locally connected,

2. Σ0
2–computable with respect to (ψ+, ψ+) and (ψ,ψ), if X is effectively

locally connected,

3. Σ0
2–computable with respect to (ψ−, ψ−),

4. Σ0
3–computable w.r.t. (ψ−, ψ), if X is effectively locally compact,

5. Σ0
2–computable with respect to (ψ−, ψ), if X is effectively locally

connected and effectively locally compact,

6. Σ0
2–complete w.r.t. (ψ,ψ−), if X is complete, perfect and proper,

7. Σ0
3–complete with respect to (ψ,ψ+), if X = {0, 1}N,

8. not Borel measurable with respect to (ψ, ψ+), if X = NN.
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Boundary

Theorem 46 Let X be a computable metric space. Then the boundary
∂ : A(X) → A(X), A �→ ∂A is

1. computable with respect to (ψ,ψ+), if X is effectively locally connected,

2. Σ0
2–computable with respect to (ψ+, ψ+) and (ψ,ψ), if X is effectively

locally connected,

3. Σ0
2–computable with respect to (ψ−, ψ−),

4. Σ0
3–computable w.r.t. (ψ−, ψ), if X is effectively locally compact,

5. Σ0
2–computable with respect to (ψ−, ψ), if X is effectively locally

connected and effectively locally compact,

6. Σ0
2–complete w.r.t. (ψ,ψ−), if X is complete, perfect and proper,

7. Σ0
3–complete with respect to (ψ,ψ+), if X = {0, 1}N,

8. not Borel measurable with respect to (ψ, ψ+), if X = NN.

Corollary 47 Let X be a computable, perfect and proper Polish space.

Then there exists a recursive closed A ⊆ X such that ∂A is not co-r.e.

closed, but ∂A is always co-r.e. closed in the halting problem ∅′.
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Derivative

Theorem 48 Let X be a computable metric space. Then the derivative

d : A(X) → A(X), A �→ A′ is

1. Σ0
2–computable with respect to (ψ+, ψ−),

2. Σ0
3–computable with respect to (ψ+, ψ) and (ψ−, ψ−), if X is effectively

locally compact,

3. Σ0
2–complete with respect to (ψ,ψ−), if X is complete and perfect,

4. Σ0
3–hard with respect to (ψ−, ψ−), if X is complete and perfect,

5. Σ0
3–hard with respect to (ψ,ψ+), if X is complete and perfect,

6. not Borel measurable with respect to (ψ, ψ+), if X is complete but not

Kσ.
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Derivative

Theorem 48 Let X be a computable metric space. Then the derivative
d : A(X) → A(X), A �→ A′ is

1. Σ0
2–computable with respect to (ψ+, ψ−),

2. Σ0
3–computable with respect to (ψ+, ψ) and (ψ−, ψ−), if X is effectively

locally compact,

3. Σ0
2–complete with respect to (ψ,ψ−), if X is complete and perfect,

4. Σ0
3–hard with respect to (ψ−, ψ−), if X is complete and perfect,

5. Σ0
3–hard with respect to (ψ,ψ+), if X is complete and perfect,

6. not Borel measurable with respect to (ψ, ψ+), if X is complete but not

Kσ.

Corollary 49 Let X be a computable and perfect Polish space. Then

there exists a recursive closed A ⊆ X such that A′ is not r.e. closed in

the halting problem ∅′, but any such A′ is co-r.e. closed in the halting

problem ∅′.
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Survey on Results

N {0, 1}N NN [0, 1] [0, 1]N Rn RN �2 C[0, 1]

A ∪ B 1 1 1 1 1 1 1 1 1

A ∩ B 1 2 ∞ 2 2 2 ∞ ∞ ∞
Ac 1 2 2 2 2 2 2 2 2

A◦ 1 3 3 3 3 3 3 3 3

A \ B 1 2 2 2 2 2 2 2 2

A∆B 1 2 2 2 2 2 2 2 2

∂A 1 3 ∞ 2 2 2 2 2 2

A′ 1 3 ∞ 3 3 3 ∞ ∞ ∞

Degrees of computability with respect to ψ
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Survey

1. Basic Concepts

• Computable Analysis

• Computable Borel Measurability

• The Representation Theorem

2. Classification of Topological Operations

• Representations of Closed Subsets

• Topological Operations

3. Classification of Theorems from Functional Analysis

• Uniformity versus Non-Uniformity

• Open Mapping and Closed Graph Theorem

• Banach’s Inverse Mapping Theorem

• Hahn-Banach Theorem
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Uniform and Non-Uniform Computability




f

X Y
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Uniform and Non-Uniform Computability




f

X Y

• Uniform Computability: The function f : X → Y is computable.
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Uniform and Non-Uniform Computability

Xc Yc




f

X Y

• Uniform Computability: The function f : X → Y is computable.

• Non-Uniform Computability: The function f maps computable

elements to computable elements (i.e. f(Xc) ⊆ f(Yc)).
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Banach’s Inverse Mapping Theorem

Definition 50 A Banach space or a normed space X together with a

dense sequence is called computable if the induced metric space is a

computable metric space.
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Banach’s Inverse Mapping Theorem

Definition 50 A Banach space or a normed space X together with a

dense sequence is called computable if the induced metric space is a

computable metric space.

Theorem 51 Let X, Y be Banach spaces and let T : X → Y be a linear

operator. If T is bijective and bounded, then T−1 : Y → X is bounded.
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Banach’s Inverse Mapping Theorem

Definition 50 A Banach space or a normed space X together with a

dense sequence is called computable if the induced metric space is a

computable metric space.

Theorem 51 Let X, Y be Banach spaces and let T : X → Y be a linear

operator. If T is bijective and bounded, then T−1 : Y → X is bounded.

Question: Given X and Y are computable Banach spaces, which of the

following properties hold true under the assumptions of the theorem:

1. Non-uniform inversion problem:

T computable =⇒ T−1 computable?

2. Uniform inversion problem:

T �→ T−1 computable?
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Banach’s Inverse Mapping Theorem

Definition 51 A Banach space or a normed space X together with a

dense sequence is called computable if the induced metric space is a

computable metric space.

Theorem 52 Let X, Y be Banach spaces and let T : X → Y be a linear

operator. If T is bijective and bounded, then T−1 : Y → X is bounded.

Question: Given X and Y are computable Banach spaces, which of the

following properties hold true under the assumptions of the theorem:

1. Non-uniform inversion problem:

T computable =⇒ T−1 computable? Yes!

2. Uniform inversion problem:

T �→ T−1 computable? No!
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An Initial Value Problem

Theorem 53 Let f0, ..., fn : [0, 1] → R be computable functions with

fn �= 0. The solution operator L : C[0, 1] × Rn → C(n)[0, 1] which maps

each tuple (y, a0, ..., an−1) ∈ C[0, 1] × Rn to the unique function

x = L(y, a0, ..., an−1) with

n∑
i=0

fi(t)x(i)(t) = y(t) with x(j)(0) = aj for j = 0, ..., n − 1,

is computable.
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An Initial Value Problem

Theorem 53 Let f0, ..., fn : [0, 1] → R be computable functions with

fn �= 0. The solution operator L : C[0, 1] × Rn → C(n)[0, 1] which maps

each tuple (y, a0, ..., an−1) ∈ C[0, 1] × Rn to the unique function

x = L(y, a0, ..., an−1) with

n∑
i=0

fi(t)x(i)(t) = y(t) with x(j)(0) = aj for j = 0, ..., n − 1,

is computable.

Proof. The following operator is linear and computable:

L−1 : C(n)[0, 1] → C[0, 1] × Rn, x �→
(

n∑
i=0

fix
(i), x(0)(0), ..., x(n−1)(0)

)

Computability follows since the i–th differentiation operator is

computable. By the computable Inverse Mapping Theorem it follows

that L is computable too. �
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Non-Constructive Existence Proofs of Algorithms

• The inverse T−1 : Y → X of any bijective and computable linear

operator T : X → Y is computable.
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Non-Constructive Existence Proofs of Algorithms

• The inverse T−1 : Y → X of any bijective and computable linear

operator T : X → Y is computable.

• There exists no general algorithm which transfers any program of

such an operator T into a program of T−1.
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• The inverse T−1 : Y → X of any bijective and computable linear

operator T : X → Y is computable.

• There exists no general algorithm which transfers any program of

such an operator T into a program of T−1.

• Thus, Banach’s Inverse Mapping Theorem admits only a

non-uniform effective version.
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operator T : X → Y is computable.

• There exists no general algorithm which transfers any program of

such an operator T into a program of T−1.

• Thus, Banach’s Inverse Mapping Theorem admits only a

non-uniform effective version.

• Since this effective version can also be applied to function spaces, it

yields a simple proof method which guarantees the algorithmic

solvability of certain uniform problems (e.g. differential equations).
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non-uniform effective version.

• Since this effective version can also be applied to function spaces, it

yields a simple proof method which guarantees the algorithmic

solvability of certain uniform problems (e.g. differential equations).

• This method is highly non-constructive: the existence of algorithms

is ensured without any hint how they could look like.
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Non-Constructive Existence Proofs of Algorithms

• The inverse T−1 : Y → X of any bijective and computable linear

operator T : X → Y is computable.

• There exists no general algorithm which transfers any program of

such an operator T into a program of T−1.

• Thus, Banach’s Inverse Mapping Theorem admits only a

non-uniform effective version.

• Since this effective version can also be applied to function spaces, it

yields a simple proof method which guarantees the algorithmic

solvability of certain uniform problems (e.g. differential equations).

• This method is highly non-constructive: the existence of algorithms

is ensured without any hint how they could look like.

• In the finite dimensional case the method is even constructive: an

algorithm of T−1 can be effectively determined from an algorithm of

T .
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Operator Spaces in Computable Functional Analysis

• It is known that the map Inv : B(X, Y ) → B(Y, X), T �→ T−1 is

continuous with respect to the operator norm ||T || := sup
||x||=1

||Tx||
(Banach’s Uniform Inversion Theorem)
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Operator Spaces in Computable Functional Analysis

• It is known that the map Inv : B(X, Y ) → B(Y, X), T �→ T−1 is

continuous with respect to the operator norm ||T || := sup
||x||=1

||Tx||
(Banach’s Uniform Inversion Theorem)

• However, the space B(X, Y ) of bounded linear operators is not

separable in general and thus no admissible representation exists in

general.
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continuous with respect to the operator norm ||T || := sup
||x||=1

||Tx||
(Banach’s Uniform Inversion Theorem)

• However, the space B(X, Y ) of bounded linear operators is not

separable in general and thus no admissible representation exists in

general.

• A [δX → δY ] name of an operator T : X → Y does only contain

lower information on ||T || and some upper bound.
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• It is known that the map Inv : B(X, Y ) → B(Y, X), T �→ T−1 is

continuous with respect to the operator norm ||T || := sup
||x||=1

||Tx||
(Banach’s Uniform Inversion Theorem)

• However, the space B(X, Y ) of bounded linear operators is not

separable in general and thus no admissible representation exists in

general.

• A [δX → δY ] name of an operator T : X → Y does only contain

lower information on ||T || and some upper bound.

• We consider the inversion Inv :⊆ C(X, Y ) → C(Y, X), T �→ T−1

with respect to [δX → δY ] (that is, with respect to the

compact-open topology). In this sense, inversion is discontinuous.
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Operator Spaces in Computable Functional Analysis

• It is known that the map Inv : B(X, Y ) → B(Y, X), T �→ T−1 is

continuous with respect to the operator norm ||T || := sup
||x||=1

||Tx||
(Banach’s Uniform Inversion Theorem)

• However, the space B(X, Y ) of bounded linear operators is not

separable in general and thus no admissible representation exists in

general.

• A [δX → δY ] name of an operator T : X → Y does only contain

lower information on ||T || and some upper bound.

• We consider the inversion Inv :⊆ C(X, Y ) → C(Y, X), T �→ T−1

with respect to [δX → δY ] (that is, with respect to the

compact-open topology). In this sense, inversion is discontinuous.

• However, || || :⊆ C(X, Y ) → R, T �→ ||T || is lower semi-computable.
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Uniformity of Banach’s Inverse Mapping Theorem

Theorem 54 Let X, Y be computable normed spaces. The map

ι :⊆ C(X, Y ) × R → C(Y, X), (T, s) �→ T−1,

defined for all (T, s) such that T : X → Y is a linear bounded and

bijective operator such that ||T−1|| ≤ s, is computable.
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Uniformity of Banach’s Inverse Mapping Theorem

Theorem 54 Let X, Y be computable normed spaces. The map

ι :⊆ C(X, Y ) × R → C(Y, X), (T, s) �→ T−1,

defined for all (T, s) such that T : X → Y is a linear bounded and

bijective operator such that ||T−1|| ≤ s, is computable.

Corollary 55 Let X, Y be computable normed spaces. The map

Inv :⊆ C(X, Y ) → C(Y, X), T �→ T−1,

defined for linear bounded and bijective operators T , is Σ0
2–computable.
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Uniformity of Banach’s Inverse Mapping Theorem

Theorem 54 Let X, Y be computable normed spaces. The map

ι :⊆ C(X, Y ) × R → C(Y, X), (T, s) �→ T−1,

defined for all (T, s) such that T : X → Y is a linear bounded and

bijective operator such that ||T−1|| ≤ s, is computable.

Corollary 55 Let X, Y be computable normed spaces. The map

Inv :⊆ C(X, Y ) → C(Y, X), T �→ T−1,

defined for linear bounded and bijective operators T , is Σ0
2–computable.

Proof. The map id : R< → R> is Σ0
2–computable and

||Inv|| :⊆ C(X, Y ) → R<, T �→ ||T−1|| = sup
||Tx||≤1

||x||

is computable. Altogether, this implies that Inv is Σ0
2–computable. �
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Computable Linear Operators

Theorem 56 Let X, Y be computable normed spaces, let T : X → Y

be a linear operator and let (en)n∈N be a computable sequence in X

whose linear span is dense in X . Then the following are equivalent:

1. T : X → Y is computable,

2. (T (en))n∈N is computable and T is bounded,

3. T maps computable sequences to computable sequences and is

bounded,

4. graph(T ) is a recursive closed subset of X × Y and T is bounded,

5. graph(T ) is an r.e. closed subset of X × Y and T is bounded.

In case that X and Y are even Banach spaces, one can omit

boundedness in the last two cases.
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The Uniform Closed Graph Theorem

Theorem 57 Let X, Y be computable normed spaces. Then

graph : C(X, Y ) → A(X × Y ), f �→ graph(f)

is computable. The partial inverse graph−1, defined for linear bounded

operators, is Σ0
2–computable.
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The Uniform Closed Graph Theorem

Theorem 57 Let X, Y be computable normed spaces. Then

graph : C(X, Y ) → A(X × Y ), f �→ graph(f)

is computable. The partial inverse graph−1, defined for linear bounded

operators, is Σ0
2–computable.

Proof. The following maps have the following computability properties:

• γ :⊆ A(X × Y ) × R → C(X, Y ), (graph(T ), s) �→ T is computable,

(and defined for all graphs of linear bounded T such that ||T || ≤ s),

• N :⊆ A(X × Y ) → R<, graph(T ) �→ ||T || = sup
||x||≤1

||Tx||
is computable (and defined for all graphs of linear bounded T ),

• id : R< → R> is Σ0
2–computable.

�
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The Open Mapping Theorem

Theorem 58 Let X , Y be Banach spaces. If T : X → Y is a linear

bounded and surjective operator, then T is open, i.e. T (U) ⊆ Y is open

for any open U ⊆ X .
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The Open Mapping Theorem

Theorem 58 Let X , Y be Banach spaces. If T : X → Y is a linear

bounded and surjective operator, then T is open, i.e. T (U) ⊆ Y is open

for any open U ⊆ X .

Question: Given X and Y are computable Banach spaces, which of the

following properties hold true under the assumptions of the theorem:

1. U ⊆ X r.e. open =⇒ T (U) ⊆ Y r.e. open?

2. O(T ) : O(X) → O(Y ), U �→ T (U) is computable?

3. T �→ O(T ) is computable?
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The Open Mapping Theorem

Theorem 58 Let X , Y be Banach spaces. If T : X → Y is a linear

bounded and surjective operator, then T is open, i.e. T (U) ⊆ Y is open

for any open U ⊆ X .

Question: Given X and Y are computable Banach spaces, which of the

following properties hold true under the assumptions of the theorem:

1. U ⊆ X r.e. open =⇒ T (U) ⊆ Y r.e. open? Yes!

2. O(T ) : O(X) → O(Y ), U �→ T (U) is computable? Yes!

3. T �→ O(T ) is computable? No!
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The Open Mapping Theorem

Theorem 58 Let X , Y be Banach spaces. If T : X → Y is a linear

bounded and surjective operator, then T is open, i.e. T (U) ⊆ Y is open

for any open U ⊆ X .

Question: Given X and Y are computable Banach spaces, which of the

following properties hold true under the assumptions of the theorem:

1. U ⊆ X r.e. open =⇒ T (U) ⊆ Y r.e. open? Yes!

2. O(T ) : O(X) → O(Y ), U �→ T (U) is computable? Yes!

3. T �→ O(T ) is computable? No!

Note the different levels of uniformity: the Open Mapping Theorem is

uniformly computable in U but only non-uniformly computable in T .
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The Open Mapping Theorem

Theorem 58 Let X , Y be Banach spaces. If T : X → Y is a linear

bounded and surjective operator, then T is open, i.e. T (U) ⊆ Y is open

for any open U ⊆ X .

Question: Given X and Y are computable Banach spaces, which of the

following properties hold true under the assumptions of the theorem:

1. U ⊆ X r.e. open =⇒ T (U) ⊆ Y r.e. open? Yes!

2. O(T ) : O(X) → O(Y ), U �→ T (U) is computable? Yes!

3. T �→ O(T ) is computable? No!

Note the different levels of uniformity: the Open Mapping Theorem is

uniformly computable in U but only non-uniformly computable in T .

• T �→ O(T ) is Σ0
2–computable.
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The Hahn-Banach Theorem

Theorem 59 (Hahn-Banach Theorem) Let X be a normed space and

Y ⊆ X a linear subspace. Any linear bounded functional f : Y → R

admits a linear bounded extension g : X → R with ||g|| = ||f ||.
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The Hahn-Banach Theorem

Theorem 59 (Hahn-Banach Theorem) Let X be a normed space and

Y ⊆ X a linear subspace. Any linear bounded functional f : Y → R

admits a linear bounded extension g : X → R with ||g|| = ||f ||.

Question: Given X and Y are computable normed spaces, which of the

following properties hold true under the assumptions of the theorem:

1. Non-uniform version:

f computable =⇒ ∃ a computable extension g?

2. Uniform version (potentially multi-valued):

f �→ g computable?
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The Hahn-Banach Theorem

Theorem 59 (Hahn-Banach Theorem) Let X be a normed space and

Y ⊆ X a linear subspace. Any linear bounded functional f : Y → R

admits a linear bounded extension g : X → R with ||g|| = ||f ||.

Question: Given X and Y are computable normed spaces, which of the

following properties hold true under the assumptions of the theorem:

1. Non-uniform version:

f computable =⇒ ∃ a computable extension g? No!

2. Uniform version (potentially multi-valued):

f �→ g computable? No!

A counterexample is due to Nerode, Metakides and Shore (1985).
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The Hahn-Banach Theorem

Theorem 59 (Hahn-Banach Theorem) Let X be a normed space and

Y ⊆ X a linear subspace. Any linear bounded functional f : Y → R

admits a linear bounded extension g : X → R with ||g|| = ||f ||.

Question: Given X and Y are computable normed spaces, which of the

following properties hold true under the assumptions of the theorem:

1. Non-uniform version:

f computable =⇒ ∃ a computable extension g? No!

2. Uniform version (potentially multi-valued):

f �→ g computable? No!

A counterexample is due to Nerode, Metakides and Shore (1985).

Nerode and Metakides also proved that the non-uniform version is

computable in the finite dimensional case.
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The Finite-Dimensional Case

Theorem 60 (Metakides and Nerode) Let X be a finite-dimensional

computable Banach space with some closed linear subspace Y ⊆ X . For

any computable linear functional f : Y → R with computable norm ||f ||
there exists a computable linear extension g : X → R with ||g|| = ||f ||.
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The Finite-Dimensional Case

Theorem 60 (Metakides and Nerode) Let X be a finite-dimensional

computable Banach space with some closed linear subspace Y ⊆ X . For

any computable linear functional f : Y → R with computable norm ||f ||
there exists a computable linear extension g : X → R with ||g|| = ||f ||.

Lemma 61 Let (X, || ||) be a normed space, Y ⊆ X a linear subspace,

x ∈ X and let Z be the linear subspace generated by Y ∪ {x}. Let

f : Y → R be a linear functional with ||f || = 1. A functional g : Z → R

with g|Y = f |Y is a linear extension of f with ||g|| = 1, if and only if

sup
u∈Y

(f(u) − ||x − u||) ≤ g(x) ≤ inf
v∈Y

(f(v) + ||x − v||).
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Computable Hilbert Spaces

Definition 62 A computable Hilbert space is a computable Banach

space which is a Hilbert space (i.e. whose norm is induced by a scalar

product).
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Computable Hilbert Spaces

Definition 62 A computable Hilbert space is a computable Banach

space which is a Hilbert space (i.e. whose norm is induced by a scalar

product).

Theorem 63 (Hahn-Banach Theorem) Let X be a Hilbert space and

Y ⊆ X a linear subspace. Any linear bounded functional f : Y → R

admits a uniquely determined linear bounded extension g : X → R with

||g|| = ||f ||.

Question: Given X and Y are computable Hilbert spaces, which of the

following properties hold true:

1. Non-uniform version:

f computable =⇒ ∃ a computable extension g? Yes!

2. Uniform version (potentially multi-valued):

f �→ g computable? Yes!
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Survey on Results

non-uniform uniform

dimension finite infinite finite infinite

Banach spaces

Open Mapping
Theorem

computable computable Σ0
2–computable

Banach’s Inverse
Mapping Theorem

computable computable Σ0
2–computable

Closed Graph
Theorem

computable computable Σ0
2–computable

Hahn-Banach
Theorem

computable Σ0
2–computable Σ0

2–computable

Hilbert spaces

Hahn-Banach
Theorem

computable computable

The realizers of these theorems are not Σ0
2–complete in general.
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Survey on Different Types of Effective Mathematics

Effective Mathematics Uniformity Degrees of Effectivity

constructive analysis fully uniform principles of omniscience

reverse analysis over RCA0 non-uniform comprehension axioms

computable analysis flexible uniformity effective Borel classes
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Survey on Different Types of Effective Mathematics

Effective Mathematics Uniformity Degrees of Effectivity

constructive analysis fully uniform principles of omniscience

reverse analysis over RCA0 non-uniform comprehension axioms

computable analysis flexible uniformity effective Borel classes

There are other variants of the aforementioned theories:

• Uniform reverse analysis (Kohlenbach) allows to express higher

degrees of uniformity.
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There are other variants of the aforementioned theories:

• Uniform reverse analysis (Kohlenbach) allows to express higher

degrees of uniformity.

• Reverse analysis with intuitionistic logic (Ishihara) is automatically

fully uniform.
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Survey on Different Types of Effective Mathematics

Effective Mathematics Uniformity Degrees of Effectivity

constructive analysis fully uniform principles of omniscience

reverse analysis over RCA0 non-uniform comprehension axioms

computable analysis flexible uniformity effective Borel classes

There are other variants of the aforementioned theories:

• Uniform reverse analysis (Kohlenbach) allows to express higher

degrees of uniformity.

• Reverse analysis with intuitionistic logic (Ishihara) is automatically

fully uniform.

• Constructive analysis allows to retranslate non-uniform results into

(more complicated) double negation statements that might be

provable intuitionistically.
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Constructive and Computable Mathematics

Constructive Analysis Computable Analysis�

Realizability
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Constructive and Computable Mathematics

Constructive Analysis Computable Analysis�

Realizability

• Many theorems from Constructive Analysis can be translated via

realizability into meaningful theorems of Computable Analysis.

Example: Baire Category Theorem.
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Constructive Analysis Computable Analysis�

Realizability

• Many theorems from Constructive Analysis can be translated via

realizability into meaningful theorems of Computable Analysis.

Example: Baire Category Theorem.

• Counterexamples can be transferred into the other direction.

Example: Contrapositive of the Baire Category Theorem.
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Realizability

• Many theorems from Constructive Analysis can be translated via

realizability into meaningful theorems of Computable Analysis.

Example: Baire Category Theorem.

• Counterexamples can be transferred into the other direction.

Example: Contrapositive of the Baire Category Theorem.

• Some Theorems in Computable Analysis have no known counterpart in

constructive analysis which would lead to them via realizability.

Example: Banach’s Inverse Mapping Theorem.
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Constructive and Computable Mathematics

Constructive Analysis Computable Analysis�

Realizability

• Many theorems from Constructive Analysis can be translated via

realizability into meaningful theorems of Computable Analysis.

Example: Baire Category Theorem.

• Counterexamples can be transferred into the other direction.

Example: Contrapositive of the Baire Category Theorem.

• Some Theorems in Computable Analysis have no known counterpart in

constructive analysis which would lead to them via realizability.

Example: Banach’s Inverse Mapping Theorem.

• Some Theorems in Constructive Analysis, if interpreted via realizability,

lead to tautologies in Computable Analysis.

Example: Banach’s Inverse Mapping Theorem.
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