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Survey

1. Basic Concepts
e Computable Analysis
e Computable Borel Measurability

e [he Representation Theorem

2. Classification of Topological Operations
e Representations of Closed Subsets

e Topological Operations

3. Classification of Theorems from Functional Analysis
e Uniformity versus Non-Uniformity
e Open Mapping and Closed Graph Theorem
e Banach's Inverse Mapping Theorem

e Hahn-Banach Theorem
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Computable Analysis

e Computable analysis is the Turing machine based approach to
computability in analysis.
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Computable Analysis

e Computable analysis is the Turing machine based approach to
computability in analysis.

e Turing has devised his machine model in order to describe

computations on real numbers.

e Banach, Mazur, Grzegorczyk and Lacombe have built a theory of
computable real number functions on top of this.

e This theory has been further extended by Pour-El and Richards,
Hauck, Nerode, Kreitz, Weihrauch and many others.

e T[he representation based approach to computable analysis allows to
describe computations in a large class of topological space that
suffice for most applications in analysis.
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Synergetic Effects

e Tool box of representations can be used to express results of high
degrees of uniformity.
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Synergetic Effects

e Tool box of representations can be used to express results of high
degrees of uniformity.

e Higher types can be constructed freely (cartesian closed category).

e Conservative extension of (effective) Borel measurability to spaces
other than metric ones (even asymmetric spaces).

e Notion of reducibility and completeness for measurable maps.

e Non-uniform results for the arithmetical hierarchy are easy corollaries
of completeness results.

e Natural characterizations of the degree of difficulty of theorems in
analysis.

e Uniform model to express computability, continuity and
measurability and to provide counterexamples.

e Axiomatic choices do not matter.
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Turing Machines

Definition 1 A function F :C NY — NN is called if there
exists a Turing machine with one-way output tape which transfers each
input p € dom(F') into the corresponding output F(p).

3 1l4l1|5]9]2|6]s+5 p
.
.
Y
9 s |16 |09 q = F(p)
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Turing Machines

Definition 1 A function F :C NY — NN is called if there
exists a Turing machine with one-way output tape which transfers each
input p € dom(F') into the corresponding output F(p).

3 114|159 2]|6]s5 p
e
_—
Y
9 8|16 |09 q = F(p)

Proposition 2 Any computable function F :C NV — NV js continuous
with respect to the Baire topology on N,
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Computable Functions

Definition 3 A representation of a set X is a surjective function
0 :C NN X,
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Computable Functions

Definition 3 A representation of a set X is a surjective function
0 :C NN X,

Definition 4 A function f:C X — Y is called (0.0")—computable, if
there exists a computable function F' :C NN — NN such that
0'F(p) = fo(p) for all p € dom(f9).
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Computable Functions

Definition 3 A of a set X is a surjective function
6 :C NN - X
Definition 4 A function f :C X — Y is called if

there exists a computable function F' :C NN — NN such that

0'F(p) = fo(p) for all p € dom(f9).

NN F > NN

Definition 5 If §,0" are representations of X, Y, respectively, then there
is a canonical representation [0 — §’| of the set of (6, ")—continuous

functions f : X — Y.
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Admissible Representations

Definition 6 A representation ¢ of a topological space X is called
, if 0 is continuous and if the identity id : X — X is
(6", d)—continuous for any continuous representation ¢’ of X.
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Admissible Representations

Definition 6 A representation ¢ of a topological space X is called
, if 0 is continuous and if the identity id : X — X is
(6", d)—continuous for any continuous representation ¢’ of X.

Definition 7 If 9,0’ are admissible representations of (sequential)
topological spaces XY, then [§ — ¢'] is a representation of
C(X,Y):={f: X —Y: f continuous}.
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Admissible Representations

Definition 6 A representation ¢ of a topological space X is called
, if 0 is continuous and if the identity id : X — X is
(6", §)—continuous for any continuous representation ¢" of X.

Definition 7 If 6,0’ are admissible representations of (sequential)
topological spaces X, Y, then [0 — ¢§’] is a representation of
C(X,Y):={f: X — Y : f continuous}.

e The representation [ — ¢§’] just includes sufficiently much
information on operators I’ in order to evaluate them effectively.

e A computable description of an operator 1" with respect to [ — ']

corresponds to a “program” of T

e The underlying topology induced on C(X,Y') is typically the
compact-open topology.
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The Category of Admissibly Represented Spaces

Theorem 8 (Schroder) The category of admissibly represented
sequential [y—spaces is cartesian closed.
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The Category of Admissibly Represented Spaces

Theorem 8 (Schroder) The category of admissibly represented
sequential [y—spaces is cartesian closed.

(weak) limit spaces

topological spaces

sequential T—spaces
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Computable Metric Spaces

Definition 9 A tuple (X, d, «) is called a
1. d: X x X — R is a metric on X,
2. a: N — X is a sequence which is dense in X,

3. do(a x a):N? — R is a computable (double) sequence in R.
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Computable Metric Spaces

Definition 9 A tuple (X, d, «) is called a if
1. d: X x X — R is a metricon X,
2. a: N — X is a sequence which is dense in X,

3. do(a x a):N? — R is a computable (double) sequence in R.

Definition 10 Let (X, d, ) be a computable metric space. The
dx :C NV — X of X is defined by

5x(p) == lim ap(i)

72— 00

for all p such that (ap(i));cn converges and d(ap(i), ap(j)) < 27 for
all j > 7 (and undefined for all other input sequences).
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Examples of Computable Metric Spaces

Example 11 The following are computable metric spaces:

1. (R™, dgn,arn) with the Euclidean metric

drn (,Y) == /Y py i — yi?

and a standard numbering arn» of Q".

2. (K(R"),dk,ax) with the set K(R™) of non-empty compact subsets of
R™ and the Hausdorff metric

dic(A, B) := max {sup, 4 infre 5 drn(a,b), sup,c g infaca dgn(a,b)}

and a standard numbering ac of the non-empty finite subsets of Q™.

3. (C(R™),dc,ac) with the set C(R™) of continuous functions f : R" — R,

i—1 SUPze[—q,n |f(x)—g(x)]
(f7 ) " Z 2 1+Supaz€[ ,1] n | f(z)—g(x)]

and a standard numbering ac of Q[x1, ..., xx].
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Kreitz-Weihrauch Representation Theorem

Theorem 12 Let X,Y be computable metric spaces and let

f:C X — Y be a function. Then the following are equivalent:

1. f is continuous,

2. f admits a continuous realizer F :C NN — NV,
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Kreitz-Weihrauch Representation Theorem

Theorem 12 Let X,Y be computable metric spaces and let

f:C X — Y be a function. Then the following are equivalent:

1. f is continuous,

2. f admits a continuous realizer F :C NN — NV,

Question:
functions?

Can this theorem be generalized to Borel measurable

Vasco Brattka

Department of Mathematics & Applied Mathematics - University of Cape Town
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Borel Hierarchy

X)) is the set of open subsets of X,
X)) is the set of closed subsets of X,

>0
IT9(
o XY(X) is the set of I, subsets of X,
o
2

o IT;(X) is the set of G5 subsets of X, etc.

o Ap(X) = Xp(X)NIT(X).
>0 I
= 1T
=5 IT;
9 I
= 1T}
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Representations of Borel Classes

Definition 13 Let (X, d, «) be a separable metric space. We define
representations dxo (xy of 39 (X), oo (x) of IT(X) and da0(x) of
A (X) for k > 1 as follows:

° 529()()(20) = U B(a(i), ),

(i,j)Erange(p)

® 5112()()(10) =X\ 522()()(20),

o )
=)

+1()()(19072917 > F= iL:Jo 51‘12()()(2?7;),

® 0a0(x)(P:q) = dx0(x)(P) 1 == Ox0(x)(P) = o110(x)(Q),

for all p,p;,q € NV,
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Effective Closure Properties of Borel Classes

Proposition 14 Let X,Y be computable metric spaces. The following
operations are computable for any k > 1:

1. 39 -39 |, 320 —11) |, II0 — X0 |, II) < IIY

kil 2k er1r Hg eyt g ne1 A A (injection)

>0 - II), IIY — X9, A— A°:= X \ A (complement)

¥ x 3) - 39, I x I — I1Y, (A, B) — AU B (union)

0 x 29 — 30 19 x IIY — I1?, (A, B) — AN B (intersection)
(ZON — 29, (An)nen — USS g An (countable union)

MDY =119, (An)nen — Mg An (countable intersection)
Z0(X) x Z9(Y) = WX xY), (A B) — Ax B (product)

(I (XN — TI(XN), (Ap)nen — X2 Ay, (countable product)

© oo N O &0 > D

(X xN) — X9(X), A— {z € X : (3n)(z,n) € A} (countable projection)

~
S

SIHX XxY)xY — 20(X), (A4,y) — Ay :=={z € X : (z,y) € A} (section)
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Borel Measurable Operations

Definition 15 Let X, Y be separable metric spaces. An operation
f: X —Y is called

°« X0 Jif f7HU) € V(X)) for any U € 39(Y),
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Borel Measurable Operations

Definition 15 Let X, Y be separable metric spaces. An operation
f: X —Y is called

o XV -—measurable, if f~1(U) € XL(X) for any U € X9(Y),
o cffectively 3V —measurable or 3V —computable, if the map
Sp(f7H) EN(Y) = Z(X), U — fH(U)

Is computable.
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Borel Measurable Operations

Definition 15 Let X, Y be separable metric spaces. An operation
f: X —Y is called

°« X0 Jif f7HU) € V(X)) for any U € 39(Y),
N Y or 3V . if the map
SR 2Y) = BR(X), U fH(U)

Is computable.

Definition 16 Let X, Y be separable metric spaces. We define
representations 0o (x_.y) of (X —Y) by

522(X—>Y)(p) = [ [529(Y) — 522()()](20) =30/

forallpe NV, f: X - Y and k> 1. Let (522<X_>Y> denote the
restriction to X9 (X — V).
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Effective Closure Properties of Borel Measurable Operations

Proposition 17 Let W, X,Y and Z be computable metric spaces. The
following operations are computable for all n, k > 1:

1.

2.

© N O &0 A~ W

0 - 2)xBU(X —-Y) — 2%4-1-@—1()( — 7Z),(g,f) — go f (composition)

Eg(X — Y) X Eg(X — Z) — Eg(X — Y X Z), (f,g) —> (x — f(x) X g(cc))
(juxtaposition)

X = Y)xZX(W — 2Z2) - ZUXXW =Y x Z),(f,9) — fxg (product)
SIX - YY) - ZUX XN —=Y), f— f« (evaluation)

SI(X X N—=Y)—ZUX — YY), f— [f] (transposition)

S0(X —Y) —20XN - YY), f fN (exponentiation)

S XXN=Y) =X > YY)V f— (n— (z+— f(z,n))) (sequencing)

20X = V)N = B9X x N = V), (fa)nen — (2,7) = fo(2))
(de-sequencing)
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Representation Theorem

Theorem 18 Let X,Y be computable metric spaces, k > 1 and let
f: X — Y be a total function. Then the following are equivalent:

1. f is (effectively) 3V —measurable,
2. f admits an (effectively) 30 —measurable realizer F' :C N — NN,

Proof.

Vasco Brattka Department of Mathematics & Applied Mathematics - University of Cape Town
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Representation Theorem

Theorem 18 Let X,Y be computable metric spaces, k > 1 and let
f: X — Y be a total function. Then the following are equivalent:

1. f is (effectively) 3¢ —measurable,
2. f admits an (effectively) 39 —measurable realizer F :C NN — NN,

Proof. o

The proof is based on effective versions of the

e Kuratowski-Ryll-Nardzewski Selection Theorem,

e Bhattacharya-Srivastava Selection Theorem. -
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Weihrauch Reducibility of Functions

Definition 19 Let X, Y, U,V be computable metric spaces and consider
functions f :C X — Y and ¢ :C U — V. We say that

o fis to g, for short f<; g, if there are continuous functions
A:CX xV —=Y and B :C X — U such that

flx) = A(z,g 0 B(x))
for all x € dom(f),

e fis to g, for short f<.g, if there are
computable A, B as above.

e The corresponding equivalences are denoted by =; and =..
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Weihrauch Reducibility of Functions

Definition 19 Let X, Y, U,V be computable metric spaces and consider
functions f :C X — Y and ¢ :C U — V. We say that

o fis to g, for short f<; g, if there are continuous functions
A:CX xV —=Y and B :C X — U such that

f(z) = A(z,g 0 B(z))
for all x € dom( f),

o fis to g, for short f<. g, if there are
computable A, B as above.

e The corresponding equivalences are denoted by =; and =, .

Proposition 20 The following holds for all k > 1:
1. f<ig and g is ) —measurable = f is ¥.)—measurable,

2. f<.g and g is X)—computable = [ is 3\ —computable.
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Completeness Theorem for Baire Space

Definition 21 For any k£ € N we define C}, : N — NN by

0 if (an)(\V/nk_l)...p<n,n1, ,nk> # 0

1 otherwise

Ck(p)(n) :=

for all p € NN and n € N.

Vasco Brattka Department of Mathematics & Applied Mathematics - University of Cape Town

43



Completeness Theorem for Baire Space

Definition 21 For any k£ € N we define C}, : N — NN by

0 if (an)(\V/nk_l)...p<n,n1, ,’n,k> # 0

1 otherwise

Ck(p)(n) :=

for all p € NY and n € N.

Theorem 22 Let k € N. For any function F' :C NY — NN we obtain:
1. F<;Cy <= F is X\ ,—measurable,
2. F<.C) <= F is X}, ,—computable.

Proof. Employ the Tarski-Kuratowski Normal Form in the appropriate
way. [
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Realizer Reducibility

Definition 23 Let X,Y, U,V be computable metric spaces and consider
functions f : X — Y and g : U — V. We define

JZtg: <= fox<igdu

and we say that f is to g, if this holds. Analogously,
we define f=.g with <. instead of <;. The corresponding equivalences

~; and ~. are defined straightforwardly.
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Realizer Reducibility

Definition 23 Let X,Y, U,V be computable metric spaces and consider
functions f : X — Y and g : U — V. We define

JZtg: <= fox<igdu

and we say that f is to g, if this holds. Analogously,
we define f=.g with <. instead of <;. The corresponding equivalences
~ and = are defined straightforwardly.

Theorem 24 Let X,Y be computable metric spaces and let k € N. For
any function f : X — Y we obtain:
1. [2:Cy < [ is X)), ,—measurable,

2. f2cCyp < [ is X)), ,—computable.

Vasco Brattka Department of Mathematics & Applied Mathematics - University of Cape Town 46



Characterization of Realizer Reducibility

Definition 25 Let X, Y, U,V be computable metric spaces, let F be a
set of functions F': X — Y and let G be a set of functions G : U — V.

We define
F<yG <= (JA, B computable)(VG € G)(IF € F)
(Vx € dom(F)) F(x) = A(x, GB(x)),

where A :C X xV — Y and B :C X — U. Analogously, one can define
<. with computable A, B.
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Characterization of Realizer Reducibility

Definition 25 Let X, Y, U,V be computable metric spaces, let F be a
set of functions F': X — Y and let G be a set of functions G : U — V.
We define

F<iG <= (3A, B computable)(VG € G)(IF € F)
(Vx € dom(F)) F(x) = A(x, GB(x)),

where A :C X xV — Y and B :C X — U. Analogously, one can define
<. with computable A, B.

Proposition 26 Let X,Y,U,V be computable metric spaces and let
f: X —=Y and g:U — V be functions. Then

fZeg <= {F:FIF f}<.{G:GF g}.

An analogous statement holds with respect to < and < .
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Completeness of the Limit

Proposition 27 Let X be a computable metric space and consider
c:={(2n)nen € XN i (2,)nen € XY converges} as computable metric
subspace of X". The ordinary limit map

lim:c— X, (zy)ney — lim z,
n—aoo

is XY—computable and it is even X9—complete, if there is a computable
embedding 1 : {0,1} — X

Vasco Brattka Department of Mathematics & Applied Mathematics - University of Cape Town
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Completeness of the Limit

Proposition 27 Let X be a computable metric space and consider
c:={(xn)nen € XN i (2,)nen € XY converges} as computable metric
subspace of X. The ordinary limit map

lim:c— X, (zp)ney — lim z,
n—oo

is X.9—computable and it is even X9—complete, if there is a computable
embedding 1 : {0, 1} — X

Proof. On the one hand, XY—computability follows from

lim™ Y (B(z,r)) = (U X" x B(x,r — 2_")N> Nee XY (c)

n=0

and on the other hand, Eg—completeness follows from

01<C lim{o,l}N <c limX .
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Lower Bounds for Unbounded Closed Linear Operators

Theorem 28 Let X,Y be computable Banach spaces and let

f:C X — Y be a closed linear and unbounded operator. Let (e,,)nen
be a computable sequence in dom( f) whose linear span is dense in X
and let f(e,)neny be computable in Y. Then C1 <. f.
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Lower Bounds for Unbounded Closed Linear Operators

Theorem 28 Let X,Y be computable Banach spaces and let

f:C X — Y be a closed linear and unbounded operator. Let (e,,)nen
be a computable sequence in dom( f) whose linear span is dense in X
and let f(e,)neny be computable in Y. Then C1 <. f.

Corollary 29 (First Main Theorem of Pour-El and Richards) Under

the same assumptions as above f maps some computable input x € X
to a non-computable output f(x).
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Arithmetic Complexity of Points and the Invariance Theorem

Definition 30 Let X be a computable metric space and let x € X.
Then z is called AY . if there is a AY—computable p € NY
such that x = dx (p).
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Arithmetic Complexity of Points and the Invariance Theorem

Definition 30 Let X be a computable metric space and let x € X.
Then z is called AY . if there is a AY—computable p € NY

such that x = dx (p).

Theorem 31 Let X,Y be computable metric spaces.

o If f: X — Y isX)—computable, then it maps A —computable
inputs v € X to A) ., —computable outputs f(z) € Y.
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Arithmetic Complexity of Points and the Invariance Theorem

Definition 30 Let X be a computable metric space and let x € X.
Then z is called AY . if there is a AY—computable p € NY

such that x = dx (p).

Theorem 31 Let X,Y be computable metric spaces.

o If f: X — Y isX)—computable, then it maps A —computable
inputs v € X to A) ., —computable outputs f(z) € Y.

o /f f is even Eg—complete and k > 2, then there is some
AY —computable input x € X for any n > 1 which is mapped to
some A) ., —computable output f(x) € Y which is not

A} ., _o—computable.

Vasco Brattka Department of Mathematics & Applied Mathematics - University of Cape Town

55



Arithmetic Complexity of Points and the Invariance Theorem

Definition 30 Let X be a computable metric space and let x € X.
Then z is called AY , if there is a A”—computable p € NY

such that x = dx (p).

Theorem 31 Let X,Y be computable metric spaces.

o If f: X —Y isX)—computable, then it maps A} —computable
inputs v € X to A) ., —computable outputs f(z) € Y.

o /f f is even Eg—complete and k > 2, then there is some
AY —computable input x € X for any n > 1 which is mapped to
some A) ., —computable output f(x) € Y which is not
AY . _,—computable.

Corollary 32 An X9-computable map f maps computable inputs
r € X to outputs f(x) that are computable in the halting problem (). If
f is even Eg—complete, then there is some computable x which is

mapped to a non-computable f(x).
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Completeness of Differentiation

Proposition 33 (von Stein) Let CY*)[0,1] be the computable metric
subspace of C|0, 1] which contains the k—times continuously
differentiable functions f : |0,1] — R. The operator of differentiation

d* . c®0,1] — cjo,1], f — f®

is 33}, | —complete.
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Completeness of Differentiation

Proposition 33 (von Stein) Let CY*)[0,1] be the computable metric
subspace of C|0, 1] which contains the k—times continuously
differentiable functions f : |0,1] — R. The operator of differentiation

d* . c®0,1] — cjo,1], f — f®

is 33}, | —complete.

Corollary 34 The operator of differentiation d : C'V[0,1] — C[0,1] is
3 —complete.
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Completeness of Differentiation

Proposition 33 (von Stein) Let CY*)[0,1] be the computable metric
subspace of C|0, 1] which contains the k—times continuously
differentiable functions f : |0,1] — R. The operator of differentiation

d* . c®0,1] — cjo,1], f — f®

is 33}, | —complete.

Corollary 34 The operator of differentiation d : C'V[0,1] — C[0,1] is
3 —complete.

Corollary 35 (Ho) The derivative f' : [0,1] — R of any computable
and continuously differentiable function f : [0, 1] — R is computable in

the halting problem (.
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Completeness of Differentiation

Proposition 33 (von Stein) Let CY*)[0,1] be the computable metric
subspace of C|0, 1] which contains the k—times continuously
differentiable functions f : [0,1] — R. The operator of differentiation

a*: 0, 1] = C[0,1], f — f¥
is 3\, —complete.

Corollary 34 The operator of differentiation d : C'V[0,1] — C[0,1] is
39 —complete.

Corollary 35 (Ho) The derivative f' : [0,1] — R of any computable
and continuously differentiable function f : [0, 1] — R is computable in
the halting problem ().

Corollary 36 (Myhill) There exists a computable and continuously
differentiable function f : [0, 1] — R whose derivative ' : [0,1] — R is
not computable.
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Survey

1. Basic Concepts
e Computable Analysis
e Computable Borel Measurability

e The Representation Theorem

2. Classification of Topological Operations
e Representations of Closed Subsets

e Topological Operations

3. Classification of Theorems from Functional Analysis
e Uniformity versus Non-Uniformity
e Open Mapping and Closed Graph Theorem
e Banach's Inverse Mapping Theorem

e Hahn-Banach Theorem
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o & W

7.
8.

All results in the second part of the talk are based on joint work with

Some Topological Operations

. Union: U: A(X) x A(X) — A(X),(A,B) — AU B,
Intersection: N: A(X) x A(X) — A(X),(A,B) — AN B,

Complement: ¢: A(X) — A(X), A — Ac,
Interior: i : A(X) — A(X), A — A°,
Difference: D : A(X) x A(X) — A(X),(A,B) — A\ B,

. Symmetric Difference:

A AX)x AX) — AX),(A,B) — AAB,
Boundary: 0: A(X) — A(X), A — 0A,
Derivative: d : A(X) — A(X),A— A"

Guido Gherardi, University of Siena, ltaly.
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R.e. and Recursive Closed Subsets

Definition 37 Let (X, d, ) be a computable metric space and let
A C X a closed subset. Then

e Aiscalled re closed, if {(n,r) e NxQ: AN B(a(n),r) # 0} is

r.e.

e A is called co-r.e. closed, if there exists an r.e. set I C N x Q such
that X \ A =, .her Bla(n),r).

e A is called recursive closed, if A is r.e. and co-r.e. closed.

-
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R.e. and Recursive Closed Subsets

Definition 38 Let (X, d, ) be a computable metric space and let
A C X a closed subset. Then

o Ais called Lif {(n,7) e NxQ: AN B(a(n),r) # 0} is
r.e.
e A is called , If there exists an r.e. set I C N x Q such

that X \ A =, .her Bla(n),r).

e A is called if Ais r.e. and co-r.e. closed.
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Some Hyperspace Representations

Definition 39 Let (X, d, ) be a computable metric space. We define
representations of A(X) :={A C X : A closed and non-empty}:

1. Y (p) =A:<= pisa "list" of all (n,k) with AN B(a(n),k) #0,
2. b (p) = A: <= pisa “list" of (ni,k:) with X \ A — GOB(a(m),k_i),
3. Y(p,q) =A: <= ¢Y4(p) =Aand ¢_(q) = A, |

for all p,g € NY and A € A(X).
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Some Hyperspace Representations

Definition 39 Let (X, d, ) be a computable metric space. We define
representations of A(X) :={A C X : A closed and non-empty}:

1. Y, (p) = A:<= pisa “list” of all (n,k) with AN B(a(n),k) # 0,
2. Y_(p)=A:<= pisa "list" of (n;, k;) with X \ A = Ej B(a(ng), ki),
=0

3. ¥(p,q) = A: <= Yy(p)=Aand Y_(q) = A, !
for all p,g € NV and A € A(X).

Remark 40 e The representation 11 of A(R™) is admissible with respect
to the lower Fell topology (with subbase elements {A : ANU # ()} for
any open U ). The computable points are exactly the r.e. closed subsets.

e The representation 1) of A(R™) is admissible with respect to the upper
Fell topology (with subbase elements {A: AN K = ()} for any compact
K). The computable points are exactly the co-r.e. closed subsets.

e The representation 1) of A(R"™) is admissible with respect to the Fell
topology. The computable points are exactly the recursive closed subsets.
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Borel Lattice of Closed Set Representations for Polish Spaces

/—* (i — (N
— $) f

¢+ — wiist — ¢range ¢dist ¢iist
(o= — P>
N
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Borel Lattice of Closed Set Representations for Polish Spaces

/—* (0 — (I

“ t) ¢
w_}_ — wiist — ¢range ¢dist ¢iist
~— f ~— ¢
(o= — P>
N

e Straight arrows stand for computable reductions.

e Curved arrows stand for X9—computable reductions.
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Borel Lattice of Closed Set Representations for Polish Spaces

/—* (e — (-

" t) ¢
w_}_ — wiist — ¢range ¢dist ¢(iist
(o= — P>
N

e Straight arrows stand for computable reductions.

e Curved arrows stand for X9—computable reductions.

e The Borel structure induced by the final topologies of all
representations except 1/_ is the Effros Borel structure.

e If X is locally compact, then this also holds true for _.
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Intersection

Theorem 41 Let X be a computable metric space. Then intersection
N: AX) x AX) - AX),(A,B)— ANBis

1.

N LD

N S O

computable with respect to (V_,vy_,1_),

> 9—computable with respect to (14,1, 1),

30—computable w.r.t. (vv_, 1, 1)), if X is effectively locally compact,
S9—computable w.r.t. (V1,11 ,1)), if X is effectively locally compact,
3 9—hard with respect to (1,11, ), if X is complete and perfect,
39 —hard with respect to (1, 1,+), if X is complete and perfect,

not Borel measurable w.r.t. (1,1, ), if X is complete but not K, .
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Closure of the Complement

Theorem 42 Let (X,d) be a computable metric space. Then the
closure of the complement ¢ : A(X) — A(X), A — Ac is

1.

2
3.
4

computable with respect to (V—, 14 ),

. 39—computable with respect to (1y,1) and (1p_, 1)),

>9—complete with respect to (11, ), if X is complete and perfect,

. X9—complete with respect to (1,v)_), if X is complete, perfect and

proper.
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Closure of the Complement

Theorem 42 Let (X,d) be a computable metric space. Then the
closure of the complement ¢ : A(X) — A(X), A — Ac is

1.

2
3.
4

computable with respect to (V—, 14 ),

. 39—computable with respect to (1y,1) and (1p_, 1)),

>9—complete with respect to (11, ), if X is complete and perfect,

. X9—complete with respect to (v, ), if X is complete, perfect and

proper.

Corollary 43 Let X be a computable, perfect and proper Polish space.

Then there exists a recursive closed A C X such that A€ is not co-r.e.

closed, but A is always co-r.e. closed in the halting problem (/. There
exists a r.e. closed A C X such that A¢ is not r.e. closed, but A¢ is

always r.e. closed in the halting problem ().
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Closure of the Interior

Theorem 44 Let X be a computable metric space. Then the closure of
the interior i : A(X) — A(X), A A° is

1. X9—computable with respect to (1,1 ),

2. X9-computable with respect to (1 ,11) and (_,)),

3. X9—complete with respect to (Y4,4), if X is complete and perfect,
4

. X8—complete with respect to (1,1_), if X is complete, perfect and

proper,

5. X-complete with respect to (1, 1+), if X is complete, perfect and

propetr.
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Closure of the Interior

Theorem 44 Let X be a computable metric space. Then the closure of
the interior i : A(X) — A(X), A A° is

1.

39 —computable with respect to (v, 1),

2. X9-computable with respect to (¢4, ) and (_,)),
3.
4

>9—complete with respect to (11, ), if X is complete and perfect,

. X9—complete with respect to (v, ), if X is complete, perfect and

proper,

>9—complete with respect to (v,4), if X is complete, perfect and
propetr.

Corollary 45 Let X be a computable, perfect and proper Polish space.

Then there exists a recursive closed A C X such that A° is not r.e.

closed, but A° is always r.e. closed in the halting problem (). There

exists a recursive closed A C X such that A° is not even co-r.e. closed

in the halting problem )/, but A° is always co-r.e. closed in ().
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Boundary

Theorem 46 Let X be a computable metric space. Then the boundary
0: AX) - AX),A— 0A is
1. computable with respect to (1,14 ), if X is effectively locally connected,

2. X9—computable with respect to (11,11 ) and (v,)), if X is effectively
locally connected,

3. X9-computable with respect to (1, 1),
4. X3—computable w.r.t. (1_,), if X is effectively locally compact,

5. X9-computable with respect to (1, 1)), if X is effectively locally
connected and effectively locally compact,

6. X5—complete w.r.t. (1,7)_), if X is complete, perfect and proper,
7. X9—complete with respect to (v, ), if X = {0,1}",
8. not Borel measurable with respect to (1, ), if X = N".
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Boundary

Theorem 46 Let X be a computable metric space. Then the boundary
0: AX) > AX),A— 0A is
1. computable with respect to (1,14 ), if X is effectively locally connected,

2. X9—computable with respect to (14,11 ) and (v,)), if X is effectively
locally connected,

3. X9-computable with respect to (1, 1),
4. X8—computable w.r.t. (1_,4), if X is effectively locally compact,

5. X9—computable with respect to (1_, %)), if X is effectively locally
connected and effectively locally compact,

6. X9—complete w.r.t. (1,1_), if X is complete, perfect and proper,
7. X8—complete with respect to (1,14 ), if X = {0,1}",
8. not Borel measurable with respect to (1,1 ), if X = N,

Corollary 47 Let X be a computable, perfect and proper Polish space.
Then there exists a recursive closed A C X such that OA is not co-r.e.
closed, but OA is always co-r.e. closed in the halting problem (.
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Derivative

Theorem 48 Let X be a computable metric space. Then the derivative
d: AX)— AX),A— A" is

1.
2.

S & W

39 —computable with respect to (Y4 ,1)_),

> 9—computable with respect to (11,1) and (1)_,_), if X is effectively
locally compact,

>9—complete with respect to (1,v_), if X is complete and perfect,
3 9—hard with respect to (v, 1), if X is complete and perfect,
> 8—hard with respect to (1,1, if X is complete and perfect,

not Borel measurable with respect to (1,4 ), if X is complete but not
K.
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Derivative

Theorem 48 Let X be a computable metric space. Then the derivative
d: AX)— AX),A— A" is

1. X9—computable with respect to (11 ,_),

2. X9-computable with respect to (11 ,1) and (v_,1_), if X is effectively
locally compact,

>9—complete with respect to (1,v_), if X is complete and perfect,
3 9—hard with respect to (v, 1), if X is complete and perfect,

3 8—hard with respect to (1,1, if X is complete and perfect,

S &~ K

not Borel measurable with respect to (1,4 ), if X is complete but not
K.

Corollary 49 Let X be a computable and perfect Polish space. Then
there exists a recursive closed A C X such that A’ is not r.e. closed in
the halting problem (), but any such A’ is co-r.e. closed in the halting
problem (.
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Survey on Results

N | {0, 13N | NN [ [0,1] | [0,1)Y | R* | RN | 45 | C[0,1]
AUB | 1 1 1 1 1 1 |1 |1 1
ANB | 1 2 00 2 2 2 00 | 00 o0
Ac 1 2 2 2 2 2 | 2 | 2 2
A° |1 3 3 3 3 3 13| 3 3
A\B | 1 2 2 2 2 2 1 2 | 2 2
AAB | 1 2 2 2 2 2 | 2 | 2 2
0A | 1 3 o | 2 2 2 | 2 | 2 2
A’ 1 3 o0 3 3 3 | oo | > 00

Degrees of computability with respect to
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Survey

1. Basic Concepts
e Computable Analysis
e Computable Borel Measurability

e [he Representation Theorem

2. Classification of Topological Operations
e Representations of Closed Subsets

e Topological Operations

3. Classification of Theorems from Functional Analysis
e Uniformity versus Non-Uniformity
e Open Mapping and Closed Graph Theorem
e Banach's Inverse Mapping Theorem

e Hahn-Banach Theorem
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Uniform and Non-Uniform Computability
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Uniform and Non-Uniform Computability

The function f : X — Y is computable.
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Uniform and Non-Uniform Computability

f
X Ye
X Y
o The function f : X — Y is computable.
° The function f maps computable

elements to computable elements (i.e. f(X.) C f(Yz)).
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Banach's Inverse Mapping Theorem

Definition 50 A Banach space or a normed space X together with a
dense sequence is called if the induced metric space is a
computable metric space.
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Banach's Inverse Mapping Theorem

Definition 50 A Banach space or a normed space X together with a
dense sequence is called if the induced metric space is a

computable metric space.

Theorem 51 Let X,Y be Banach spaces and let'T' : X — Y be a linear
operator. If T is bijective and bounded, then T=' : Y — X is bounded.
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Banach's Inverse Mapping Theorem

Definition 50 A Banach space or a normed space X together with a
dense sequence is called if the induced metric space is a

computable metric space.

Theorem 51 Let X,Y be Banach spaces and let'T' : X — Y be a linear
operator. If T is bijective and bounded, then T=' : Y — X is bounded.

Question: Given X and Y are computable Banach spaces, which of the
following properties hold true under the assumptions of the theorem:

1.
T computable = T~ computable?

T +— T—! computable?
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Banach's Inverse Mapping Theorem

Definition 51 A Banach space or a normed space X together with a
dense sequence is called if the induced metric space is a

computable metric space.

Theorem 52 Let X,Y be Banach spaces and letT': X — Y be a linear
operator. If T is bijective and bounded, then T=' : Y — X is bounded.

Question: Given X and Y are computable Banach spaces, which of the
following properties hold true under the assumptions of the theorem:

1.
T computable = T—! computable? Yes!

T +— T—! computable? No!
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An Initial Value Problem

Theorem 53 Let fy,..., fn : [0,1] — R be computable functions with
fn # 0. The solution operator L : C[0,1] x R® — C[0, 1] which maps
each tuple (y, ag, ...,an_1) € C[0,1] x R™ to the unique function

r = L(y,ag, ..., an_1) with

> L)z D(t) = y(t) with £9(0) = a; for j=0,...,n — 1,
1=0

Is computable.
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An Initial Value Problem

Theorem 53 Let fy,..., fn : [0,1] — R be computable functions with
fn # 0. The solution operator L : C[0,1] x R™ — C(™)[0, 1] which maps
each tuple (y,ag, ...,a,_1) € C[0,1] x R™ to the unique function

r = L(y,ag, ..., an,_1) with

D L) () = y(t) with 29 (0) = aj for j =0,...,n — 1,
1=0

Is computable.

Proof. The following operator is linear and computable:

L71:c™[0,1] — C[0,1] x R", z +— (Z fix®, 290, ..., x<”1>(0)>
i=0

Computability follows since the i—th differentiation operator is

computable. By the computable Inverse Mapping Theorem it follows

that L is computable too. O
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Non-Constructive Existence Proofs of Algorithms

e Theinverse ! : Y — X of any bijective and computable linear
operator 7' : X — Y is computable.
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Non-Constructive Existence Proofs of Algorithms

e Theinverse ! : Y — X of any bijective and computable linear
operator 7' : X — Y is computable.

e There exists no general algorithm which transfers any program of
such an operator 7' into a program of 7" 1.
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Non-Constructive Existence Proofs of Algorithms

e Theinverse ! : Y — X of any bijective and computable linear
operator 7' : X — Y is computable.

e There exists no general algorithm which transfers any program of
such an operator 7' into a program of 7" 1.

e Thus, Banach's Inverse Mapping Theorem admits only a
non-uniform effective version.
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Non-Constructive Existence Proofs of Algorithms

e Theinverse ! : Y — X of any bijective and computable linear
operator 7' : X — Y is computable.

e There exists no general algorithm which transfers any program of
such an operator 7' into a program of 7" 1.

e Thus, Banach's Inverse Mapping Theorem admits only a
non-uniform effective version.

e Since this effective version can also be applied to function spaces, it
yields a simple proof method which guarantees the algorithmic
solvability of certain uniform problems (e.g. differential equations).
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Non-Constructive Existence Proofs of Algorithms

e Theinverse ! : Y — X of any bijective and computable linear
operator 7' : X — Y is computable.

e There exists no general algorithm which transfers any program of
such an operator 7' into a program of 7" 1.

e Thus, Banach's Inverse Mapping Theorem admits only a
non-uniform effective version.

e Since this effective version can also be applied to function spaces, it
yields a simple proof method which guarantees the algorithmic
solvability of certain uniform problems (e.g. differential equations).

e This method is highly non-constructive: the existence of algorithms
is ensured without any hint how they could look like.
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Non-Constructive Existence Proofs of Algorithms

e Theinverse ! : Y — X of any bijective and computable linear
operator T : X — Y is computable.

e There exists no general algorithm which transfers any program of
such an operator 7" into a program of 7 1.

e Thus, Banach's Inverse Mapping Theorem admits only a
non-uniform effective version.

e Since this effective version can also be applied to function spaces, it
yields a simple proof method which guarantees the algorithmic
solvability of certain uniform problems (e.g. differential equations).

e This method is highly non-constructive: the existence of algorithms
is ensured without any hint how they could look like.

e In the finite dimensional case the method is even constructive: an
algorithm of T~! can be effectively determined from an algorithm of

T.
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Operator Spaces in Computable Functional Analysis

e It is known that the map Inv : B(X,Y) — B(Y, X), T +— T 1 is

continuous with respect to the operator norm ||T'|| := sup ||Tx|
[z][=1

(Banach's Uniform Inversion Theorem)
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Operator Spaces in Computable Functional Analysis

e It is known that the map Inv : B(X,Y) — B(Y, X), T +— T 1 is

continuous with respect to the operator norm ||T'|| := sup ||Tx|
[z][=1

(Banach's Uniform Inversion Theorem)

e However, the space B(X,Y) of bounded linear operators is not
separable in general and thus no admissible representation exists in

general.
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Operator Spaces in Computable Functional Analysis

e It is known that the map Inv : B(X,Y) — B(Y, X), T +— T 1 is

continuous with respect to the operator norm ||T'|| := sup ||Tx|
[z][=1

(Banach's Uniform Inversion Theorem)

e However, the space B(X,Y) of bounded linear operators is not
separable in general and thus no admissible representation exists in

general.

e A [0x — J0y| name of an operator T': X — Y does only contain

lower information on ||T|| and some upper bound.
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Operator Spaces in Computable Functional Analysis

e It is known that the map Inv : B(X,Y) — B(Y, X), T +— T 1 is

continuous with respect to the operator norm ||T'|| := sup ||Tx|
[z][=1

(Banach's Uniform Inversion Theorem)

e However, the space B(X,Y) of bounded linear operators is not
separable in general and thus no admissible representation exists in

general.

e A [0x — J0y| name of an operator T': X — Y does only contain
lower information on ||T|| and some upper bound.

e We consider the inversion Inv :C C(X,Y) — C(Y, X), T+ T~ 1
with respect to [0x — dy | (that is, with respect to the
compact-open topology). In this sense, inversion is discontinuous.
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Operator Spaces in Computable Functional Analysis

e It is known that the map Inv : B(X,Y) — B(Y, X), T +— T 1 is

continuous with respect to the operator norm ||T'|| := sup ||Tx|
[z][=1

(Banach's Uniform Inversion Theorem)

e However, the space B(X,Y) of bounded linear operators is not
separable in general and thus no admissible representation exists in
general.

e A [0x — J0y| name of an operator T': X — Y does only contain

lower information on ||T|| and some upper bound.

e We consider the inversion Inv :C C(X,Y) — C(Y, X), T+ T~ 1
with respect to [0x — dy | (that is, with respect to the
compact-open topology). In this sense, inversion is discontinuous.

e However, || |[|:CC(X,Y)— R, T — ||T|| is lower semi-computable.
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Uniformity of Banach's Inverse Mapping Theorem

Theorem 54 Let X.Y be computable normed spaces. The map
L:CC(X,Y)xR—=C(Y,X),(T,s) — T,

defined for all (T, s) such thatT': X — Y s a linear bounded and
bijective operator such that ||T!|| < s, is computable.
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Uniformity of Banach's Inverse Mapping Theorem

Theorem 54 Let X.Y be computable normed spaces. The map
L:CC(X,Y)xR—=C(Y,X),(T,s) — T,

defined for all (T, s) such thatT': X — Y s a linear bounded and
bijective operator such that ||T!|| < s, is computable.

Corollary 55 Let X,Y be computable normed spaces. The map
Inv:CC(X,Y) —C(Y,X),T— T 1,

defined for linear bounded and bijective operators T, is X9—computable.
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Uniformity of Banach's Inverse Mapping Theorem

Theorem 54 Let X.Y be computable normed spaces. The map
L:CC(X,Y) xR — C(Y,X),(T,s) — T,

defined for all (T, s) such thatT': X — Y s a linear bounded and
bijective operator such that ||[T~1|| < s, is computable.

Corollary 55 Let X,Y be computable normed spaces. The map
Inv:CC(X,Y) = C(Y,X), T+ T,

defined for linear bounded and bijective operators T, is X9—computable.

Proof. The map id: R — R is X9—computable and

Inv|| :C C(X,Y) = R, T+ |[T7||= sup ||z]|
| Tz||<1

is computable. Altogether, this implies that Inv is X9—computable. O
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Computable Linear Operators

Theorem 56 Let X,Y be computable normed spaces, let T': X — Y
be a linear operator and let (e, )n,en be a computable sequence in X
whose linear span is dense in X. Then the following are equivalent:

1. T': X — 'Y Is computable,
2. (T'(en))nen is computable and T is bounded,

3. T maps computable sequences to computable sequences and is
bounded,

4. graph(T) is a recursive closed subset of X x Y and T is bounded,
5. graph(T') is an r.e. closed subset of X x Y and T is bounded.

In case that X and Y are even Banach spaces, one can omit

boundedness in the last two cases.
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The Uniform Closed Graph Theorem

Theorem 57 Let X.,Y be computable normed spaces. Then
graph : C(X,Y) — A(X xY), f + graph(f)

is computable. The partial inverse graph™ ', defined for linear bounded
operators, is X.9—computable.
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The Uniform Closed Graph Theorem

Theorem 57 Let X.,Y be computable normed spaces. Then
graph : C(X,Y) — A(X xY), f + graph(f)

is computable. The partial inverse graph™ ', defined for linear bounded
operators, is X.9—computable.

Proof. The following maps have the following computability properties:

e 7 :CAX xY) xR —C(X,Y), (graph(T), s) — T is computable,
(and defined for all graphs of linear bounded 7" such that ||T|| < s),

o N:C AX xY) — R, graph(T) — [|T|| = sup ||Txl
[z][<1
is computable (and defined for all graphs of linear bounded T),

o id: R. — R is X)—computable.
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The Open Mapping Theorem

Theorem 58 Let X, Y be Banach spaces. If T : X — Y is a linear
bounded and surjective operator, then T' is open, i.e. T(U) C Y is open
for any open U C X.
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The Open Mapping Theorem

Theorem 58 Let X, Y be Banach spaces. If T : X — Y is a linear
bounded and surjective operator, then T' is open, i.e. T(U) C Y is open
for any open U C X.

Question: Given X and Y are computable Banach spaces, which of the
following properties hold true under the assumptions of the theorem:

1. UC X re.open = T(U) CY r.e. open?
2. O(T): 0(X) — O(),U — T(U) is computable?
3. T'— O(T) is computable?
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The Open Mapping Theorem

Theorem 58 Let X, Y be Banach spaces. If T : X — Y is a linear
bounded and surjective operator, then T' is open, i.e. T(U) C Y is open
for any open U C X.

Question: Given X and Y are computable Banach spaces, which of the
following properties hold true under the assumptions of the theorem:

1. UC X ree.open = T(U) CY r.e. open? Yes!
2. O(T): 0(X) - 0O(),U — T(U) is computable?  Yes!/
3. T— O(T) is computable? No!
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The Open Mapping Theorem

Theorem 58 Let X, Y be Banach spaces. If T : X — Y is a linear
bounded and surjective operator, then T' is open, i.e. T(U) C Y is open
for any open U C X.

Question: Given X and Y are computable Banach spaces, which of the
following properties hold true under the assumptions of the theorem:

1. UC X re.open = T(U) CY r.e. open? Yes!
2. O(T): 0(X) — O(Y),U — T(U) is computable?  Yes!/
3. T — O(T) is computable? No!

Note the different levels of uniformity: the Open Mapping Theorem is
uniformly computable in U but only non-uniformly computable in T
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The Open Mapping Theorem

Theorem 58 Let X, Y be Banach spaces. If T : X — Y is a linear
bounded and surjective operator, then T' is open, i.e. T(U) C Y is open
for any open U C X.

Question: Given X and Y are computable Banach spaces, which of the
following properties hold true under the assumptions of the theorem:

1. UC X re.open = T(U) CY r.e. open? Yes!
2. O(T): 0(X) — O(Y),U — T(U) is computable?  Yes!/
3. T — O(T) is computable? No!

Note the different levels of uniformity: the Open Mapping Theorem is
uniformly computable in U but only non-uniformly computable in T

o T'+— O(T) is X9—computable.
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The Hahn-Banach Theorem

Theorem 59 (Hahn-Banach Theorem) Let X be a normed space and
Y C X a linear subspace. Any linear bounded functional f : Y — R
admits a linear bounded extension g : X — R with ||g|| = ||f]]-
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The Hahn-Banach Theorem

Theorem 59 (Hahn-Banach Theorem) Let X be a normed space and
Y C X a linear subspace. Any linear bounded functional f : Y — R
admits a linear bounded extension g : X — R with ||g|| = ||f]]-

Question: Given X and Y are computable normed spaces, which of the
following properties hold true under the assumptions of the theorem:

1.

f computable = d a computable extension g7

f +— g computable?
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Theorem 59 (Hahn-Banach Theorem) Let X be a normed space and
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Question: Given X and Y are computable normed spaces, which of the
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1.
f computable = d a computable extension g7 No!

f +— g computable? No!
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The Hahn-Banach Theorem

Theorem 59 (Hahn-Banach Theorem) Let X be a normed space and
Y C X a linear subspace. Any linear bounded functional f : Y — R
admits a linear bounded extension g : X — R with ||g|| = ||f]]-

Question: Given X and Y are computable normed spaces, which of the
following properties hold true under the assumptions of the theorem:

1.
f computable = d a computable extension g7 No!

f +— g computable? No!

A counterexample is due to Nerode, Metakides and Shore (1985).
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The Hahn-Banach Theorem

Theorem 59 (Hahn-Banach Theorem) Let X be a normed space and
Y C X a linear subspace. Any linear bounded functional f : Y — R
admits a linear bounded extension g : X — R with ||g|| = ||f]]-

Question: Given X and Y are computable normed spaces, which of the
following properties hold true under the assumptions of the theorem:

1.
f computable = d a computable extension g7 No!

f +— g computable? No!

A counterexample is due to Nerode, Metakides and Shore (1985).

Nerode and Metakides also proved that the non-uniform version is
computable in the finite dimensional case.
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The Finite-Dimensional Case

Theorem 60 (Metakides and Nerode) Let X be a finite-dimensional
computable Banach space with some closed linear subspace Y C X. For
any computable linear functional f : Y — R with computable norm || f||
there exists a computable linear extension g : X — R with ||g|| = || f||-

Vasco Brattka Department of Mathematics & Applied Mathematics - University of Cape Town 114



The Finite-Dimensional Case

Theorem 60 (Metakides and Nerode) Let X be a finite-dimensional
computable Banach space with some closed linear subspace Y C X. For
any computable linear functional f : Y — R with computable norm || f||
there exists a computable linear extension g : X — R with ||g|| = || f||-

Lemma 61 Let (X, || ||) be a normed space, Y C X a linear subspace,
x € X and let Z be the linear subspace generated by Y U {z}. Let
f:Y — R be a linear functional with ||f|| = 1. A functional g : Z — R
with gly = fl|y is a linear extension of f with ||g|| = 1, if and only if

sup(f(u) ~ [Jo — ul) < 9() < inf (F(v) + [z )

Vasco Brattka Department of Mathematics & Applied Mathematics - University of Cape Town 115



Computable Hilbert Spaces

Definition 62 A computable Hilbert space is a computable Banach
space which is a Hilbert space (i.e. whose norm is induced by a scalar
product).
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Computable Hilbert Spaces

Definition 62 A computable Hilbert space is a computable Banach
space which is a Hilbert space (i.e. whose norm is induced by a scalar
product).

Theorem 63 (Hahn-Banach Theorem) Let X be a Hilbert space and
Y C X a linear subspace. Any linear bounded functional f : Y — R
admits a uniquely determined linear bounded extension g : X — R with

gl = 11£1]

Question: Given X and Y are computable Hilbert spaces, which of the
following properties hold true:

1.
f computable = d a computable extension g? Yes!

f +— g computable? Yes!
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Survey on Results

non-uniform uniform

dimension finite infinite finite infinite

Banach spaces

_?Eggré\:lnappi"g computable computable | X9-computable
Banach’s Inverse 0_

Mapping Theorem computable computable | 35-computable
'(I:'Il:)e?s:lerﬁraph computable computable Eg—computable
Hahn-Banach 0_ 0_

Theorom computable | 35-computable >ls—computable

Hilbert spaces

Hahn-Banach

I I
Theorem computable computable

The realizers of these theorems are not Eg—complete in general.
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Survey on Different Types of Effective Mathematics

Effective Mathematics Uniformity Degrees of Effectivity
constructive analysis fully uniform principles of omniscience
reverse analysis over RCAg  non-uniform comprehension axioms
computable analysis flexible uniformity  effective Borel classes
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Survey on Different Types of Effective Mathematics

Effective Mathematics Uniformity Degrees of Effectivity
constructive analysis fully uniform principles of omniscience
reverse analysis over RCAg  non-uniform comprehension axioms
computable analysis flexible uniformity  effective Borel classes

There are other variants of the aforementioned theories:

e Uniform reverse analysis (Kohlenbach) allows to express higher

degrees of uniformity.
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Survey on Different Types of Effective Mathematics

Effective Mathematics Uniformity Degrees of Effectivity
constructive analysis fully uniform principles of omniscience
reverse analysis over RCAg  non-uniform comprehension axioms
computable analysis flexible uniformity  effective Borel classes

There are other variants of the aforementioned theories:

e Uniform reverse analysis (Kohlenbach) allows to express higher

degrees of uniformity.

e Reverse analysis with intuitionistic logic (Ishihara) is automatically

fully uniform.
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Survey on Different Types of Effective Mathematics

Effective Mathematics Uniformity Degrees of Effectivity
constructive analysis fully uniform principles of omniscience
reverse analysis over RCAg  non-uniform comprehension axioms
computable analysis flexible uniformity  effective Borel classes

There are other variants of the aforementioned theories:

e Uniform reverse analysis (Kohlenbach) allows to express higher

degrees of uniformity.

e Reverse analysis with intuitionistic logic (Ishihara) is automatically

fully uniform.

e Constructive analysis allows to retranslate non-uniform results into
(more complicated) double negation statements that might be

provable intuitionistically.
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Constructive and Computable Mathematics

Constructive Analysis

Realizability

T

Computable Analysis
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Constructive and Computable Mathematics

Constructive Analysis

Realizability

T

Computable Analysis

e Many theorems from Constructive Analysis can be translated via

realizability into meaningful theorems of Computable Analysis.

Example: Baire Category Theorem.
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Constructive and Computable Mathematics

Constructive Analysis

Realizability

T

Computable Analysis

e Many theorems from Constructive Analysis can be translated via

realizability into meaningful theorems of Computable Analysis.

Example: Baire Category Theorem.

e Counterexamples can be transferred into the other direction.

Example: Contrapositive of the Baire Category Theorem.

Vasco Brattka Department of Mathematics & Applied Mathematics - University of Cape Town

125



Constructive and Computable Mathematics

Constructive Analysis

Realizability

T

Computable Analysis

e Many theorems from Constructive Analysis can be translated via

realizability into meaningful theorems of Computable Analysis.

Example: Baire Category Theorem.

e Counterexamples can be transferred into the other direction.
Example: Contrapositive of the Baire Category Theorem.

e Some Theorems in Computable Analysis have no known counterpart in

constructive analysis which would lead to them via realizability.

Example: Banach's Inverse Mapping Theorem.

Vasco Brattka Department of Mathematics & Applied Mathematics - University of Cape Town

126



Constructive and Computable Mathematics

Constructive Analysis

Realizability

T

Computable Analysis

e Many theorems from Constructive Analysis can be translated via

realizability into meaningful theorems of Computable Analysis.

Example: Baire Category Theorem.

e Counterexamples can be transferred into the other direction.

Example: Contrapositive of the Baire Category Theorem.

e Some Theorems in Computable Analysis have no known counterpart in

constructive analysis which would lead to them via realizability.

Example: Banach's Inverse Mapping Theorem.

e Some Theorems in Constructive Analysis, if interpreted via realizability,

lead to tautologies in Computable Analysis.

Example: Banach's Inverse Mapping Theorem.
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