Strong Jump-Traceability
 The Computably Enumerable Case

Peter Cholak

University of Notre Dame
Department of Mathematics
www.nd.edu/~cholak
Supported by NSF Grant DMS 02-45167 (USA).
Logic Colloquium 07

Preprint available: Cholak, Downey, and Greenberg, Strong Jump-Traceability I: the Computably Enumerable Case.

Reals with little value as oracles

Are there any? How low do they go? Are they all the same?

Try to understand the relation between reals with low initial segment complexity as measured by Kolmogorov complexity and reals with low computational power (as measured by the halting set relative to the real).

Example: Loveland showed the a real α is computable iff the sequence $C(\alpha \upharpoonright n)-C(n)$ is bounded, where C is plain Kolmogorov complexity.

K-Trivial Reals

Reals with very low initial segment complexity

Definition

If the sequence $K(A \upharpoonright n)-K(n)$ is bounded then A is K-trivial, where K is prefix-free Kolmogorov complexity.

Theorem (Chatin, Downey, Hirschfeldt, Nies, Solovay, Stephan)
The K-trivial reals form a robust nontrivial ideal of low Δ_{2}^{0} degrees.

Cost Functions

How to build an K-trivial real. Or how do you prove your results.

Definition

The cost (or weight) of x at stage s is

$$
c(x, s)=\sum_{x<n<s} 2^{-K_{s}(n)} .
$$

Example: Define a computably enumerable set $A=\bigcup_{s} A_{s}$ by putting $x \in A_{s+1}-A_{s}$ if $W_{e, s} \cap A_{s}=\varnothing, x>2 e, x \in W_{e, s}$ and $c(x, s)<2^{-(e+1)}$. Then A is simple and K-trivial.

C.e. Traceability

Computationally Feeble

Definition

- A (c.e.) trace is an uniformly c.e. sequence $\left\langle T_{x}\right\rangle$ of finite sets. (Equivalently there is a computable function g such that for all $x, T_{x}=W_{g(x)}$.)
- A trace traces a function f if for all $x, f(x) \in T_{x}$.
- A function $h: \omega \rightarrow \omega \backslash\{0\}$ is an order if h is computable, nondecreasing and $\lim _{s} h(s)=\infty$.
- The tracing obeys an order h if for all $x,\left|T_{x}\right| \leq h(x)$.
- A degree a is c.e. traceable if there is an order h such that every $f \leq_{T}$ a can be traced by some trace obeying h.

Theorem (Zambella)
If A is K-trivial then $\operatorname{deg}(A)$ is c.e. traceable.

Jump Traceable
 More Computationally Feeble

Definition

A is jump-traceable if there is some order h and a c.e. trace $\left\langle T_{x}\right\rangle$ obeying h and tracing $\{e\}^{X}(e)$ (if $\{e\}^{X}(e) \downarrow$) then $\left.\{e\}^{X}(e) \in T_{e}\right)$.

Theorem (Nies)
Jump-traceability and superlowness are the same on the c.e. sets. There are non K-trivial jump traceable sets.

Theorem (Nies, Figueira, and Stephan)
If A is K-trivial, then A is jump traceable with respect to an order roughly $h(n)=n \log n$.

Strongly Jump Traceable

Even More Computationally Feeble

Definition

A is strongly jump-traceable iff $\{e\}^{X}(e)$ can be traced obeying any order.

Theorem (Nies, Figueira, and Stephan)
There are non-computable, strongly jump-traceable, computably enumerable reals. Strong jump-traceability is weaker than jump-traceability on the c.e. reals.

Question (Nies and Miller)
Is the class of K-trivials exactly the class of strongly jump traceable reals? Is strongly jump traceability a combinatorial characterization of K-triviality?

N0!

The c.e. strongly jump-traceable degrees form a proper subideal of the K-trivials.
Theorem
Every c.e. strongly jump-traceable set is K-trivial.
Theorem
There is a K-trivial c.e. set that is not strongly jump-traceable. Indeed it is not jump traceable with a bound of size roughly $\log \log n$.

Theorem
The c.e. strongly jump-traceable degrees form an ideal.
Corollary (to the proof of the first theorem above) If a set A is jump-traceable with respect to about $\sqrt{\log n}$ then it is K -trivial.

An hierarchy of jump-traceability?

Or a possible combinatorial characterization of the K-trivials.
$\sqrt{\log n}<n \log n$.

Question

Is A K-trivial iff for all orders h with $\sum_{n \in \mathbb{N}} 2^{-h(n)}<\infty, A$ is jump traceable with order h ?

