A FORCING EXTENSION OF A SIMPLIFIED (ω_2 , 1) MORASS WITH NO SIMPLIFIED (ω_2 , 1) MORASS WITH LINEAR LIMITS

Franqui Cárdenas Universidad Nacional de Colombia, Bogotá

July 14th, 2007 Wrocław

Old statement:using supercompact cardinals Proof

New statement:using strongly unfoldable cardinals Evidence Proof

$Con(ZFC + \exists \kappa \text{ supercompact cardinal}) \Longrightarrow$

 $Con(ZFC + \exists (\omega_2, 1)morass + \neg \exists (\omega_2, 1) - morass with linear limits)$ (Stanley)

 κ is a θ -supercompact cardinal iff there exists $j: V \to M$ such that $cp(j) = \kappa$ and $M^{\theta} \subseteq M$. κ is supercompact iff for all $\theta \in On$, κ is θ -supercompact.

Supercompactness $\implies V \neq L$.

 κ is a θ -supercompact cardinal iff there exists $j: V \to M$ such that $cp(j) = \kappa$ and $M^{\theta} \subseteq M$. κ is supercompact iff for all $\theta \in On$, κ is θ -supercompact.

Supercompactness $\implies V \neq L$.

 κ is a θ -supercompact cardinal iff there exists $j: V \to M$ such that $cp(j) = \kappa$ and $M^{\theta} \subseteq M$. κ is supercompact iff for all $\theta \in On$, κ is θ -supercompact.

Supercompactness $\implies V \neq L$.

 κ regular cardinal. A simplified $(\kappa, 1)$ morass is a sequence $\langle \varphi_{\xi}; \mathcal{G}_{\xi\tau} : \xi < \tau \leq \kappa \rangle$ where

 $\mathcal{G}_{\xi\tau} = \{ b : \varphi_{\xi} \to \varphi_{\tau} \mid b \text{ order preserving} \}$

such that:

•
$$\varphi_{\xi} < \kappa$$
 and $|\mathcal{G}_{\xi\tau}| < \kappa$ for $\xi < \tau < \kappa$ and $\varphi_{\kappa} = \kappa^+$.

Coherence.

•
$$\mathcal{G}_{\xi\xi+1} = \{id, f\}$$
 where f is a split function.

• If
$$\lim(\xi) \varphi_{\xi} = \bigcup_{\eta < \xi} \{ b'' \varphi_{\eta} \mid b \in \mathcal{G}_{\eta\xi} \}.$$

- Simplified $(\kappa, 1)$ morasses implies the gap 2 cardinal theorem.
- There are simplified $(\omega, 1)$ morasses.
- If V = L then for κ regular cardinal there are simplified (κ, 1) morasses.
- Simplified $(\kappa, 1)$ morass implies $\Box_{\kappa,\kappa}$.
- Simplified $(\kappa, 1)$ morass with linear limits implies \Box_{κ} .

- Simplified $(\kappa, 1)$ morasses implies the gap 2 cardinal theorem.
- There are simplified $(\omega, 1)$ morasses.
- If V = L then for κ regular cardinal there are simplified (κ, 1) morasses.
- Simplified $(\kappa, 1)$ morass implies $\Box_{\kappa,\kappa}$.
- Simplified $(\kappa, 1)$ morass with linear limits implies \Box_{κ} .

- Simplified $(\kappa, 1)$ morasses implies the gap 2 cardinal theorem.
- There are simplified $(\omega, 1)$ morasses.
- If V = L then for κ regular cardinal there are simplified $(\kappa, 1)$ morasses.
- Simplified $(\kappa, 1)$ morass implies $\Box_{\kappa,\kappa}$.
- Simplified $(\kappa, 1)$ morass with linear limits implies \Box_{κ} .

- Simplified $(\kappa, 1)$ morasses implies the gap 2 cardinal theorem.
- There are simplified $(\omega, 1)$ morasses.
- If V = L then for κ regular cardinal there are simplified $(\kappa, 1)$ morasses.
- Simplified $(\kappa, 1)$ morass implies $\Box_{\kappa,\kappa}$.
- Simplified $(\kappa, 1)$ morass with linear limits implies \Box_{κ} .

- Simplified $(\kappa, 1)$ morasses implies the gap 2 cardinal theorem.
- There are simplified $(\omega, 1)$ morasses.
- If V = L then for κ regular cardinal there are simplified (κ, 1) morasses.
- Simplified $(\kappa, 1)$ morass implies $\Box_{\kappa,\kappa}$.
- Simplified $(\kappa, 1)$ morass with linear limits implies \Box_{κ} .

- Laver: If κ supercompact cardinal, then there is a forcing extension such that κ is still supercompact and it is indestructible under κ-directed closed forcings.
- The forcing which adds a simplified $(\kappa, 1)$ morass is κ closed.
- Collapse κ to ω_2 .

- Laver: If κ supercompact cardinal, then there is a forcing extension such that κ is still supercompact and it is indestructible under κ-directed closed forcings.
- The forcing which adds a simplified $(\kappa, 1)$ morass is κ closed.
- Collapse κ to ω_2 .

- Laver: If κ supercompact cardinal, then there is a forcing extension such that κ is still supercompact and it is indestructible under κ-directed closed forcings.
- The forcing which adds a simplified $(\kappa, 1)$ morass is κ closed.
- Collapse κ to ω_2 .

For any κ cardinal, \Box_{κ} .

- For κ regular cardinal, there are $(\kappa, 1)$ -morasses (Jensen).
- Weakly compact cardinals, (strongly) unfoldable cardinals relativized to L.
- κ is weakly compact iff there is no (κ, 1)-morass with linear limits (Donder).

- For any κ cardinal, \Box_{κ} .
- For κ regular cardinal, there are $(\kappa, 1)$ -morasses (Jensen).
- Weakly compact cardinals, (strongly) unfoldable cardinals relativized to L.
- κ is weakly compact iff there is no (κ, 1)-morass with linear limits (Donder).

- For any κ cardinal, \Box_{κ} .
- For κ regular cardinal, there are $(\kappa, 1)$ -morasses (Jensen).
- Weakly compact cardinals, (strongly) unfoldable cardinals relativized to L.
- κ is weakly compact iff there is no (κ, 1)-morass with linear limits (Donder).

- For any κ cardinal, \Box_{κ} .
- For κ regular cardinal, there are $(\kappa, 1)$ -morasses (Jensen).
- Weakly compact cardinals, (strongly) unfoldable cardinals relativized to L.
- κ is weakly compact iff there is no (κ, 1)-morass with linear limits (Donder).

Let κ be an inaccessible cardinal, M is a κ -model iff M is a transitive, $M \models ZF^-$, $|M| = \kappa$ with $\kappa \in M$ and $M^{<\kappa} \subseteq M$.

Definition

 κ is θ -strongly unfoldable cardinal iff $\forall M \ (M \ \kappa - \text{model} \Longrightarrow \exists j, N[N\text{transitive}, V_{\theta} \subseteq N, j : M \to N, cp(j) = \kappa, j(\kappa) \ge \theta]).$ (Villaveces)

Let κ be an inaccessible cardinal, M is a κ -model iff M is a transitive, $M \models ZF^-$, $|M| = \kappa$ with $\kappa \in M$ and $M^{<\kappa} \subseteq M$.

Definition

 κ is θ -strongly unfoldable cardinal iff $\forall M \ (M \ \kappa - \text{model} \Longrightarrow \exists j, N[N \text{transitive}, V_{\theta} \subseteq N, j : M \to N, cp(j) = \kappa, j(\kappa) \ge \theta]). (Villaveces)$

Definition κ is strongly unfoldable iff for all $\theta \in On$, κ is a θ -strongly unfoldable cardinal.

Fact: κ is weakly compact cardinal iff κ is κ -unfoldable cardinal.

Definition κ is strongly unfoldable iff for all $\theta \in On$, κ is a θ -strongly unfoldable cardinal.

Fact: κ is weakly compact cardinal iff κ is κ -unfoldable cardinal.

For κ strong, strongly compact, measurable and strongly unfoldable cardinals (Hamkins):

In all cases: lottery preparation relative to a function $f : \kappa \to \kappa$ such that $j(f)(\kappa)$ is an ordinal arbitrary high below $j(\kappa)$.

For κ strong, strongly compact, measurable and strongly unfoldable cardinals (Hamkins):

In all cases: lottery preparation relative to a function $f : \kappa \to \kappa$ such that $j(f)(\kappa)$ is an ordinal arbitrary high below $j(\kappa)$.

For κ strong, strongly compact, measurable and strongly unfoldable cardinals (Hamkins):

In all cases: lottery preparation relative to a function $f : \kappa \to \kappa$ such that $j(f)(\kappa)$ is an ordinal arbitrary high below $j(\kappa)$.

If κ is strongly unfoldable cardinal, after the lottery preparation relative to f, κ strongly unfoldability is preserved by any \mathbb{P} < κ -closed, κ -proper forcing (Hamkins, Johnstone)

 $(2^{<\kappa} = \kappa)$ The forcing which adds a $(\kappa, 1)$ morass is κ -closed and κ^+ -c.c.

If κ is strongly unfoldable cardinal, after the lottery preparation relative to f, κ strongly unfoldability is preserved by any \mathbb{P} < κ -closed, κ -proper forcing (Hamkins, Johnstone)

 $(2^{<\kappa}=\kappa)$ The forcing which adds a $(\kappa,1)$ morass is $\kappa\text{-closed}$ and $\kappa^+\text{-c.c.}$

$Con(ZFC + \exists \kappa strongly unfoldable cardinal) \Longrightarrow$

 $Con(ZFC + \exists (\omega_2, 1)morass + \neg \exists (\omega_2, 1) - morass with linear limits)$

- ▶ Let κ be strongly unfoldable cardinal and M a κ -model, there exists an embedding $j : M \to N$ with $cp(j) = \kappa$ and...
- Find a function f : κ → κ such that j(f)(κ) guess any value below j(κ) (for free).
- Apply the lottery preparation to κ using f.
- Add the simplified $(\kappa, 1)$ morass. κ is still strongly unfoldable cardinal.
- Collapse κ to ω_2 .
- There is a simplified $(\omega_2, 1)$ morass but it is false \Box_{ω_2} .

- ▶ Let κ be strongly unfoldable cardinal and M a κ -model, there exists an embedding $j : M \to N$ with $cp(j) = \kappa$ and...
- Find a function f : κ → κ such that j(f)(κ) guess any value below j(κ) (for free).
- Apply the lottery preparation to κ using f.
- Add the simplified $(\kappa, 1)$ morass. κ is still strongly unfoldable cardinal.
- Collapse κ to ω_2 .
- There is a simplified $(\omega_2, 1)$ morass but it is false \Box_{ω_2} .

- ▶ Let κ be strongly unfoldable cardinal and M a κ -model, there exists an embedding $j : M \to N$ with $cp(j) = \kappa$ and...
- Find a function f : κ → κ such that j(f)(κ) guess any value below j(κ) (for free).
- Apply the lottery preparation to κ using f.
- Add the simplified $(\kappa, 1)$ morass. κ is still strongly unfoldable cardinal.
- Collapse κ to ω_2 .
- There is a simplified $(\omega_2, 1)$ morass but it is false \Box_{ω_2} .

- ▶ Let κ be strongly unfoldable cardinal and M a κ -model, there exists an embedding $j : M \to N$ with $cp(j) = \kappa$ and...
- Find a function f : κ → κ such that j(f)(κ) guess any value below j(κ) (for free).
- Apply the lottery preparation to κ using f.
- Add the simplified $(\kappa, 1)$ morass. κ is still strongly unfoldable cardinal.
- Collapse κ to ω_2 .
- There is a simplified $(\omega_2, 1)$ morass but it is false \Box_{ω_2} .

- Let κ be strongly unfoldable cardinal and M a κ-model, there exists an embedding j : M → N with cp(j) = κ and...
- Find a function f : κ → κ such that j(f)(κ) guess any value below j(κ) (for free).
- Apply the lottery preparation to κ using f.
- Add the simplified $(\kappa, 1)$ morass. κ is still strongly unfoldable cardinal.
- Collapse κ to ω_2 .
- There is a simplified $(\omega_2, 1)$ morass but it is false \Box_{ω_2} .

Thanks!