Computable Analysis and Effective Descriptive Set Theory

Vasco Brattka

Laboratory of Foundational Aspects of Computer Science Department of Mathematics & Applied Mathematics University of Cape Town, South Africa

Logic Colloquium, Wrocław, Poland, July 2007

- 1. Basic Concepts
 - Computable Analysis
 - Computable Borel Measurability
 - The Representation Theorem
- 2. Classification of Topological Operations
 - Representations of Closed Subsets
 - Topological Operations
- 3. Classification of Theorems from Functional Analysis
 - Uniformity versus Non-Uniformity
 - Open Mapping and Closed Graph Theorem
 - Banach's Inverse Mapping Theorem
 - Hahn-Banach Theorem

Computable Analysis and Effective Descriptive Set Theory

• Computable analysis is the Turing machine based approach to computability in analysis.

- Computable analysis is the Turing machine based approach to computability in analysis.
- Turing has devised his machine model in order to describe computations on real numbers.

Computable Analysis

- Computable analysis is the Turing machine based approach to computability in analysis.
- Turing has devised his machine model in order to describe computations on real numbers.
- Banach, Mazur, Grzegorczyk and Lacombe have built a theory of computable real number functions on top of this.

Computable Analysis

- Computable analysis is the Turing machine based approach to computability in analysis.
- Turing has devised his machine model in order to describe computations on real numbers.
- Banach, Mazur, Grzegorczyk and Lacombe have built a theory of computable real number functions on top of this.
- This theory has been further extended by Pour-El and Richards, Hauck, Nerode, Kreitz, Weihrauch and many others.

Computable Analysis

- Computable analysis is the Turing machine based approach to computability in analysis.
- Turing has devised his machine model in order to describe computations on real numbers.
- Banach, Mazur, Grzegorczyk and Lacombe have built a theory of computable real number functions on top of this.
- This theory has been further extended by Pour-El and Richards, Hauck, Nerode, Kreitz, Weihrauch and many others.
- The representation based approach to computable analysis allows to describe computations in a large class of topological space that suffice for most applications in analysis.

• Tool box of representations can be used to express results of high degrees of uniformity.

- Tool box of representations can be used to express results of high degrees of uniformity.
- Higher types can be constructed freely (cartesian closed category).

- Tool box of representations can be used to express results of high degrees of uniformity.
- Higher types can be constructed freely (cartesian closed category).
- Conservative extension of (effective) Borel measurability to spaces other than metric ones (even asymmetric spaces).

- Tool box of representations can be used to express results of high degrees of uniformity.
- Higher types can be constructed freely (cartesian closed category).
- Conservative extension of (effective) Borel measurability to spaces other than metric ones (even asymmetric spaces).
- Notion of reducibility and completeness for measurable maps.

- Tool box of representations can be used to express results of high degrees of uniformity.
- Higher types can be constructed freely (cartesian closed category).
- Conservative extension of (effective) Borel measurability to spaces other than metric ones (even asymmetric spaces).
- Notion of reducibility and completeness for measurable maps.
- Non-uniform results for the arithmetical hierarchy are easy corollaries of completeness results.

- Tool box of representations can be used to express results of high degrees of uniformity.
- Higher types can be constructed freely (cartesian closed category).
- Conservative extension of (effective) Borel measurability to spaces other than metric ones (even asymmetric spaces).
- Notion of reducibility and completeness for measurable maps.
- Non-uniform results for the arithmetical hierarchy are easy corollaries of completeness results.
- Natural characterizations of the degree of difficulty of theorems in analysis.

- Tool box of representations can be used to express results of high degrees of uniformity.
- Higher types can be constructed freely (cartesian closed category).
- Conservative extension of (effective) Borel measurability to spaces other than metric ones (even asymmetric spaces).
- Notion of reducibility and completeness for measurable maps.
- Non-uniform results for the arithmetical hierarchy are easy corollaries of completeness results.
- Natural characterizations of the degree of difficulty of theorems in analysis.
- Uniform model to express computability, continuity and measurability and to provide counterexamples.

- Tool box of representations can be used to express results of high degrees of uniformity.
- Higher types can be constructed freely (cartesian closed category).
- Conservative extension of (effective) Borel measurability to spaces other than metric ones (even asymmetric spaces).
- Notion of reducibility and completeness for measurable maps.
- Non-uniform results for the arithmetical hierarchy are easy corollaries of completeness results.
- Natural characterizations of the degree of difficulty of theorems in analysis.
- Uniform model to express computability, continuity and measurability and to provide counterexamples.
- Axiomatic choices do not matter.

Definition 1 A function $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is called *computable*, if there exists a Turing machine with one-way output tape which transfers each input $p \in \operatorname{dom}(F)$ into the corresponding output F(p).

Definition 1 A function $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is called *computable*, if there exists a Turing machine with one-way output tape which transfers each input $p \in \operatorname{dom}(F)$ into the corresponding output F(p).

Proposition 2 Any computable function $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is continuous with respect to the Baire topology on $\mathbb{N}^{\mathbb{N}}$.

Definition 3 A *representation* of a set X is a surjective function $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X.$

Definition 3 A *representation* of a set X is a surjective function $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$.

Definition 4 A function $f :\subseteq X \to Y$ is called (δ, δ') -computable, if there exists a computable function $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that $\delta' F(p) = f \delta(p)$ for all $p \in \operatorname{dom}(f \delta)$.

Definition 3 A *representation* of a set X is a surjective function $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \to X$.

Definition 4 A function $f :\subseteq X \to Y$ is called (δ, δ') -computable, if there exists a computable function $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that $\delta' F(p) = f \delta(p)$ for all $p \in \operatorname{dom}(f \delta)$.

Definition 5 If δ, δ' are representations of X, Y, respectively, then there is a canonical representation $[\delta \to \delta']$ of the set of (δ, δ') -continuous functions $f: X \to Y$. **Definition 6** A representation δ of a topological space X is called *admissible*, if δ is continuous and if the identity $id : X \to X$ is (δ', δ) -continuous for any continuous representation δ' of X.

Definition 6 A representation δ of a topological space X is called admissible, if δ is continuous and if the identity $\operatorname{id} : X \to X$ is (δ', δ) -continuous for any continuous representation δ' of X.

Definition 7 If δ, δ' are admissible representations of (sequential) topological spaces X, Y, then $[\delta \to \delta']$ is a representation of $\mathcal{C}(X, Y) := \{f : X \to Y : f \text{ continuous}\}.$

Definition 6 A representation δ of a topological space X is called *admissible*, if δ is continuous and if the identity $id : X \to X$ is (δ', δ) -continuous for any continuous representation δ' of X.

Definition 7 If δ, δ' are admissible representations of (sequential) topological spaces X, Y, then $[\delta \to \delta']$ is a representation of $\mathcal{C}(X, Y) := \{f : X \to Y : f \text{ continuous}\}.$

- The representation $[\delta \rightarrow \delta']$ just includes sufficiently much information on operators T in order to evaluate them effectively.
- A computable description of an operator T with respect to $[\delta \rightarrow \delta']$ corresponds to a "program" of T.
- The underlying topology induced on $\mathcal{C}(X,Y)$ is typically the compact-open topology.

Theorem 8 (Schröder) The category of admissibly represented sequential T_0 -spaces is cartesian closed.

The Category of Admissibly Represented Spaces

Theorem 8 (Schröder) The category of admissibly represented sequential T_0 -spaces is cartesian closed.

Definition 9 A tuple (X, d, α) is called a *computable metric space*, if

- 1. $d: X \times X \to \mathbb{R}$ is a metric on X,
- 2. $lpha:\mathbb{N} o X$ is a sequence which is dense in X,
- 3. $d \circ (\alpha \times \alpha) : \mathbb{N}^2 \to \mathbb{R}$ is a computable (double) sequence in \mathbb{R} .

Definition 9 A tuple (X, d, α) is called a *computable metric space*, if

- 1. $d: X \times X \to \mathbb{R}$ is a metric on X,
- 2. $\alpha:\mathbb{N} o X$ is a sequence which is dense in X,
- 3. $d \circ (\alpha \times \alpha) : \mathbb{N}^2 \to \mathbb{R}$ is a computable (double) sequence in \mathbb{R} .

Definition 10 Let (X, d, α) be a computable metric space. The *Cauchy representation* $\delta_X :\subseteq \mathbb{N}^{\mathbb{N}} \to X$ of X is defined by

 $\delta_X(p) := \lim_{i \to \infty} \alpha p(i)$

for all p such that $(\alpha p(i))_{i \in \mathbb{N}}$ converges and $d(\alpha p(i), \alpha p(j)) < 2^{-i}$ for all j > i (and undefined for all other input sequences).

Example 11 The following are computable metric spaces:

1. $(\mathbb{R}^n, d_{\mathbb{R}^n}, \alpha_{\mathbb{R}^n})$ with the Euclidean metric

 $d_{\mathbb{R}^n}(x,y) := \sqrt{\sum_{i=1}^n |x_i - y_i|^2}$

and a standard numbering $\alpha_{\mathbb{R}^n}$ of \mathbb{Q}^n .

2. $(\mathcal{K}(\mathbb{R}^n), d_{\mathcal{K}}, \alpha_{\mathcal{K}})$ with the set $\mathcal{K}(\mathbb{R}^n)$ of non-empty compact subsets of \mathbb{R}^n and the Hausdorff metric

 $d_{\mathcal{K}}(A,B) := \max\left\{\sup_{a \in A} \inf_{b \in B} d_{\mathbb{R}^n}(a,b), \sup_{b \in B} \inf_{a \in A} d_{\mathbb{R}^n}(a,b)\right\}$

and a standard numbering $\alpha_{\mathcal{K}}$ of the non-empty finite subsets of \mathbb{Q}^n .

3. $(\mathcal{C}(\mathbb{R}^n), d_{\mathcal{C}}, \alpha_{\mathcal{C}})$ with the set $\mathcal{C}(\mathbb{R}^n)$ of continuous functions $f : \mathbb{R}^n \to \mathbb{R}$,

$$d_{\mathcal{C}}(f,g) := \sum_{i=0}^{\infty} 2^{-i-1} \frac{\sup_{x \in [-i,i]^n} |f(x) - g(x)|}{1 + \sup_{x \in [-i,i]^n} |f(x) - g(x)|}$$

and a standard numbering $\alpha_{\mathcal{C}}$ of $\mathbb{Q}[x_1, ..., x_n]$.

Theorem 12 Let X, Y be computable metric spaces and let $f :\subseteq X \to Y$ be a function. Then the following are equivalent:

- 1. f is continuous,
- 2. f admits a continuous realizer $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$.

Theorem 12 Let X, Y be computable metric spaces and let $f :\subseteq X \to Y$ be a function. Then the following are equivalent:

- 1. f is continuous,
- 2. f admits a continuous realizer $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$.

Question: Can this theorem be generalized to Borel measurable functions?

Borel Hierarchy

- $\Sigma_1^0(X)$ is the set of open subsets of X,
- $\Pi_1^0(X)$ is the set of closed subsets of X,
- $\Sigma_2^0(X)$ is the set of F_{σ} subsets of X,
- $\Pi_2^0(X)$ is the set of G_{δ} subsets of X, etc.
- $\Delta_k^0(X) := \Sigma_k^0(X) \cap \Pi_k^0(X).$

Definition 13 Let (X, d, α) be a separable metric space. We define representations $\delta_{\Sigma_k^0(X)}$ of $\Sigma_k^0(X)$, $\delta_{\Pi_k^0(X)}$ of $\Pi_k^0(X)$ and $\delta_{\Delta_k^0(X)}$ of $\Delta_k^0(X)$ for $k \ge 1$ as follows:

• $\delta_{\Sigma_1^0(X)}(p) := \bigcup_{\langle i,j \rangle \in \operatorname{range}(p)} B(\alpha(i), \overline{j}),$

•
$$\delta_{\mathbf{\Pi}_k^0(X)}(p) := X \setminus \delta_{\mathbf{\Sigma}_k^0(X)}(p)$$
,

•
$$\delta_{\Sigma_{k+1}^0(X)}\langle p_0, p_1, \ldots \rangle := \bigcup_{i=0}^\infty \delta_{\Pi_k^0(X)}(p_i),$$

•
$$\delta_{\mathbf{\Delta}_{k}^{0}(X)}\langle p,q\rangle = \delta_{\mathbf{\Sigma}_{k}^{0}(X)}(p) : \iff \delta_{\mathbf{\Sigma}_{k}^{0}(X)}(p) = \delta_{\mathbf{\Pi}_{k}^{0}(X)}(q),$$

for all $p, p_i, q \in \mathbb{N}^{\mathbb{N}}$.

Proposition 14 Let X, Y be computable metric spaces. The following operations are computable for any $k \ge 1$:

1.
$$\Sigma_k^0 \hookrightarrow \Sigma_{k+1}^0$$
, $\Sigma_k^0 \hookrightarrow \Pi_{k+1}^0$, $\Pi_k^0 \hookrightarrow \Sigma_{k+1}^0$, $\Pi_k^0 \hookrightarrow \Pi_{k+1}^0$, $A \mapsto A$ (injection)

2.
$$\Sigma_k^0 \to \Pi_k^0$$
, $\Pi_k^0 \to \Sigma_k^0$, $A \mapsto A^c := X \setminus A$ (complement)

3.
$$\Sigma_k^0 \times \Sigma_k^0 \to \Sigma_k^0$$
, $\Pi_k^0 \times \Pi_k^0 \to \Pi_k^0$, $(A, B) \mapsto A \cup B$ (union)

4.
$$\Sigma_k^0 \times \Sigma_k^0 \to \Sigma_k^0$$
, $\Pi_k^0 \times \Pi_k^0 \to \Pi_k^0$, $(A, B) \mapsto A \cap B$ (intersection)

5.
$$(\Sigma_k^0)^{\mathbb{N}} \to \Sigma_k^0, (A_n)_{n \in \mathbb{N}} \mapsto \bigcup_{n=0}^{\infty} A_n$$
 (countable union)

6.
$$(\Pi^0_k)^{\mathbb{N}} \to \Pi^0_k$$
, $(A_n)_{n \in \mathbb{N}} \mapsto \bigcap_{n=0}^{\infty} A_n$ (countable intersection)

7.
$$\Sigma_k^0(X) \times \Sigma_k^0(Y) \to \Sigma_k^0(X \times Y)$$
, $(A, B) \mapsto A \times B$ (product)

8.
$$(\Pi_k^0(X))^{\mathbb{N}} \to \Pi_k^0(X^{\mathbb{N}}), (A_n)_{n \in \mathbb{N}} \mapsto \times_{n=0}^{\infty} A_n$$
 (countable product)

9.
$$\Sigma_k^0(X \times \mathbb{N}) \to \Sigma_k^0(X)$$
, $A \mapsto \{x \in X : (\exists n)(x, n) \in A\}$ (countable projection)

10.
$$\Sigma_k^0(X \times Y) \times Y \to \Sigma_k^0(X), (A, y) \mapsto A_y := \{x \in X : (x, y) \in A\}$$
 (section)

Borel Measurable Operations

Definition 15 Let X, Y be separable metric spaces. An operation $f: X \to Y$ is called

• Σ_k^0 -measurable, if $f^{-1}(U) \in \Sigma_k^0(X)$ for any $U \in \Sigma_1^0(Y)$,

Definition 15 Let X, Y be separable metric spaces. An operation $f: X \to Y$ is called

- Σ_k^0 -measurable, if $f^{-1}(U) \in \Sigma_k^0(X)$ for any $U \in \Sigma_1^0(Y)$,
- effectively Σ_k^0 -measurable or Σ_k^0 -computable, if the map

$$\boldsymbol{\Sigma}_k^0(f^{-1}): \boldsymbol{\Sigma}_1^0(Y) \to \boldsymbol{\Sigma}_k^0(X), U \mapsto f^{-1}(U)$$

is computable.
Definition 15 Let X, Y be separable metric spaces. An operation $f: X \to Y$ is called

- Σ_k^0 -measurable, if $f^{-1}(U) \in \Sigma_k^0(X)$ for any $U \in \Sigma_1^0(Y)$,
- effectively Σ_k^0 -measurable or Σ_k^0 -computable, if the map

$$\boldsymbol{\Sigma}_k^0(f^{-1}): \boldsymbol{\Sigma}_1^0(Y) \to \boldsymbol{\Sigma}_k^0(X), U \mapsto f^{-1}(U)$$

is computable.

Definition 16 Let X, Y be separable metric spaces. We define representations $\delta_{\Sigma_k^0(X \to Y)}$ of $\Sigma_k^0(X \to Y)$ by

$$\delta_{\mathbf{\Sigma}_{k}^{0}(X \to Y)}(p) = f : \iff [\delta_{\mathbf{\Sigma}_{1}^{0}(Y)} \to \delta_{\mathbf{\Sigma}_{k}^{0}(X)}](p) = \mathbf{\Sigma}_{k}^{0}(f^{-1})$$

for all $p \in \mathbb{N}^{\mathbb{N}}$, $f : X \to Y$ and $k \ge 1$. Let $\delta_{\Sigma_k^0(X \to Y)}$ denote the restriction to $\Sigma_k^0(X \to Y)$.

Proposition 17 Let W, X, Y and Z be computable metric spaces. The following operations are computable for all $n, k \ge 1$:

- 1. $\Sigma_n^0(Y \to Z) \times \Sigma_k^0(X \to Y) \to \Sigma_{n+k-1}^0(X \to Z), (g, f) \mapsto g \circ f$ (composition)
- 2. $\Sigma_k^0(X \to Y) \times \Sigma_k^0(X \to Z) \to \Sigma_k^0(X \to Y \times Z), (f,g) \mapsto (x \mapsto f(x) \times g(x))$ (juxtaposition)
- 3. $\Sigma_k^0(X \to Y) \times \Sigma_k^0(W \to Z) \to \Sigma_k^0(X \times W \to Y \times Z), (f,g) \mapsto f \times g \text{ (product)}$
- 4. $\Sigma_k^0(X \to Y^{\mathbb{N}}) \to \Sigma_k^0(X \times \mathbb{N} \to Y), f \mapsto f_*$ (evaluation)
- 5. $\Sigma_k^0(X \times \mathbb{N} \to Y) \to \Sigma_k^0(X \to Y^{\mathbb{N}}), f \mapsto [f]$ (transposition)
- 6. $\Sigma_k^0(X \to Y) \to \Sigma_k^0(X^{\mathbb{N}} \to Y^{\mathbb{N}}), f \mapsto f^{\mathbb{N}}$ (exponentiation)
- 7. $\Sigma_k^0(X \times \mathbb{N} \to Y) \to \Sigma_k^0(X \to Y)^{\mathbb{N}}, f \mapsto (n \mapsto (x \mapsto f(x, n)))$ (sequencing)
- 8. $\Sigma_k^0(X \to Y)^{\mathbb{N}} \to \Sigma_k^0(X \times \mathbb{N} \to Y), (f_n)_{n \in \mathbb{N}} \mapsto ((x, n) \mapsto f_n(x))$ (de-sequencing)

Theorem 18 Let X, Y be computable metric spaces, $k \ge 1$ and let $f: X \to Y$ be a total function. Then the following are equivalent:

- 1. f is (effectively) Σ_k^0 -measurable,
- 2. f admits an (effectively) Σ_k^0 -measurable realizer $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$.

Proof.

Representation Theorem

Theorem 18 Let X, Y be computable metric spaces, $k \ge 1$ and let $f: X \to Y$ be a total function. Then the following are equivalent:

- 1. f is (effectively) Σ_k^0 -measurable,
- 2. f admits an (effectively) Σ_k^0 -measurable realizer $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$.

The proof is based on effective versions of the

- Kuratowski-Ryll-Nardzewski Selection Theorem,
- Bhattacharya-Srivastava Selection Theorem.

Definition 19 Let X, Y, U, V be computable metric spaces and consider functions $f :\subseteq X \to Y$ and $g :\subseteq U \to V$. We say that

• f is *reducible* to g, for short $f \leq_t g$, if there are continuous functions $A :\subseteq X \times V \to Y$ and $B :\subseteq X \to U$ such that

$$f(x) = A(x, g \circ B(x))$$

for all $x \in \operatorname{dom}(f)$,

- f is computably reducible to g, for short $f \leq_{c} g$, if there are computable A, B as above.
- The corresponding equivalences are denoted by \cong_t and \cong_c .

Definition 19 Let X, Y, U, V be computable metric spaces and consider functions $f :\subseteq X \to Y$ and $g :\subseteq U \to V$. We say that

• f is *reducible* to g, for short $f \leq_t g$, if there are continuous functions $A :\subseteq X \times V \to Y$ and $B :\subseteq X \to U$ such that

$$f(x) = A(x, g \circ B(x))$$

for all $x \in \operatorname{dom}(f)$,

- f is computably reducible to g, for short $f \leq_{c} g$, if there are computable A, B as above.
- The corresponding equivalences are denoted by $\cong_t \mbox{ and } \cong_c$.

Proposition 20 The following holds for all $k \ge 1$:

- 1. $f \leq_{t} g$ and g is Σ_{k}^{0} -measurable $\Longrightarrow f$ is Σ_{k}^{0} -measurable,
- 2. $f \leq_{c} g$ and g is Σ_{k}^{0} -computable $\Longrightarrow f$ is Σ_{k}^{0} -computable.

Definition 21 For any $k \in \mathbb{N}$ we define $C_k : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ by

$$C_k(p)(n) := \begin{cases} 0 & \text{if } (\exists n_k)(\forall n_{k-1}) \dots p \langle n, n_1, \dots, n_k \rangle \neq 0 \\ 1 & \text{otherwise} \end{cases}$$

for all $p \in \mathbb{N}^{\mathbb{N}}$ and $n \in \mathbb{N}$.

Definition 21 For any $k \in \mathbb{N}$ we define $C_k : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ by

$$C_k(p)(n) := \begin{cases} 0 & \text{if } (\exists n_k)(\forall n_{k-1}) \dots p \langle n, n_1, \dots, n_k \rangle \neq 0 \\ 1 & \text{otherwise} \end{cases}$$

for all $p \in \mathbb{N}^{\mathbb{N}}$ and $n \in \mathbb{N}$.

Theorem 22 Let $k \in \mathbb{N}$. For any function $F :\subseteq \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ we obtain:

- 1. $F \leqslant_{t} C_{k} \iff F$ is Σ_{k+1}^{0} -measurable,
- 2. $F \leq_{c} C_k \iff F$ is Σ_{k+1}^0 -computable.

Proof. Employ the Tarski-Kuratowski Normal Form in the appropriate way.

Definition 23 Let X, Y, U, V be computable metric spaces and consider functions $f: X \to Y$ and $g: U \to V$. We define

 $f \preceq_{\mathsf{t}} g : \iff f \delta_X \leqslant_{\mathsf{t}} g \, \delta_U$

and we say that f is *realizer reducible* to g, if this holds. Analogously, we define $f \leq_{c} g$ with \leq_{c} instead of \leq_{t} . The corresponding equivalences \approx_{t} and \approx_{c} are defined straightforwardly.

Definition 23 Let X, Y, U, V be computable metric spaces and consider functions $f: X \to Y$ and $g: U \to V$. We define

 $f \preceq_{\mathsf{t}} g : \iff f \delta_X \leqslant_{\mathsf{t}} g \, \delta_U$

and we say that f is *realizer reducible* to g, if this holds. Analogously, we define $f \leq_{c} g$ with \leq_{c} instead of \leq_{t} . The corresponding equivalences \approx_{t} and \approx_{c} are defined straightforwardly.

Theorem 24 Let X, Y be computable metric spaces and let $k \in \mathbb{N}$. For any function $f : X \to Y$ we obtain:

- 1. $f \preceq_{t} C_{k} \iff f$ is Σ_{k+1}^{0} -measurable,
- 2. $f \preceq_{c} C_k \iff f$ is Σ_{k+1}^0 -computable.

Definition 25 Let X, Y, U, V be computable metric spaces, let \mathcal{F} be a set of functions $F : X \to Y$ and let \mathcal{G} be a set of functions $G : U \to V$. We define

$$\mathcal{F} \leqslant_{t} \mathcal{G} : \iff (\exists A, B \text{ computable}) (\forall G \in \mathcal{G}) (\exists F \in \mathcal{F})$$
$$(\forall x \in \operatorname{dom}(F)) F(x) = A(x, GB(x)),$$

where $A :\subseteq X \times V \to Y$ and $B :\subseteq X \to U$. Analogously, one can define \leq_{c} with computable A, B.

Definition 25 Let X, Y, U, V be computable metric spaces, let \mathcal{F} be a set of functions $F : X \to Y$ and let \mathcal{G} be a set of functions $G : U \to V$. We define

$$\mathcal{F} \leqslant_{t} \mathcal{G} : \iff (\exists A, B \text{ computable}) (\forall G \in \mathcal{G}) (\exists F \in \mathcal{F})$$
$$(\forall x \in \operatorname{dom}(F)) F(x) = A(x, GB(x)),$$

where $A :\subseteq X \times V \to Y$ and $B :\subseteq X \to U$. Analogously, one can define \leq_{c} with computable A, B.

Proposition 26 Let X, Y, U, V be computable metric spaces and let $f: X \to Y$ and $g: U \to V$ be functions. Then

 $f \preceq_{\mathbf{c}} g \iff \{F : F \vdash f\} \leqslant_{\mathbf{c}} \{G : G \vdash g\}.$

An analogous statement holds with respect to $\preceq_t \ \text{and} \leqslant_t$.

Proposition 27 Let X be a computable metric space and consider $c := \{(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}} : (x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}} \text{ converges}\}$ as computable metric subspace of $X^{\mathbb{N}}$. The ordinary limit map

$$\lim : c \to X, (x_n)_{n \in \mathbb{N}} \mapsto \lim_{n \to \infty} x_n$$

is Σ_2^0 -computable and it is even Σ_2^0 -complete, if there is a computable embedding $\iota : \{0,1\}^{\mathbb{N}} \hookrightarrow X$.

Completeness of the Limit

Proposition 27 Let X be a computable metric space and consider $c := \{(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}} : (x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}} \text{ converges}\}$ as computable metric subspace of $X^{\mathbb{N}}$. The ordinary limit map

$$\lim : c \to X, (x_n)_{n \in \mathbb{N}} \mapsto \lim_{n \to \infty} x_n$$

is Σ_2^0 -computable and it is even Σ_2^0 -complete, if there is a computable embedding $\iota : \{0,1\}^{\mathbb{N}} \hookrightarrow X$.

Proof. On the one hand, Σ_2^0 -computability follows from

$$\lim^{-1}(B(x,r)) = \left(\bigcup_{n=0}^{\infty} X^n \times \overline{B}(x,r-2^{-n})^{\mathbb{N}}\right) \cap c \in \mathbf{\Sigma}_2^0(c)$$

and on the other hand, Σ_2^0 -completeness follows from

 $C_1 \leqslant_{\mathrm{c}} \lim_{\{0,1\}^{\mathbb{N}}} \leqslant_{\mathrm{c}} \lim_{X}$.

Theorem 28 Let X, Y be computable Banach spaces and let $f :\subseteq X \to Y$ be a closed linear and unbounded operator. Let $(e_n)_{n \in \mathbb{N}}$ be a computable sequence in dom(f) whose linear span is dense in Xand let $f(e_n)_{n \in \mathbb{N}}$ be computable in Y. Then $C_1 \leq_{c} f$. **Theorem 28** Let X, Y be computable Banach spaces and let $f :\subseteq X \to Y$ be a closed linear and unbounded operator. Let $(e_n)_{n \in \mathbb{N}}$ be a computable sequence in dom(f) whose linear span is dense in Xand let $f(e_n)_{n \in \mathbb{N}}$ be computable in Y. Then $C_1 \leq_{c} f$.

Corollary 29 (First Main Theorem of Pour-El and Richards) Under the same assumptions as above f maps some computable input $x \in X$ to a non-computable output f(x).

Theorem 31 Let X, Y be computable metric spaces.

• If $f: X \to Y$ is Σ_k^0 -computable, then it maps Δ_n^0 -computable inputs $x \in X$ to Δ_{n+k-1}^0 -computable outputs $f(x) \in Y$.

Theorem 31 Let X, Y be computable metric spaces.

- If $f: X \to Y$ is Σ_k^0 -computable, then it maps Δ_n^0 -computable inputs $x \in X$ to Δ_{n+k-1}^0 -computable outputs $f(x) \in Y$.
- If f is even Σ_k^0 -complete and $k \ge 2$, then there is some Δ_n^0 -computable input $x \in X$ for any $n \ge 1$ which is mapped to some Δ_{n+k-1}^0 -computable output $f(x) \in Y$ which is not Δ_{n+k-2}^0 -computable.

Theorem 31 Let X, Y be computable metric spaces.

- If $f: X \to Y$ is Σ_k^0 -computable, then it maps Δ_n^0 -computable inputs $x \in X$ to Δ_{n+k-1}^0 -computable outputs $f(x) \in Y$.
- If f is even Σ_k^0 -complete and $k \ge 2$, then there is some Δ_n^0 -computable input $x \in X$ for any $n \ge 1$ which is mapped to some Δ_{n+k-1}^0 -computable output $f(x) \in Y$ which is not Δ_{n+k-2}^0 -computable.

Corollary 32 An Σ_2^0 -computable map f maps computable inputs $x \in X$ to outputs f(x) that are computable in the halting problem \emptyset' . If f is even Σ_2^0 -complete, then there is some computable x which is mapped to a non-computable f(x).

Completeness of Differentiation

Proposition 33 (von Stein) Let $C^{(k)}[0,1]$ be the computable metric subspace of C[0,1] which contains the k-times continuously differentiable functions $f:[0,1] \to \mathbb{R}$. The operator of differentiation

$$d^k: \mathcal{C}^{(k)}[0,1] \to \mathcal{C}[0,1], f \mapsto f^{(k)}$$

is Σ_{k+1}^0 –complete.

Proposition 33 (von Stein) Let $C^{(k)}[0,1]$ be the computable metric subspace of C[0,1] which contains the k-times continuously differentiable functions $f:[0,1] \to \mathbb{R}$. The operator of differentiation

$$d^k: \mathcal{C}^{(k)}[0,1] \to \mathcal{C}[0,1], f \mapsto f^{(k)}$$

is Σ_{k+1}^0 –complete.

Corollary 34 The operator of differentiation $d : C^{(1)}[0,1] \rightarrow C[0,1]$ is Σ_2^0 -complete.

Proposition 33 (von Stein) Let $C^{(k)}[0,1]$ be the computable metric subspace of C[0,1] which contains the k-times continuously differentiable functions $f:[0,1] \to \mathbb{R}$. The operator of differentiation

$$d^k: \mathcal{C}^{(k)}[0,1] \to \mathcal{C}[0,1], f \mapsto f^{(k)}$$

is Σ_{k+1}^0 –complete.

Corollary 34 The operator of differentiation $d : C^{(1)}[0,1] \rightarrow C[0,1]$ is Σ_2^0 -complete.

Corollary 35 (Ho) The derivative $f' : [0,1] \to \mathbb{R}$ of any computable and continuously differentiable function $f : [0,1] \to \mathbb{R}$ is computable in the halting problem \emptyset' .

Completeness of Differentiation

Proposition 33 (von Stein) Let $C^{(k)}[0,1]$ be the computable metric subspace of C[0,1] which contains the k-times continuously differentiable functions $f:[0,1] \to \mathbb{R}$. The operator of differentiation

 $d^k: \mathcal{C}^{(k)}[0,1] \to \mathcal{C}[0,1], f \mapsto f^{(k)}$

is Σ_{k+1}^0 –complete.

Corollary 34 The operator of differentiation $d : C^{(1)}[0,1] \rightarrow C[0,1]$ is Σ_2^0 -complete.

Corollary 35 (Ho) The derivative $f' : [0,1] \to \mathbb{R}$ of any computable and continuously differentiable function $f : [0,1] \to \mathbb{R}$ is computable in the halting problem \emptyset' .

Corollary 36 (Myhill) There exists a computable and continuously differentiable function $f : [0, 1] \to \mathbb{R}$ whose derivative $f' : [0, 1] \to \mathbb{R}$ is not computable.

- 1. Basic Concepts
 - Computable Analysis
 - Computable Borel Measurability
 - The Representation Theorem
- 2. Classification of Topological Operations
 - Representations of Closed Subsets
 - Topological Operations
- 3. Classification of Theorems from Functional Analysis
 - Uniformity versus Non-Uniformity
 - Open Mapping and Closed Graph Theorem
 - Banach's Inverse Mapping Theorem
 - Hahn-Banach Theorem

- 1. Union: $\cup : \mathcal{A}(X) \times \mathcal{A}(X) \to \mathcal{A}(X), (A, B) \mapsto A \cup B$,
- 2. Intersection: $\cap : \mathcal{A}(X) \times \mathcal{A}(X) \to \mathcal{A}(X), (A, B) \mapsto A \cap B$,
- 3. Complement: $c : \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto \overline{A^{c}}$,
- 4. Interior: $i : \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto \overline{A^{\circ}}$,
- 5. Difference: $D: \mathcal{A}(X) \times \mathcal{A}(X) \to \mathcal{A}(X), (A, B) \mapsto \overline{A \setminus B}$,
- 6. Symmetric Difference: $\Delta: \mathcal{A}(X) \times \mathcal{A}(X) \to \mathcal{A}(X), (A, B) \mapsto \overline{A\Delta B},$
- 7. Boundary: $\partial : \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto \partial A$,
- 8. Derivative: $d : \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto A'$.

All results in the second part of the talk are based on joint work with Guido Gherardi, University of Siena, Italy.

Definition 37 Let (X, d, α) be a computable metric space and let $A \subseteq X$ a closed subset. Then

- A is called *r.e. closed*, if $\{(n,r) \in \mathbb{N} \times \mathbb{Q} : A \cap B(\alpha(n),r) \neq \emptyset\}$ is r.e.
- A is called *co-r.e. closed*, if there exists an r.e. set $I \subseteq \mathbb{N} \times \mathbb{Q}$ such that $X \setminus A = \bigcup_{(n,r) \in I} B(\alpha(n), r)$.
- A is called *recursive closed*, if A is r.e. and co-r.e. closed.

Definition 38 Let (X, d, α) be a computable metric space and let $A \subseteq X$ a closed subset. Then

- A is called *r.e. closed*, if $\{(n,r) \in \mathbb{N} \times \mathbb{Q} : A \cap B(\alpha(n),r) \neq \emptyset\}$ is r.e.
- A is called *co-r.e. closed*, if there exists an r.e. set $I \subseteq \mathbb{N} \times \mathbb{Q}$ such that $X \setminus A = \bigcup_{(n,r) \in I} B(\alpha(n), r)$.
- A is called *recursive closed*, if A is r.e. and co-r.e. closed.

Definition 39 Let (X, d, α) be a computable metric space. We define representations of $\mathcal{A}(X) := \{A \subseteq X : A \text{ closed and non-empty}\}$:

- 1. $\psi_+(p) = A : \iff p \text{ is a "list" of all } \langle n, k \rangle \text{ with } A \cap B(\alpha(n), \overline{k}) \neq \emptyset,$
- 2. $\psi_{-}(p) = A : \iff p \text{ is a "list" of } \langle n_i, k_i \rangle \text{ with } X \setminus A = \bigcup_{i=0}^{\infty} B(\alpha(n_i), \overline{k_i}),$
- 3. $\psi \langle p,q \rangle = A : \iff \psi_+(p) = A \text{ and } \psi_-(q) = A$,

for all $p,q \in \mathbb{N}^{\mathbb{N}}$ and $A \in \mathcal{A}(X)$.

Definition 39 Let (X, d, α) be a computable metric space. We define representations of $\mathcal{A}(X) := \{A \subseteq X : A \text{ closed and non-empty}\}$:

- 1. $\psi_+(p) = A : \iff p \text{ is a "list" of all } \langle n,k \rangle \text{ with } A \cap B(\alpha(n),\overline{k}) \neq \emptyset$,
- 2. $\psi_{-}(p) = A : \iff p \text{ is a "list" of } \langle n_i, k_i \rangle \text{ with } X \setminus A = \bigcup_{i=1}^{\infty} B(\alpha(n_i), \overline{k_i}),$

3.
$$\psi \langle p,q \rangle = A : \iff \psi_+(p) = A \text{ and } \psi_-(q) = A$$
,

for all $p, q \in \mathbb{N}^{\mathbb{N}}$ and $A \in \mathcal{A}(X)$.

- **Remark 40** The representation ψ_+ of $\mathcal{A}(\mathbb{R}^n)$ is admissible with respect to the lower Fell topology (with subbase elements $\{A : A \cap U \neq \emptyset\}$ for any open U). The computable points are exactly the r.e. closed subsets.
 - The representation ψ_− of A(ℝⁿ) is admissible with respect to the upper Fell topology (with subbase elements {A : A ∩ K = ∅} for any compact K). The computable points are exactly the co-r.e. closed subsets.
 - The representation ψ of $\mathcal{A}(\mathbb{R}^n)$ is admissible with respect to the Fell topology. The computable points are exactly the recursive closed subsets.

Borel Lattice of Closed Set Representations for Polish Spaces

Borel Lattice of Closed Set Representations for Polish Spaces

- Straight arrows stand for computable reductions.
- Curved arrows stand for Σ_2^0 -computable reductions.

Borel Lattice of Closed Set Representations for Polish Spaces

- Straight arrows stand for computable reductions.
- Curved arrows stand for Σ_2^0 -computable reductions.
- The Borel structure induced by the final topologies of all representations except ψ_{-} is the Effros Borel structure.
- If X is locally compact, then this also holds true for ψ_- .

Theorem 41 Let X be a computable metric space. Then intersection $\cap : \mathcal{A}(X) \times \mathcal{A}(X) \to \mathcal{A}(X), (A, B) \mapsto A \cap B$ is

- 1. computable with respect to (ψ_-,ψ_-,ψ_-) ,
- 2. Σ_2^0 -computable with respect to (ψ_+, ψ_+, ψ_-) ,
- 3. Σ_2^0 -computable w.r.t. (ψ_-, ψ_-, ψ) , if X is effectively locally compact,
- 4. Σ_3^0 -computable w.r.t. (ψ_+, ψ_+, ψ) , if X is effectively locally compact,
- 5. Σ_3^0 -hard with respect to (ψ_+, ψ_+, ψ_+) , if X is complete and perfect,
- 6. Σ_2^0 -hard with respect to (ψ, ψ, ψ_+) , if X is complete and perfect,
- 7. not Borel measurable w.r.t. (ψ, ψ, ψ_+) , if X is complete but not K_{σ} .

Theorem 42 Let (X, d) be a computable metric space. Then the closure of the complement $c : \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto \overline{A^{c}}$ is

- 1. computable with respect to (ψ_-,ψ_+) ,
- 2. Σ_2^0 -computable with respect to (ψ_+, ψ_+) and (ψ_-, ψ) ,
- 3. Σ_2^0 -complete with respect to (ψ_+, ψ_+) , if X is complete and perfect,
- 4. Σ_2^0 -complete with respect to (ψ, ψ_-) , if X is complete, perfect and proper.

Theorem 42 Let (X, d) be a computable metric space. Then the closure of the complement $c : \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto \overline{A^{c}}$ is

- 1. computable with respect to (ψ_-,ψ_+) ,
- 2. Σ_2^0 -computable with respect to (ψ_+, ψ_+) and (ψ_-, ψ) ,
- 3. Σ_2^0 -complete with respect to (ψ_+, ψ_+) , if X is complete and perfect,
- 4. Σ_2^0 -complete with respect to (ψ, ψ_-) , if X is complete, perfect and proper.

Corollary 43 Let X be a computable, perfect and proper Polish space. Then there exists a recursive closed $A \subseteq X$ such that $\overline{A^{c}}$ is not co-r.e. closed, but $\overline{A^{c}}$ is always co-r.e. closed in the halting problem \emptyset' . There exists a r.e. closed $A \subseteq X$ such that $\overline{A^{c}}$ is not r.e. closed, but $\overline{A^{c}}$ is always r.e. closed in the halting problem \emptyset' .
Theorem 44 Let X be a computable metric space. Then the closure of the interior $i : \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto \overline{A^{\circ}}$ is

- 1. Σ_2^0 -computable with respect to (ψ_-, ψ_+) ,
- 2. Σ_3^0 -computable with respect to (ψ_+, ψ_+) and (ψ_-, ψ) ,
- 3. Σ_3^0 -complete with respect to (ψ_+, ψ_+) , if X is complete and perfect,
- 4. Σ_3^0 -complete with respect to (ψ, ψ_-) , if X is complete, perfect and proper,
- 5. Σ_2^0 -complete with respect to (ψ, ψ_+) , if X is complete, perfect and proper.

Theorem 44 Let X be a computable metric space. Then the closure of the interior $i : \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto \overline{A^{\circ}}$ is

- 1. Σ_2^0 -computable with respect to (ψ_-, ψ_+) ,
- 2. Σ_3^0 -computable with respect to (ψ_+, ψ_+) and (ψ_-, ψ) ,
- 3. Σ_3^0 -complete with respect to (ψ_+, ψ_+) , if X is complete and perfect,
- 4. Σ_3^0 -complete with respect to (ψ, ψ_-) , if X is complete, perfect and proper,
- 5. Σ_2^0 -complete with respect to (ψ, ψ_+) , if X is complete, perfect and proper.

Corollary 45 Let X be a computable, perfect and proper Polish space. Then there exists a recursive closed $A \subseteq X$ such that $\overline{A^{\circ}}$ is not r.e. closed, but $\overline{A^{\circ}}$ is always r.e. closed in the halting problem \emptyset' . There exists a recursive closed $A \subseteq X$ such that $\overline{A^{\circ}}$ is not even co-r.e. closed in the halting problem \emptyset' , but $\overline{A^{\circ}}$ is always co-r.e. closed in \emptyset'' . **Theorem 46** Let X be a computable metric space. Then the boundary $\partial : \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto \partial A$ is

- 1. computable with respect to (ψ, ψ_+) , if X is effectively locally connected,
- 2. Σ_2^0 -computable with respect to (ψ_+, ψ_+) and (ψ, ψ) , if X is effectively locally connected,
- 3. Σ_2^0 -computable with respect to (ψ_-, ψ_-) ,
- 4. Σ_3^0 -computable w.r.t. (ψ_-, ψ) , if X is effectively locally compact,
- 5. Σ_2^0 -computable with respect to (ψ_-, ψ) , if X is effectively locally connected and effectively locally compact,
- 6. Σ_2^0 -complete w.r.t. (ψ, ψ_-) , if X is complete, perfect and proper,
- 7. Σ_3^0 -complete with respect to (ψ, ψ_+) , if $X = \{0, 1\}^{\mathbb{N}}$,
- 8. not Borel measurable with respect to (ψ, ψ_+) , if $X = \mathbb{N}^{\mathbb{N}}$.

Theorem 46 Let X be a computable metric space. Then the boundary $\partial : \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto \partial A$ is

- 1. computable with respect to (ψ, ψ_+) , if X is effectively locally connected,
- 2. Σ_2^0 -computable with respect to (ψ_+, ψ_+) and (ψ, ψ) , if X is effectively locally connected,
- 3. Σ_2^0 -computable with respect to (ψ_-, ψ_-) ,
- 4. Σ_3^0 -computable w.r.t. (ψ_-, ψ) , if X is effectively locally compact,
- 5. Σ_2^0 -computable with respect to (ψ_-, ψ) , if X is effectively locally connected and effectively locally compact,
- 6. Σ_2^0 -complete w.r.t. (ψ, ψ_-) , if X is complete, perfect and proper,
- 7. Σ_3^0 -complete with respect to (ψ, ψ_+) , if $X = \{0, 1\}^{\mathbb{N}}$,
- 8. not Borel measurable with respect to (ψ, ψ_+) , if $X = \mathbb{N}^{\mathbb{N}}$.

Corollary 47 Let X be a computable, perfect and proper Polish space. Then there exists a recursive closed $A \subseteq X$ such that ∂A is not co-r.e. closed, but ∂A is always co-r.e. closed in the halting problem \emptyset' . **Theorem 48** Let X be a computable metric space. Then the derivative $d: \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto A'$ is

- 1. Σ_2^0 -computable with respect to (ψ_+, ψ_-) ,
- 2. Σ_3^0 -computable with respect to (ψ_+, ψ) and (ψ_-, ψ_-) , if X is effectively locally compact,
- 3. Σ_2^0 -complete with respect to (ψ, ψ_-) , if X is complete and perfect,
- 4. Σ_3^0 -hard with respect to (ψ_-, ψ_-) , if X is complete and perfect,
- 5. Σ_3^0 -hard with respect to (ψ, ψ_+) , if X is complete and perfect,
- 6. not Borel measurable with respect to (ψ, ψ_+) , if X is complete but not K_{σ} .

Theorem 48 Let X be a computable metric space. Then the derivative $d: \mathcal{A}(X) \to \mathcal{A}(X), A \mapsto A'$ is

- 1. Σ_2^0 -computable with respect to (ψ_+, ψ_-) ,
- 2. Σ_3^0 -computable with respect to (ψ_+, ψ) and (ψ_-, ψ_-) , if X is effectively locally compact,
- 3. Σ_2^0 -complete with respect to (ψ, ψ_-) , if X is complete and perfect,
- 4. Σ_3^0 -hard with respect to (ψ_-, ψ_-) , if X is complete and perfect,
- 5. Σ_3^0 -hard with respect to (ψ, ψ_+) , if X is complete and perfect,
- 6. not Borel measurable with respect to (ψ, ψ_+) , if X is complete but not K_{σ} .

Corollary 49 Let X be a computable and perfect Polish space. Then there exists a recursive closed $A \subseteq X$ such that A' is not r.e. closed in the halting problem \emptyset' , but any such A' is co-r.e. closed in the halting problem \emptyset' .

Survey on Results

	\mathbb{N}	$\{0,1\}^{\mathbb{N}}$	$\mathbb{N}^{\mathbb{N}}$	[0,1]	$[0,1]^{\mathbb{N}}$	\mathbb{R}^{n}	$\mathbb{R}^{\mathbb{N}}$	ℓ_2	$\mathcal{C}[0,1]$
$A \cup B$	1	1	1	1	1	1	1	1	1
$A \cap B$	1	2	∞	2	2	2	∞	∞	∞
$\overline{A^{\mathbf{c}}}$	1	2	2	2	2	2	2	2	2
$\overline{A^{\circ}}$	1	3	3	3	3	3	3	3	3
$\overline{A\setminus B}$	1	2	2	2	2	2	2	2	2
$\overline{A\Delta B}$	1	2	2	2	2	2	2	2	2
∂A	1	3	∞	2	2	2	2	2	2
A'	1	3	∞	3	3	3	∞	∞	∞

Degrees of computability with respect to ψ

- 1. Basic Concepts
 - Computable Analysis
 - Computable Borel Measurability
 - The Representation Theorem
- 2. Classification of Topological Operations
 - Representations of Closed Subsets
 - Topological Operations
- 3. Classification of Theorems from Functional Analysis
 - Uniformity versus Non-Uniformity
 - Open Mapping and Closed Graph Theorem
 - Banach's Inverse Mapping Theorem
 - Hahn-Banach Theorem

Uniform and Non-Uniform Computability

Uniform and Non-Uniform Computability

• Uniform Computability: The function $f: X \to Y$ is computable.

Uniform and Non-Uniform Computability

- Uniform Computability: The function $f: X \to Y$ is computable.
- Non-Uniform Computability: The function f maps computable elements to computable elements (i.e. $f(X_c) \subseteq f(Y_c)$).

Definition 50 A Banach space or a normed space X together with a dense sequence is called *computable* if the induced metric space is a computable metric space.

Definition 50 A Banach space or a normed space X together with a dense sequence is called *computable* if the induced metric space is a computable metric space.

Theorem 51 Let X, Y be Banach spaces and let $T : X \to Y$ be a linear operator. If T is bijective and bounded, then $T^{-1} : Y \to X$ is bounded.

Definition 50 A Banach space or a normed space X together with a dense sequence is called *computable* if the induced metric space is a computable metric space.

Theorem 51 Let X, Y be Banach spaces and let $T : X \to Y$ be a linear operator. If T is bijective and bounded, then $T^{-1} : Y \to X$ is bounded.

Question: Given X and Y are computable Banach spaces, which of the following properties hold true under the assumptions of the theorem:

1. Non-uniform inversion problem:

 $T \text{ computable} \Longrightarrow T^{-1} \text{ computable}?$

2. Uniform inversion problem:

 $T \mapsto T^{-1}$ computable?

Definition 51 A Banach space or a normed space X together with a dense sequence is called *computable* if the induced metric space is a computable metric space.

Theorem 52 Let X, Y be Banach spaces and let $T : X \to Y$ be a linear operator. If T is bijective and bounded, then $T^{-1} : Y \to X$ is bounded.

Question: Given X and Y are computable Banach spaces, which of the following properties hold true under the assumptions of the theorem:

- 1. Non-uniform inversion problem:
 - $T \text{ computable} \Longrightarrow T^{-1} \text{ computable}?$ Yes!
- 2. Uniform inversion problem:

 $T \mapsto T^{-1}$ computable?

No!

Theorem 53 Let $f_0, ..., f_n : [0, 1] \to \mathbb{R}$ be computable functions with $f_n \neq 0$. The solution operator $L : C[0, 1] \times \mathbb{R}^n \to C^{(n)}[0, 1]$ which maps each tuple $(y, a_0, ..., a_{n-1}) \in C[0, 1] \times \mathbb{R}^n$ to the unique function $x = L(y, a_0, ..., a_{n-1})$ with

$$\sum_{i=0}^{n} f_i(t) x^{(i)}(t) = y(t) \text{ with } x^{(j)}(0) = a_j \text{ for } j = 0, ..., n-1,$$

is computable.

An Initial Value Problem

Theorem 53 Let $f_0, ..., f_n : [0, 1] \to \mathbb{R}$ be computable functions with $f_n \neq 0$. The solution operator $L : C[0, 1] \times \mathbb{R}^n \to C^{(n)}[0, 1]$ which maps each tuple $(y, a_0, ..., a_{n-1}) \in C[0, 1] \times \mathbb{R}^n$ to the unique function $x = L(y, a_0, ..., a_{n-1})$ with

$$\sum_{i=0}^{n} f_i(t) x^{(i)}(t) = y(t) \text{ with } x^{(j)}(0) = a_j \text{ for } j = 0, ..., n-1,$$

is computable.

Proof. The following operator is linear and computable:

$$L^{-1}: \mathcal{C}^{(n)}[0,1] \to \mathcal{C}[0,1] \times \mathbb{R}^n, x \mapsto \left(\sum_{i=0}^n f_i x^{(i)}, x^{(0)}(0), \dots, x^{(n-1)}(0)\right)$$

Computability follows since the i-th differentiation operator is computable. By the computable Inverse Mapping Theorem it follows that L is computable too.

 \square

• The inverse $T^{-1}: Y \to X$ of any bijective and computable linear operator $T: X \to Y$ is computable.

- The inverse $T^{-1}: Y \to X$ of any bijective and computable linear operator $T: X \to Y$ is computable.
- There exists no general algorithm which transfers any program of such an operator T into a program of T^{-1} .

- The inverse $T^{-1}: Y \to X$ of any bijective and computable linear operator $T: X \to Y$ is computable.
- There exists no general algorithm which transfers any program of such an operator T into a program of T^{-1} .
- Thus, Banach's Inverse Mapping Theorem admits only a non-uniform effective version.

- The inverse $T^{-1}: Y \to X$ of any bijective and computable linear operator $T: X \to Y$ is computable.
- There exists no general algorithm which transfers any program of such an operator T into a program of T^{-1} .
- Thus, Banach's Inverse Mapping Theorem admits only a non-uniform effective version.
- Since this effective version can also be applied to function spaces, it yields a simple proof method which guarantees the algorithmic solvability of certain uniform problems (e.g. differential equations).

- The inverse $T^{-1}: Y \to X$ of any bijective and computable linear operator $T: X \to Y$ is computable.
- There exists no general algorithm which transfers any program of such an operator T into a program of T^{-1} .
- Thus, Banach's Inverse Mapping Theorem admits only a non-uniform effective version.
- Since this effective version can also be applied to function spaces, it yields a simple proof method which guarantees the algorithmic solvability of certain uniform problems (e.g. differential equations).
- This method is highly non-constructive: the existence of algorithms is ensured without any hint how they could look like.

- The inverse T⁻¹: Y → X of any bijective and computable linear operator T : X → Y is computable.
- There exists no general algorithm which transfers any program of such an operator T into a program of T^{-1} .
- Thus, Banach's Inverse Mapping Theorem admits only a non-uniform effective version.
- Since this effective version can also be applied to function spaces, it yields a simple proof method which guarantees the algorithmic solvability of certain uniform problems (e.g. differential equations).
- This method is highly non-constructive: the existence of algorithms is ensured without any hint how they could look like.
- In the finite dimensional case the method is even constructive: an algorithm of T^{-1} can be effectively determined from an algorithm of T.

It is known that the map Inv : B(X,Y) → B(Y,X), T → T⁻¹ is continuous with respect to the operator norm ||T|| := sup ||Tx|| ||x||=1
 (Banach's Uniform Inversion Theorem)

- It is known that the map Inv : B(X,Y) → B(Y,X), T → T⁻¹ is continuous with respect to the operator norm ||T|| := sup ||Tx|| ||x||=1
 (Banach's Uniform Inversion Theorem)
- However, the space B(X, Y) of bounded linear operators is not separable in general and thus no admissible representation exists in general.

- It is known that the map Inv : B(X,Y) → B(Y,X), T → T⁻¹ is continuous with respect to the operator norm ||T|| := sup ||Tx|| ||x||=1
 (Banach's Uniform Inversion Theorem)
- However, the space B(X, Y) of bounded linear operators is not separable in general and thus no admissible representation exists in general.
- A $[\delta_X \to \delta_Y]$ name of an operator $T : X \to Y$ does only contain lower information on ||T|| and *some* upper bound.

- It is known that the map Inv : B(X,Y) → B(Y,X), T → T⁻¹ is continuous with respect to the operator norm ||T|| := sup ||Tx|| ||x||=1
 (Banach's Uniform Inversion Theorem)
- However, the space B(X, Y) of bounded linear operators is not separable in general and thus no admissible representation exists in general.
- A $[\delta_X \to \delta_Y]$ name of an operator $T : X \to Y$ does only contain lower information on ||T|| and *some* upper bound.
- We consider the inversion Inv :⊆ C(X, Y) → C(Y, X), T → T⁻¹ with respect to [δ_X → δ_Y] (that is, with respect to the compact-open topology). In this sense, inversion is discontinuous.

- It is known that the map Inv : B(X,Y) → B(Y,X), T → T⁻¹ is continuous with respect to the operator norm ||T|| := sup ||Tx|| ||x||=1
 (Banach's Uniform Inversion Theorem)
- However, the space B(X, Y) of bounded linear operators is not separable in general and thus no admissible representation exists in general.
- A $[\delta_X \to \delta_Y]$ name of an operator $T : X \to Y$ does only contain lower information on ||T|| and *some* upper bound.
- We consider the inversion Inv :⊆ C(X, Y) → C(Y, X), T → T⁻¹ with respect to [δ_X → δ_Y] (that is, with respect to the compact-open topology). In this sense, inversion is discontinuous.
- However, $|| || :\subseteq \mathcal{C}(X, Y) \to \mathbb{R}, T \mapsto ||T||$ is lower semi-computable.

Uniformity of Banach's Inverse Mapping Theorem

Theorem 54 Let X, Y be computable normed spaces. The map

 $\iota :\subseteq \mathcal{C}(X,Y) \times \mathbb{R} \to \mathcal{C}(Y,X), (T,s) \mapsto T^{-1},$

defined for all (T, s) such that $T : X \to Y$ is a linear bounded and bijective operator such that $||T^{-1}|| \leq s$, is computable.

Theorem 54 Let X, Y be computable normed spaces. The map

 $\iota :\subseteq \mathcal{C}(X,Y) \times \mathbb{R} \to \mathcal{C}(Y,X), (T,s) \mapsto T^{-1},$

defined for all (T, s) such that $T : X \to Y$ is a linear bounded and bijective operator such that $||T^{-1}|| \leq s$, is computable.

Corollary 55 Let X, Y be computable normed spaces. The map

Inv : $\subseteq \mathcal{C}(X, Y) \to \mathcal{C}(Y, X), T \mapsto T^{-1},$

defined for linear bounded and bijective operators T, is Σ_2^0 -computable.

Theorem 54 Let X, Y be computable normed spaces. The map $\iota :\subseteq \mathcal{C}(X, Y) \times \mathbb{R} \to \mathcal{C}(Y, X), (T, s) \mapsto T^{-1},$

defined for all (T, s) such that $T : X \to Y$ is a linear bounded and bijective operator such that $||T^{-1}|| \leq s$, is computable.

Corollary 55 Let X, Y be computable normed spaces. The map

Inv : $\subseteq \mathcal{C}(X, Y) \to \mathcal{C}(Y, X), T \mapsto T^{-1},$

defined for linear bounded and bijective operators T, is Σ_2^0 -computable.

Proof. The map $\operatorname{id}: \mathbb{R}_{<} \to \mathbb{R}_{>}$ is Σ_{2}^{0} -computable and

$$||\operatorname{Inv}|| :\subseteq \mathcal{C}(X,Y) \to \mathbb{R}_{<}, T \mapsto ||T^{-1}|| = \sup_{||Tx|| \le 1} ||x||$$

is computable. Altogether, this implies that Inv is Σ_2^0 -computable. \Box

Theorem 56 Let X, Y be computable normed spaces, let $T : X \to Y$ be a linear operator and let $(e_n)_{n \in \mathbb{N}}$ be a computable sequence in Xwhose linear span is dense in X. Then the following are equivalent:

- 1. $T: X \rightarrow Y$ is computable,
- 2. $(T(e_n))_{n \in \mathbb{N}}$ is computable and T is bounded,
- 3. T maps computable sequences to computable sequences and is bounded,
- 4. graph(T) is a recursive closed subset of $X \times Y$ and T is bounded,
- 5. graph(T) is an r.e. closed subset of $X \times Y$ and T is bounded.

In case that X and Y are even Banach spaces, one can omit boundedness in the last two cases.

Theorem 57 Let X, Y be computable normed spaces. Then

graph: $\mathcal{C}(X, Y) \to \mathcal{A}(X \times Y), f \mapsto \operatorname{graph}(f)$

is computable. The partial inverse graph⁻¹, defined for linear bounded operators, is Σ_2^0 -computable.

Theorem 57 Let X, Y be computable normed spaces. Then

graph: $\mathcal{C}(X, Y) \to \mathcal{A}(X \times Y), f \mapsto \operatorname{graph}(f)$

is computable. The partial inverse graph⁻¹, defined for linear bounded operators, is Σ_2^0 -computable.

Proof. The following maps have the following computability properties:

- $\gamma :\subseteq \mathcal{A}(X \times Y) \times \mathbb{R} \to \mathcal{C}(X, Y), (\operatorname{graph}(T), s) \mapsto T$ is computable, (and defined for all graphs of linear bounded T such that $||T|| \leq s$),
- $N :\subseteq \mathcal{A}(X \times Y) \to \mathbb{R}_{<}, \operatorname{graph}(T) \mapsto ||T|| = \sup_{\substack{||x|| \leq 1}} ||Tx||$ is computable (and defined for all graphs of linear bounded T),
- $\operatorname{id}: \mathbb{R}_{<} \to \mathbb{R}_{>}$ is Σ_{2}^{0} -computable.

Theorem 58 Let X, Y be Banach spaces. If $T : X \to Y$ is a linear bounded and surjective operator, then T is open, i.e. $T(U) \subseteq Y$ is open for any open $U \subseteq X$. **Theorem 58** Let X, Y be Banach spaces. If $T : X \to Y$ is a linear bounded and surjective operator, then T is open, i.e. $T(U) \subseteq Y$ is open for any open $U \subseteq X$.

Question: Given X and Y are computable Banach spaces, which of the following properties hold true under the assumptions of the theorem:

- 1. $U \subseteq X$ r.e. open $\Longrightarrow T(U) \subseteq Y$ r.e. open?
- 2. $\mathcal{O}(T) : \mathcal{O}(X) \to \mathcal{O}(Y), U \mapsto T(U)$ is computable?
- 3. $T \mapsto \mathcal{O}(T)$ is computable?
Theorem 58 Let X, Y be Banach spaces. If $T : X \to Y$ is a linear bounded and surjective operator, then T is open, i.e. $T(U) \subseteq Y$ is open for any open $U \subseteq X$.

Question: Given X and Y are computable Banach spaces, which of the following properties hold true under the assumptions of the theorem:

1. $U \subseteq X$ r.e. open $\Longrightarrow T(U) \subseteq Y$ r.e. open? Yes! 2. $\mathcal{O}(T) : \mathcal{O}(X) \to \mathcal{O}(Y), U \mapsto T(U)$ is computable? Yes! 3. $T \mapsto \mathcal{O}(T)$ is computable? No! **Theorem 58** Let X, Y be Banach spaces. If $T : X \to Y$ is a linear bounded and surjective operator, then T is open, i.e. $T(U) \subseteq Y$ is open for any open $U \subseteq X$.

Question: Given X and Y are computable Banach spaces, which of the following properties hold true under the assumptions of the theorem:

1. $U \subseteq X$ r.e. open $\implies T(U) \subseteq Y$ r.e. open? Yes! 2. $\mathcal{O}(T) : \mathcal{O}(X) \rightarrow \mathcal{O}(Y), U \mapsto T(U)$ is computable? Yes! 3. $T \mapsto \mathcal{O}(T)$ is computable? No!

Note the different levels of uniformity: the Open Mapping Theorem is uniformly computable in U but only non-uniformly computable in T.

Theorem 58 Let X, Y be Banach spaces. If $T : X \to Y$ is a linear bounded and surjective operator, then T is open, i.e. $T(U) \subseteq Y$ is open for any open $U \subseteq X$.

Question: Given X and Y are computable Banach spaces, which of the following properties hold true under the assumptions of the theorem:

- 1. $U \subseteq X$ r.e. open $\Longrightarrow T(U) \subseteq Y$ r.e. open? Yes! 2. $\mathcal{O}(T) : \mathcal{O}(X) \to \mathcal{O}(Y), U \mapsto T(U)$ is computable? Yes!
- 3. $T \mapsto \mathcal{O}(T)$ is computable? No!

Note the different levels of uniformity: the Open Mapping Theorem is uniformly computable in U but only non-uniformly computable in T.

• $T \mapsto \mathcal{O}(T)$ is Σ_2^0 -computable.

Question: Given X and Y are computable normed spaces, which of the following properties hold true under the assumptions of the theorem:

- 1. Non-uniform version:
 - $f \text{ computable} \Longrightarrow \exists a \text{ computable extension } g?$
- 2. Uniform version (potentially multi-valued): $f \mapsto g$ computable?

Question: Given X and Y are computable normed spaces, which of the following properties hold true under the assumptions of the theorem:

1. Non-uniform version:

 $f \text{ computable} \Longrightarrow \exists a \text{ computable extension } g?$ No!

2. Uniform version (potentially multi-valued): $f \mapsto g$ computable? No!

Question: Given X and Y are computable normed spaces, which of the following properties hold true under the assumptions of the theorem:

- 1. Non-uniform version:
 - $f \text{ computable} \Longrightarrow \exists a \text{ computable extension } g?$ No!
- 2. Uniform version (potentially multi-valued): $f \mapsto g$ computable? No!

A counterexample is due to Nerode, Metakides and Shore (1985).

Question: Given X and Y are computable normed spaces, which of the following properties hold true under the assumptions of the theorem:

- 1. Non-uniform version:
 - $f \text{ computable} \Longrightarrow \exists a \text{ computable extension } g?$ No!
- 2. Uniform version (potentially multi-valued): $f \mapsto g$ computable? No!

A counterexample is due to Nerode, Metakides and Shore (1985). Nerode and Metakides also proved that the non-uniform version is computable in the finite dimensional case. **Theorem 60 (Metakides and Nerode)** Let X be a finite-dimensional computable Banach space with some closed linear subspace $Y \subseteq X$. For any computable linear functional $f: Y \to \mathbb{R}$ with computable norm ||f|| there exists a computable linear extension $g: X \to \mathbb{R}$ with ||g|| = ||f||.

Theorem 60 (Metakides and Nerode) Let X be a finite-dimensional computable Banach space with some closed linear subspace $Y \subseteq X$. For any computable linear functional $f: Y \to \mathbb{R}$ with computable norm ||f|| there exists a computable linear extension $g: X \to \mathbb{R}$ with ||g|| = ||f||.

Lemma 61 Let (X, || ||) be a normed space, $Y \subseteq X$ a linear subspace, $x \in X$ and let Z be the linear subspace generated by $Y \cup \{x\}$. Let $f: Y \to \mathbb{R}$ be a linear functional with ||f|| = 1. A functional $g: Z \to \mathbb{R}$ with $g|_Y = f|_Y$ is a linear extension of f with ||g|| = 1, if and only if

$$\sup_{u \in Y} (f(u) - ||x - u||) \le g(x) \le \inf_{v \in Y} (f(v) + ||x - v||).$$

Definition 62 A computable Hilbert space is a computable Banach space which is a Hilbert space (i.e. whose norm is induced by a scalar product).

Definition 62 A computable Hilbert space is a computable Banach space which is a Hilbert space (i.e. whose norm is induced by a scalar product).

Theorem 63 (Hahn-Banach Theorem) Let X be a Hilbert space and $Y \subseteq X$ a linear subspace. Any linear bounded functional $f: Y \to \mathbb{R}$ admits a uniquely determined linear bounded extension $g: X \to \mathbb{R}$ with ||g|| = ||f||.

Question: Given X and Y are computable Hilbert spaces, which of the following properties hold true:

1. Non-uniform version:

 $f \text{ computable} \Longrightarrow \exists a \text{ computable extension } g?$ Yes!

2. Uniform version (potentially multi-valued): $f \mapsto g$ computable?

Yesl

Survey on Results

	non-uniform		uniform	
dimension	finite	infinite	finite	infinite
Banach spaces				
Open Mapping Theorem	computable		computable	$\mathbf{\Sigma}_2^0$ –computable
Banach's Inverse Mapping Theorem	computable		computable	$\mathbf{\Sigma}_2^0$ –computable
Closed Graph Theorem	computable		computable	$\mathbf{\Sigma}_2^0$ –computable
Hahn-Banach Theorem	computable $\mathbf{\Sigma}_2^0$ –computable		$\mathbf{\Sigma}_2^0$ –computable	

Hilbert spaces

Hahn-Banach Theorem	computable	computable
------------------------	------------	------------

The realizers of these theorems are not Σ_2^0 -complete in general.

Effective Mathematics	Uniformity	Degrees of Effectivity
constructive analysis	fully uniform	principles of omniscience
reverse analysis over RCA_0	non-uniform	comprehension axioms
computable analysis	flexible uniformity	effective Borel classes

Effective Mathematics	Uniformity	Degrees of Effectivity
constructive analysis	fully uniform	principles of omniscience
reverse analysis over RCA_0	non-uniform	comprehension axioms
computable analysis	flexible uniformity	effective Borel classes

There are other variants of the aforementioned theories:

• Uniform reverse analysis (Kohlenbach) allows to express higher degrees of uniformity.

Effective Mathematics	Uniformity	Degrees of Effectivity
constructive analysis	fully uniform	principles of omniscience
reverse analysis over RCA_0	non-uniform	comprehension axioms
computable analysis	flexible uniformity	effective Borel classes

There are other variants of the aforementioned theories:

- Uniform reverse analysis (Kohlenbach) allows to express higher degrees of uniformity.
- Reverse analysis with intuitionistic logic (Ishihara) is automatically fully uniform.

Effective Mathematics	Uniformity	Degrees of Effectivity
constructive analysis	fully uniform	principles of omniscience
reverse analysis over RCA_0	non-uniform	comprehension axioms
computable analysis	flexible uniformity	effective Borel classes

There are other variants of the aforementioned theories:

- Uniform reverse analysis (Kohlenbach) allows to express higher degrees of uniformity.
- Reverse analysis with intuitionistic logic (Ishihara) is automatically fully uniform.
- Constructive analysis allows to retranslate non-uniform results into (more complicated) double negation statements that might be provable intuitionistically.

 Many theorems from Constructive Analysis can be translated via realizability into meaningful theorems of Computable Analysis.
Example: Baire Category Theorem.

- Many theorems from Constructive Analysis can be translated via realizability into meaningful theorems of Computable Analysis.
 Example: Baire Category Theorem.
- Counterexamples can be transferred into the other direction. Example: Contrapositive of the Baire Category Theorem.

- Many theorems from Constructive Analysis can be translated via realizability into meaningful theorems of Computable Analysis.
 Example: Baire Category Theorem.
- Counterexamples can be transferred into the other direction. Example: Contrapositive of the Baire Category Theorem.
- Some Theorems in Computable Analysis have no known counterpart in constructive analysis which would lead to them via realizability.
 Example: Banach's Inverse Mapping Theorem.

- Many theorems from Constructive Analysis can be translated via realizability into meaningful theorems of Computable Analysis.
 Example: Baire Category Theorem.
- Counterexamples can be transferred into the other direction. Example: Contrapositive of the Baire Category Theorem.
- Some Theorems in Computable Analysis have no known counterpart in constructive analysis which would lead to them via realizability.
 Example: Banach's Inverse Mapping Theorem.
- Some Theorems in Constructive Analysis, if interpreted via realizability, lead to tautologies in Computable Analysis.
 Example: Banach's Inverse Mapping Theorem.

- Vasco Brattka, Computable invariance, *Theoretical Computer Science* **210** (1999) 3–20.
- Vasco Brattka, Effective Borel measurability and reducibility of functions, *Mathematical Logic Quarterly* **51** (2005) 19–44.
- Vasco Brattka, On the Borel complexity of Hahn-Banach extensions, *Electronic Notes in Theoretical Computer Science* 120 (2005) 3–16. (Full version accepted for *Archive for Mathematical Logic*.)
- Vasco Brattka and Guido Gherardi, Borel complexity of topological operations on computable metric spaces, in: S.B. Cooper, B. Löwe, and A. Sorbi, editors, Computation and Logic in the Real World, vol. 4497 of Lecture Notes in Computer Science, Springer, Berlin (2007) 83–97.