Structural Completeness for Fuzzy Logics

Petr Cintula and George Metcalfe

Outline

- basic definitions
- passive structural completeness
- hereditary \mathcal{SC} and deduction theorem
- results in particular fuzzy logics

Basic definitions

Rule: pair $T \triangleright \varphi$, where T is a finite set of formulas and φ a formula

Logic L: a structural finitary consequence relation set of rules closed under substitutions and Tarski's conditions

Extension of logic L: any *logic* containing L

Definition a logic is \mathcal{SC} iff each of its extensions has new theorems

Basic definitions

Rule: pair $T \triangleright \varphi$, where T is a finite set of formulas and φ a formula

Logic L: a structural finitary consequence relation set of rules closed under substitutions and Tarski's conditions

Extension of logic L: any logic containing L

Definition a logic is \mathcal{SC} iff each of its extensions has new theorems

Derivable rule: a rule $T \triangleright \varphi$ is derivable in L iff $T \vdash_{\mathbf{L}} \varphi$

Admissible rule: a rule $T \triangleright \varphi$ is admissible in L iff for each substitution σ if $\vdash_{\mathbf{L}} \sigma(T)$ then $\vdash_{\mathbf{L}} \sigma(\varphi)$

Equivalent def. a logic is \mathcal{SC} iff each admissible rule is derivable

Passive structural completeness

Admissible rule: a rule $T \triangleright \varphi$ is admissible in L iff for each substitution σ : (there is $\psi \in T$ s.t. $\not\vdash_{\mathbf{L}} \sigma(\psi)$) OR ($\vdash_{\mathbf{L}} \sigma(\varphi)$)

Passive rule: a rule $T \triangleright \varphi$ is passive in L iff for each substitution σ : there is $\psi \in T$ s.t. $\not\vdash_{\mathbf{L}} \sigma(\psi)$

Setting: assume from now on that \mathbf{L} is consistent

Observation: $T \triangleright \varphi$ is passive iff the rule $T \triangleright v$ is admissible assuming that v does not occur in T

Convention: call rule $T \vdash v$ a rule with inconsistent conclusion—RIC

Definition: a logic is \mathcal{PSC} iff each admissible RIC is derivable

Observation: a logic is \mathcal{PSC} iff each passive rule is derivable

\mathcal{PSC} upwards and an example

Theorem Any extension of a logic with \mathcal{PSC} is \mathcal{PSC}

\mathcal{PSC} upwards and an example

Theorem Any extension of a logic with \mathcal{PSC} is \mathcal{PSC}

```
Rule v \leftrightarrow \neg v \vdash p is passive in \pounds_3
```

it is passive already in *classical* logic

Rule $v \leftrightarrow \neg v \vdash p$ is not derivable in \pounds_3

evaluate both v and p by $\frac{1}{2}$

Conclusion: \pounds_3 is not \mathcal{PSC}

and so it also in not \mathcal{SC}

Corollary: Any logic in language of L_3 weaker than L_3 is not \mathcal{PSC} and so it also in not \mathcal{SC}

Corollary: the following logics lack SC: FL_{ew}, AMALL, MTL, IMTL, BL, Ł.

\mathcal{PSC} downwards

Ugly assumption Let $\mathcal{L}' \subseteq \mathcal{L}$ be languages and L a logic \mathcal{L} . L is \mathcal{L}' -substitution friendly if for each set of \mathcal{L}' -formulas T and each \mathcal{L} -substitution σ such that $\vdash_{\mathbf{L}} \sigma(T)$ there is an \mathcal{L}' -substitution σ' such that $\vdash_{\mathbf{L}} \sigma'(T)$.

Theorem Let L be an \mathcal{L}' -substitution friendly logic. If L is \mathcal{PSC} then so is $L \upharpoonright \mathcal{L}'$.

Combining \mathcal{PSC} downwards and upwards

Theorem Let L be a \mathcal{L}' -substitution friendly logic. If L is \mathcal{PSC} then so is any logic extending $L \upharpoonright \mathcal{L}'$.

Corollary Let L be a logic in the language \mathcal{L} . If there a language $\mathcal{L}' \subseteq \mathcal{L}$ such that L is \mathcal{L}' -substitution friendly and there is a logic L' extending $L \upharpoonright \mathcal{L}'$ which is not \mathcal{PSC} , then L is not (passively) \mathcal{SC} .

Substitution friendliness

Setting L is a weakly implicative logic and $\{\rightarrow\} \subseteq \mathcal{L}' \subseteq \mathcal{L}$.

Theorem L is \mathcal{L}' -substitution friendly if one of the following holds:

- for each set \mathcal{L} -formulas $\varphi_1, \ldots, \varphi_n, \ldots$ there is \mathcal{L} -substitution σ and \mathcal{L}' -formulas $\psi_1, \ldots, \psi_n, \ldots$ such that $\sigma(\varphi_i) \rightleftharpoons \psi_i$ are theorems of **L** for each *i*.
- there is \mathcal{L} -substitution σ such that for each \mathcal{L} -formula φ there is an \mathcal{L}' -formula ψ such that $\sigma(\varphi) \rightleftharpoons \psi$ are theorems of **L**.
- there is a set of \mathcal{L}' -formulas Ψ , such that for each *n*-ary connective $c \in \mathcal{L}$ and formulas $\psi_1, \ldots, \psi_n \in \Psi$ there is $\psi \in \Psi$ such that $c(\psi_1, \ldots, \psi_n) \rightleftharpoons \psi$ are theorems of L.

Corollary Let $\{\rightarrow\} \subseteq \mathcal{L}' \subseteq \mathcal{L} \subseteq \mathcal{L}_{FL}$, L be an implicative logic extending $FL_w \upharpoonright \mathcal{L}$, and \perp is definable in $L \upharpoonright \mathcal{L}'$. Then L is \mathcal{L}' -substitution friendly.

Application(s)

Lemma *n*-valued Łukasiwicz logic is not \mathcal{PSC}

Corollary Let L be an implicative logic in a language $\{\rightarrow\} \subseteq \mathcal{L} \subseteq \mathcal{L}_{FL}$. Further assume that

- \perp is definable in $L{\upharpoonright}\mathcal{L}$
- L is an extension of $\mathsf{FL}_w {\upharpoonright} \mathcal{L}$
- there is a natural $n \ge 3$ such that *n*-valued Łukasiwicz logic is an extension of $L \upharpoonright \{\rightarrow, \bot\}$.

Then L is not (passively) \mathcal{SC} .

Corollary: the following logics lack SC: FL_{ew}, AMALL, S_nFL_{ew}, C_nFL_{ew}, MTL, S_nMTL, C_nMTL, IMTL, S_nIMTL, C_nIMTL, BL, S_nBL, C_nBL, Ł.

Hereditary \mathcal{SC} and \mathcal{LDT}

Definition: logic is \mathcal{HSC} if all its extension are \mathcal{SC} .

Nice equivalences: L is \mathcal{HSC} iff all its *axiomatic* extensions are \mathcal{SC} iff all its extensions are *axiomatic*

Local deduction theorem: L has \mathcal{LDT} if for each theory T and formulas φ, ψ there is a finite set of formulas $\Delta_{T,\varphi,\psi}^{\mathbf{L}}$ in two variables s.t. $T, \varphi \vdash \psi$ iff $T \vdash \Delta_{T,\varphi,\psi}^{\mathbf{L}}(\varphi,\psi)$. L has *normal* deduction theorem if furthermore $\Delta_{T,\varphi,\psi}^{\mathbf{L}}(\varphi,\psi), \varphi \vdash_{\mathbf{L}} \psi$

Global deduction theorem: L has \mathcal{GDT} there is a finite set of formulas $\Delta^{\mathbf{L}}$ in two variables s.t. $T, \varphi \vdash \psi$ iff $T \vdash \Delta^{\mathbf{L}}_{T,\varphi,\psi}(\varphi,\psi)$

Hereditary \mathcal{LDT} : L has \mathcal{HLDT} if each extension L' has \mathcal{LDT} and $\Delta_{T,\varphi,\psi}^{\mathbf{L}'}(\varphi,\psi), \varphi \vdash_{\mathbf{L}} \psi$

Theorem and its applications

Theorem Let L be a logic with normal \mathcal{LDT} . Then L has \mathcal{HLDT} iff L is \mathcal{HSC} .

Theorem and its applications

Theorem Let L be a logic with normal \mathcal{LDT} . Then L has \mathcal{HLDT} iff L is \mathcal{HSC} .

Corollary The following logics are HSC:

- $C_n \mathsf{FL}_{ew} \upharpoonright \mathcal{L} \text{ for } \{ \rightarrow \} \subseteq \mathcal{L} \subseteq \{ \rightarrow, \land \}$
- $C_n \mathsf{MTL} \upharpoonright \mathcal{L}$ for $\{\rightarrow\} \subseteq \mathcal{L} \subseteq \{\rightarrow, \land, \lor\}$
- $C_n BL \upharpoonright \mathcal{L}$ for $\{\rightarrow\} \subseteq \mathcal{L} \subseteq \{\rightarrow, \land, \lor, \&\}$

The following are provable in $C_{n+1}FL_{ew}$:

1.
$$(\varphi \rightarrow^n (\psi \rightarrow \chi)) \rightleftharpoons ((\varphi \rightarrow^n \psi) \rightarrow (\varphi \rightarrow^n \chi))$$

2.
$$(\varphi \to^n (\psi \land \chi)) \rightleftharpoons ((\varphi \to^n \psi) \land (\varphi \to^n \chi))$$

The following are provable in $C_{n+1}MTL$:

4.
$$(\varphi \to^n (\psi \lor \chi)) \rightleftharpoons ((\varphi \to^n \psi) \lor (\varphi \to^n \chi))$$

The following are provable in $C_{n+1}BL$:

5.
$$(\varphi \rightarrow^n (\psi \& \chi)) \rightleftharpoons ((\varphi \rightarrow^n \psi) \& (\varphi \rightarrow^n \chi))$$

Example of particular results in fuzzy logics

Theorem Any fragment of Cancellative hoop logic where t and \odot are definable is structurally complete.

Suppose that $T \not\vdash \varphi$. Then there is a valuation v for \mathbb{Z}^- such that v(A) = 0 for all $\psi \in T$ and $v(\varphi) < 0$. Let q be a propositional variable not occurring in Γ or B and define the substitution:

$$\sigma(p) = q^{|v(p)|}$$

Claim. $\vdash \sigma(\psi) \leftrightarrow q^{|v(\psi)|}$.

From the claim we get $\vdash \sigma(\psi)$ for all $\psi \in \Gamma$, and $\not\vdash \sigma(\varphi)$.

Fragments with \rightarrow and without 0

Logic	\rightarrow	$ ightarrow,\wedge,ee$	$ \rightarrow, \lor$	\rightarrow , &	$ ightarrow,\&,\wedge,ee$
MTL = IMTL = SMTL	?	?	?	?	?
$C_n MTL = C_n IMTL$	HSC	\mathcal{HSC}	\mathcal{HSC}	?	?
CHL	SC	\mathcal{SC}	SC	SC	SC
ΠΜΤL	?	?	?	?	?
BL = SBL	?	?	?	?	?
$C_n BL$	HSC	\mathcal{HSC}	\mathcal{HSC}	\mathcal{HSC}	HSC
G	SC	SC	SC	SC	SC
Ł	SC	SC	SC	SC	SC
Π	?	?	?	\mathcal{HSC}	HSC

Fragments with $\rightarrow, 0$

Logic	ightarrow, 0	$ ightarrow,\wedge,ee,0$	ightarrow, ee, 0	ightarrow, &, 0	$ ightarrow,$ &, $0, \wedge, \vee$
MTL	No	No	No	No	No
$C_n MTL$	No	No	No	No	No
S_n MTL	No	No	No	No	No
IMTL	No	No	No	No	No
SMTL	?	?	?	?	?
ΠΜΤL	?	?	?	?	?
BL	No	No	No	No	No
$C_n BL$	No	No	No	No	No
S_nBL	No	No	No	No	No
SBL	?	?	?	?	?
$G = C_2 MTL$	\mathcal{HSC}	\mathcal{HSC}	HSC	HSC	HSC
G_n	HSC	HSC	HSC	HSC	HSC
Ł	No	No	No	No	No
$L_n = S_n L = C_n L$	No	No	No	No	No
П	?	?	?	HSC	HSC

Thank you for your attention