Partitioning κ-fold covers into κ many subcovers

Márton Elekes
emarci@renyi.hu
www.renyi.hu/ ${ }^{\sim}$ emarci
Rényi Institute, Budapest, Hungary
Logic Colloquium 2007

Joint work with Tamás Mátrai and Lajos Soukup.
We gratefully acknowledge the support of Öveges Project of 0 NKTH and \mathbb{N}.

Outline

(1) Introduction

- The problem
- Motivation
- Two easy examples
(2) New results
- Convex bodies
- Closed sets
- Arbitrary sets
- Graphs
(3) Open problems

The problem

Motivation
Two easy examples

Definition

Let X be a set and κ be a cardinal（usually infinite）．We say that $\mathcal{H} \subset P(X)$ is a κ－fold cover of X if each $x \in X$ is covered at least κ times．

Question

（nnain question）Under what assumptions can we decompose a k－fold cover into oh many disjoint subcovers？

An equivalent formulation：

Definition

Let $\mathcal{H} \subset P(X)$ ．We say that $c: \mathcal{H} \rightarrow \kappa$ is a good colouring with κ colours，（or a good κ－colouring），if $\forall x \in X$ and $\forall \alpha<\kappa \exists H \in \mathcal{H}$ such that $x \in H$ and $c(H)=\alpha$ ．

Fact

\mathcal{H} has a good κ－colouring iff it can be decomposed into κ many disjoint subcovers．

Remark

It would also be natural（and useful）to define these notions relative to a set $Y \subset X$ ，but for the sake of simplicity we stick to $Y=X$ in this talk．

Definition

Let X be a set and κ be a cardinal (usually infinite). We say that $\mathcal{H} \subset P(X)$ is a κ-fold cover of X if each $x \in X$ is covered at least κ times.

Question

(Main question) Under what assumptions can we decompose a κ-fold cover into κ many disjoint subcovers?

An equivalent formulation:

Definition

Let $\mathcal{H} \subset P(X)$. We say that $c: \mathcal{H} \rightarrow \kappa$ is a good colouring with κ colours, (or a good κ-colouring), if $\forall x \in X$ and $\forall \alpha<\kappa \exists H \in \mathcal{H}$ such that $x \in H$ and $c(H)=\alpha$

Fact

H has a good k-colouring iff it can be decomposed into or many disjoint subcovers.

Remark

It would also be natural (and useful) to define these notions relative to a set $Y \subset X$, but for the sake of simplicity we stick to $Y=X$ in this talk.

Definition

Let X be a set and κ be a cardinal (usually infinite). We say that $\mathcal{H} \subset P(X)$ is a κ-fold cover of X if each $x \in X$ is covered at least κ times.

Question

(Main question) Under what assumptions can we decompose a κ-fold cover into κ many disjoint subcovers?

An equivalent formulation:

Definition

Let $\mathcal{H} \subset P(X)$. We say that $c: \mathcal{H} \rightarrow \kappa$ is a good colouring with k colours, (or a good κ-colouring), if $\forall x \in X$ and $\forall \alpha<\kappa \exists H \in \mathcal{H}$ such that $x \in H$ and $c(H)=\alpha$

Fact

\mathcal{H} has a good k-colouring iff it can be decomposed into of many disjoint subcovers.

[^0]
Definition

Let X be a set and κ be a cardinal (usually infinite). We say that $\mathcal{H} \subset P(X)$ is a κ-fold cover of X if each $x \in X$ is covered at least κ times.

Question

(Main question) Under what assumptions can we decompose a κ-fold cover into κ many disjoint subcovers?

An equivalent formulation:

Definition

Let $\mathcal{H} \subset P(X)$. We say that $c: \mathcal{H} \rightarrow \kappa$ is a good colouring with κ colours, (or a good κ-colouring), if $\forall x \in X$ and $\forall \alpha<\kappa \exists H \in \mathcal{H}$ such that $x \in H$ and $c(H)=\alpha$.

[^1]
Definition

Let X be a set and κ be a cardinal (usually infinite). We say that $\mathcal{H} \subset P(X)$ is a κ-fold cover of X if each $x \in X$ is covered at least κ times.

Question

(Main question) Under what assumptions can we decompose a κ-fold cover into κ many disjoint subcovers?

An equivalent formulation:

Definition

Let $\mathcal{H} \subset P(X)$. We say that $c: \mathcal{H} \rightarrow \kappa$ is a good colouring with κ colours, (or a good κ-colouring), if $\forall x \in X$ and $\forall \alpha<\kappa \exists H \in \mathcal{H}$ such that $x \in H$ and $c(H)=\alpha$.

Fact

\mathcal{H} has a good κ-colouring iff it can be decomposed into κ many disjoint subcovers.

Definition

Let X be a set and κ be a cardinal (usually infinite). We say that $\mathcal{H} \subset P(X)$ is a κ-fold cover of X if each $x \in X$ is covered at least κ times.

Question

(Main question) Under what assumptions can we decompose a κ-fold cover into κ many disjoint subcovers?

An equivalent formulation:

Definition

Let $\mathcal{H} \subset P(X)$. We say that $c: \mathcal{H} \rightarrow \kappa$ is a good colouring with κ colours, (or a good κ-colouring), if $\forall x \in X$ and $\forall \alpha<\kappa \exists H \in \mathcal{H}$ such that $x \in H$ and $c(H)=\alpha$.

Fact

\mathcal{H} has a good κ-colouring iff it can be decomposed into κ many disjoint subcovers.

Remark

It would also be natural (and useful) to define these notions relative to a set $Y \subset X$, but for the sake of simplicity we stick to $Y=X$ in this talk.

Some discrete geometry

Theorem

(Mani-Pach, unpublished, more than 20 years old, ca. 100 pages) Every 33 -fold cover of \mathbb{R}^{2} with unit discs has a good 2-colouring.

Theorem

(Tardos-Tóth) Every 43 -fold cover of \mathbb{R}^{2} with translates of a triangle has a good 2-colouring.

Theorem

(Tóth. ???) For every convex polygon there exists $n \in \mathbb{N}$ so that every n-fold cover of
\mathbb{R}^{2} with translates of the polygon has a good 2-colouring.

Conjecture

(Pach) The same holds for every convex set.

Some discrete geometry

Theorem

(Mani-Pach, unpublished, more than 20 years old, ca. 100 pages) Every 33 -fold cover of \mathbb{R}^{2} with unit discs has a good 2-colouring.

Theorem

(Tardos-Tóth) Every 43 -fold cover of \mathbb{R}^{2} with translates of a triangle has a good 2-colouring.

Theorem
 (Tóth, ???) For every convex polygon there exists $n \in \mathbb{N}$ so that every n-fold cover of \mathbb{R}^{2} with translates of the polygon has a good 2-colouring.

[^2]
Some discrete geometry

Theorem

(Mani-Pach, unpublished, more than 20 years old, ca. 100 pages) Every 33 -fold cover of \mathbb{R}^{2} with unit discs has a good 2-colouring.

Theorem

(Tardos-Tóth) Every 43 -fold cover of \mathbb{R}^{2} with translates of a triangle has a good 2-colouring.

Theorem

(Tóth, ???) For every convex polygon there exists $n \in \mathbb{N}$ so that every n-fold cover of \mathbb{R}^{2} with translates of the polygon has a good 2-colouring.

[^3]
Some discrete geometry

Theorem

(Mani-Pach, unpublished, more than 20 years old, ca. 100 pages) Every 33 -fold cover of \mathbb{R}^{2} with unit discs has a good 2-colouring.

Theorem

(Tardos-Tóth) Every 43 -fold cover of \mathbb{R}^{2} with translates of a triangle has a good 2-colouring.

Theorem

(Tóth, ???) For every convex polygon there exists $n \in \mathbb{N}$ so that every n-fold cover of \mathbb{R}^{2} with translates of the polygon has a good 2-colouring.

Conjecture

(Pach) The same holds for every convex set.

Some discrete geometry

However,

Theorem

(Pach-Tardos-Tóth) For every $n \in \mathbb{N}$ there is an n-fold cover of \mathbb{R}^{2} with axis-parallel rectangles or with translates of a suitable concave quadrilateral that has no good 2-colouring.

Remark
 The case of \mathbb{R}^{3} or higher is dramatically different!

Remark

Surbrisingly this theory has applications for sensor networks.

Some discrete geometry

However,

Theorem

(Pach-Tardos-Tóth) For every $n \in \mathbb{N}$ there is an n-fold cover of \mathbb{R}^{2} with axis-parallel rectangles or with translates of a suitable concave quadrilateral that has no good 2-colouring.

Remark

The case of \mathbb{R}^{3} or higher is dramatically different!

[^4]
Some discrete geometry

However,

Theorem

(Pach-Tardos-Tóth) For every $n \in \mathbb{N}$ there is an n-fold cover of \mathbb{R}^{2} with axis-parallel rectangles or with translates of a suitable concave quadrilateral that has no good 2-colouring.

Remark

The case of \mathbb{R}^{3} or higher is dramatically different!

Remark

Surprisingly, this theory has applications for sensor networks.

Set theory comes into the picture

J. Pach asked whether such results could be proved for infinite κ.

Theorem
 (Aharoni-Hajnal-Milner) Let κ be a cardinal (finite or infinite) and L be a linearly ordered set. Then every κ-fold cover of L consisting of convex sets has a good κ-colouring.

Question

(Pach Hain:l) How about the higher dimensional versions? E.g. rectangles in \mathbb{R}^{2} ?

Set theory comes into the picture

J. Pach asked whether such results could be proved for infinite κ.

Theorem

(Aharoni-Hajnal-Milner) Let κ be a cardinal (finite or infinite) and L be a linearly ordered set. Then every κ-fold cover of L consisting of convex sets has a good κ-colouring.

Question

(nach, I'ajnal) How about the higher dimensional versions? E.g. rectangles in \mathbb{R}^{2} ?

Set theory comes into the picture

J. Pach asked whether such results could be proved for infinite κ.

Theorem

(Aharoni-Hajnal-Milner) Let κ be a cardinal (finite or infinite) and L be a linearly ordered set. Then every κ-fold cover of L consisting of convex sets has a good κ-colouring.

Question

(Pach, Hajnal) How about the higher dimensional versions? E.g. rectangles in \mathbb{R}^{2} ?

Two easy examples

Statement

Let κ be infinite and X be a set with $|X| \leq r$. Then every κ-fold cover of X has a good κ-colouring.

Proof Trivial transfinite recursion. Let $\left\{x_{\alpha}: \alpha<\kappa\right\}$ be so that each $x \in X$ occurs κ times. When x shows up for the α 's time, there is an uncoloured H containing x, give it colour α. T

Statement

Let κ be infinite and X be a set with $X \mid \geq 2$. Then there is a k-fold cover of X that has not even a good 2-colouring.

Proof We may assume $X=[\kappa]^{\kappa}$. The cover \mathcal{H} will be of the form $\left\{H_{\alpha}: \alpha<\kappa\right\}$. The idea is that for every $A \in[\kappa]^{\kappa}$ there will be an $x \in X$ so that $x \in H_{\alpha} \Longleftrightarrow \alpha \in A$. But this is easity achieved by choosing $x=A$, that is, by setting $H_{\alpha}=\left\{A \in[\kappa]^{\prime \prime}: \alpha \in A\right\}$. \square

Two easy examples

Statement

Let κ be infinite and X be a set with $|X| \leq \kappa$. Then every κ-fold cover of X has a good κ-colouring.

Proof Trivial transfinite recursion. Let $\left\{x_{\alpha}: \alpha<\kappa\right\}$ be so that each $x \in X$ occurs κ times. When x shows up for the α 's time, there is an uncoloured H containing x, give it colour α. \square

Statement

Let κ be infinite and X be a set with $|X| \geq 2^{\kappa}$. Then there is a κ-fold cover of X that has not even a good 2-colouring.

Proof We may assume $X=[\kappa]^{\kappa}$. The cover \mathcal{H} will be of the form $\left\{H_{\alpha}: \alpha<\kappa\right\}$. The idea is that for every $A \in[\kappa]^{\kappa}$ there will be an $x \in X$ so that $x \in H_{\alpha} \Longleftrightarrow \alpha \in A$. But this is easily achieved by choosing $x=A$, that is, by setting $H_{\alpha}=\left\{A \in[\kappa]^{\kappa}: \alpha \in A\right\}$. \square

Two easy examples

Statement

Let κ be infinite and X be a set with $|X| \leq \kappa$. Then every κ-fold cover of X has a good κ-colouring.

Proof Trivial transfinite recursion. Let $\left\{x_{\alpha}: \alpha<\kappa\right\}$ be so that each $x \in X$ occurs κ times.
colour α. \square
Statement
Let κ be infinite and X be a set with $X \mid \geq 2^{2}$. Then there is a κ-fold cover of X that
has not even a good 2-colouring.
Proof We may assume $X=[\kappa]^{\kappa}$. The cover \mathcal{H} will be of the form $\left\{H_{\alpha}: \alpha<\kappa\right\}$. The idea is that for every $A \in[\kappa]^{\kappa}$ there will be an $x \in X$ so that $x \in H_{\alpha} \Longleftrightarrow \alpha \in A$. But this is easily achieved by choosing $x=A$, that is, by selting $H_{\alpha}=\left\{A \in[k]^{\circ}: \alpha \in A\right\}$ \square

Two easy examples

Statement

Let κ be infinite and X be a set with $|X| \leq \kappa$. Then every κ-fold cover of X has a good κ-colouring.

Proof Trivial transfinite recursion. Let $\left\{x_{\alpha}: \alpha<\kappa\right\}$ be so that each $x \in X$ occurs κ times. When x shows up for the α 's time, there is an uncoloured H containing x, give it colour α.

Statement
Let κ be infinite and X be a set with $|X| \geq 2^{\kappa}$. Then there is a κ-fold cover of X that has not even a good 2-colouring.

Proof We may assume $X=[\kappa]^{\kappa}$. The cover \mathcal{H} will be of the form $\left\{H_{\alpha}: \alpha<\kappa\right\}$. The idea is that for every $A \in[\kappa]^{\kappa}$ there will be an $x \in X$ so that $x \in H_{\alpha} \Longleftrightarrow \alpha \in A$. But this is easily achieved by choosing $x=A$, that is, by setting $H_{\alpha}=\left\{A \in[\kappa]^{\kappa}: \alpha \in A\right\}$. \square

Two easy examples

Statement

Let κ be infinite and X be a set with $|X| \leq \kappa$. Then every κ-fold cover of X has a good κ-colouring.

Proof Trivial transfinite recursion. Let $\left\{x_{\alpha}: \alpha<\kappa\right\}$ be so that each $x \in X$ occurs κ times. When x shows up for the α 's time, there is an uncoloured H containing x, give it colour α.

Statement

Let κ be infinite and X be a set with $|X| \geq 2^{\kappa}$. Then there is a κ-fold cover of X that has not even a good 2-colouring.

Proof We may assume $X=[\kappa]^{\kappa}$. The cover \mathcal{H} will be of the form $\left\{H_{\alpha}: \alpha<\kappa\right\}$. The idea is that for every $A \in[\kappa]^{\kappa}$ there will be an $x \in X$ so that $x \in H_{\alpha} \Longleftrightarrow \alpha \in A$. But this is easily achieved by choosing $x=A$, that is, by setting $H_{\alpha}=\left\{A \in[\kappa]^{\kappa}: \alpha \in A\right\}$. \square

Two easy examples

Statement

Let κ be infinite and X be a set with $|X| \leq \kappa$. Then every κ-fold cover of X has a good κ-colouring.

Proof Trivial transfinite recursion. Let $\left\{x_{\alpha}: \alpha<\kappa\right\}$ be so that each $x \in X$ occurs κ times. When x shows up for the α 's time, there is an uncoloured H containing x, give it colour α.

Statement

Let κ be infinite and X be a set with $|X| \geq 2^{\kappa}$. Then there is a κ-fold cover of X that has not even a good 2-colouring.

Proof We may assume $X=[\kappa]^{\kappa}$. The cover \mathcal{H} will be of the form $\left\{H_{\alpha}\right.$
idea is that for every $A \in[k]^{k}$ there will be an $x \in X$ so that $x \in H_{\alpha} \Longleftrightarrow \alpha \in A$. But this is easily achieved by choosing $x=A$, that is, by setting $H_{\alpha}=\left\{A \in[k]^{\kappa}: \alpha \in A\right\}$ \square

Two easy examples

Statement

Let κ be infinite and X be a set with $|X| \leq \kappa$. Then every κ-fold cover of X has a good κ-colouring.

Proof Trivial transfinite recursion. Let $\left\{x_{\alpha}: \alpha<\kappa\right\}$ be so that each $x \in X$ occurs κ times. When x shows up for the α 's time, there is an uncoloured H containing x, give it colour α.

Statement

Let κ be infinite and X be a set with $|X| \geq 2^{\kappa}$. Then there is a κ-fold cover of X that has not even a good 2-colouring.

Proof We may assume $X=[\kappa]^{\kappa}$. The cover \mathcal{H} will be of the form $\left\{H_{\alpha}: \alpha<\kappa\right\}$. idea is that for every $A \in[\kappa]^{\kappa}$ there will be an $x \in X$ so that $x \in H_{\alpha} \Longleftrightarrow \alpha \in A$. But this is easily achieved by choosing $x=A$, that is, by setting $H_{\alpha}=\left\{A \in[\kappa]^{\kappa}: \alpha \in A\right\}$ \square

Two easy examples

Statement

Let κ be infinite and X be a set with $|X| \leq \kappa$. Then every κ-fold cover of X has a good κ-colouring.

Proof Trivial transfinite recursion. Let $\left\{x_{\alpha}: \alpha<\kappa\right\}$ be so that each $x \in X$ occurs κ times. When x shows up for the α 's time, there is an uncoloured H containing x, give it colour α.

Statement

Let κ be infinite and X be a set with $|X| \geq 2^{\kappa}$. Then there is a κ-fold cover of X that has not even a good 2 -colouring.

Proof We may assume $X=[\kappa]^{\kappa}$. The cover \mathcal{H} will be of the form $\left\{H_{\alpha}: \alpha<\kappa\right\}$. The idea is that for every $A \in[\kappa]^{\kappa}$ there will be an $x \in X$ so that $x \in H_{\alpha} \Longleftrightarrow \alpha \in A$. But this is easily achieved by choosing $x=A$, that is, by setting $H_{\alpha}=\left\{A \in[\kappa]^{\kappa}: \alpha \in A\right\}$ \square

Two easy examples

Statement

Let κ be infinite and X be a set with $|X| \leq \kappa$. Then every κ-fold cover of X has a good κ-colouring.

Proof Trivial transfinite recursion. Let $\left\{x_{\alpha}: \alpha<\kappa\right\}$ be so that each $x \in X$ occurs κ times. When x shows up for the α 's time, there is an uncoloured H containing x, give it colour α.

Statement

Let κ be infinite and X be a set with $|X| \geq 2^{\kappa}$. Then there is a κ-fold cover of X that has not even a good 2 -colouring.

Proof We may assume $X=[\kappa]^{\kappa}$. The cover \mathcal{H} will be of the form $\left\{H_{\alpha}: \alpha<\kappa\right\}$. The idea is that for every $A \in[\kappa]^{\kappa}$ there will be an $x \in X$ so that $x \in H_{\alpha} \Longleftrightarrow \alpha \in A$. But this is easily achieved by choosing $x=A$, that is, by setting $H_{\alpha}=\left\{A \in[\kappa]^{\kappa}: \alpha \in A\right\}$.

Convex bodies

The case $\kappa<\omega$ is very well studied by geometers.
For $\kappa=\omega$ there are many counterexamples.

Theorem

There is an ω-fold cover of \mathbb{R}^{2} by axis-parallel closed rectangles that has no good 2-colouring.

However, we do not know if the cover can consist of translates of a fixed set.

Convex bodies

The case $\kappa<\omega$ is very well studied by geometers.
For $\kappa=\omega$ there are many counterexamples.

Theorem

There is an ω-fold cover of \mathbb{R}^{2} by axis-parallel closed rectangles that has no good 2-colouring.

However, we do not know if the cover can consist of translates of a fixed set.

Convex bodies

The case $\kappa<\omega$ is very well studied by geometers.
For $\kappa=\omega$ there are many counterexamples.

Theorem

There is an ω-fold cover of \mathbb{R}^{2} by axis-parallel closed rectangles that has no good 2-colouring.

However, we do not know if the cover can consist of translates of a fixed set.

Convex bodies

The case $\kappa<\omega$ is very well studied by geometers.
For $\kappa=\omega$ there are many counterexamples.

Theorem

There is an ω-fold cover of \mathbb{R}^{2} by axis-parallel closed rectangles that has no good 2-colouring.

However, we do not know if the cover can consist of translates of a fixed set.

Convex bodies

Let now κ be uncountable.

Statement

If \mathcal{H} is a к-fold cover of a set X and $|X| \leq k$ then \mathcal{H} has a good r-colouring.
Hence $\kappa=2^{\omega}$ is easy, and so the nontrivial questions are $\omega_{1} \leq \kappa<2^{\omega}$
Hence under CH everything is clear.
The next slide summarises what we know if we do not assume CH .

Convex bodies

Let now κ be uncountable. Recall

Statement

If \mathcal{H} is a κ-fold cover of a set X and $|X| \leq \kappa$ then \mathcal{H} has a good κ-colouring.
Hence $\kappa=2^{\omega}$ is easy, and so the nontrivial questions are $\omega_{1} \leq \kappa<2^{\omega}$.
Hence under CH everything is clear.
The next slide summarises what we know if we do not assume CH .

Convex bodies

Let now κ be uncountable. Recall

Statement

If \mathcal{H} is a κ-fold cover of a set X and $|X| \leq \kappa$ then \mathcal{H} has a good κ-colouring.
Hence $\kappa=2^{\omega}$ is easy, and so the nontrivial questions are $\omega_{1} \leq \kappa<2^{\omega}$.
Hence under CH everything is clear.
The next slide summarises what we know if we do not assume CH .

Convex bodies

Let now κ be uncountable.
Recall

Statement

If \mathcal{H} is a κ-fold cover of a set X and $|X| \leq \kappa$ then \mathcal{H} has a good κ-colouring.
Hence $\kappa=2^{\omega}$ is easy, and so the nontrivial questions are $\omega_{1} \leq \kappa<2^{\omega}$. Hence under CH everything is clear.
The next slide summarises what we know if we do not assume CH .

Convex bodies

Let now κ be uncountable.
Recall

Statement

If \mathcal{H} is a κ-fold cover of a set X and $|X| \leq \kappa$ then \mathcal{H} has a good κ-colouring.
Hence $\kappa=2^{\omega}$ is easy, and so the nontrivial questions are $\omega_{1} \leq \kappa<2^{\omega}$. Hence under CH everything is clear.
The next slide summarises what we know if we do not assume CH .

Convex bodies

Theorem

Let $\kappa \geq \omega_{1}$. Then every κ-fold cover of \mathbb{R}^{2} by closed polygons has a good κ-colouring.

Theorem

Let $\kappa \geq \omega_{1}$. Then every κ-fold cover of \mathbb{R}^{2} by closed discs has a good κ-colouring.
But!

Theorem

Assume $M A_{\kappa}\left(\sigma\right.$-centered). Then there exists a κ-fold cover of \mathbb{R}^{2} by isometric copies of a strictly convex compact set that has no good 2-colouring.

We do not now if the isometries can be replaced by translations.

Convex bodies

Theorem

Let $\kappa \geq \omega_{1}$. Then every κ-fold cover of \mathbb{R}^{2} by closed polygons has a good κ-colouring.

Theorem

Let $\kappa \geq \omega_{1}$. Then every κ-fold cover of \mathbb{R}^{2} by closed discs has a good κ-colouring.

But!

Theorem
Assume MA. (σ-centered). Then there exists a k-fold cover of \mathbb{R}^{2} by isometric copies of a strictly convex compact set that has no good 2-colouring.

We do not now if the isometries can be replaced by translations.

Convex bodies

Theorem

Let $\kappa \geq \omega_{1}$. Then every κ-fold cover of \mathbb{R}^{2} by closed polygons has a good κ-colouring.

Theorem

Let $\kappa \geq \omega_{1}$. Then every κ-fold cover of \mathbb{R}^{2} by closed discs has a good κ-colouring.
But!

Theorem

Assume $M A_{\kappa}(\sigma$-centered $)$. Then there exists a κ-fold cover of \mathbb{R}^{2} by isometric copies of a strictly convex compact set that has no good 2-colouring.

We do not now if the isometries can be replaced by translations.

Convex bodies

Theorem

Let $\kappa \geq \omega_{1}$. Then every κ-fold cover of \mathbb{R}^{2} by closed polygons has a good κ-colouring.

Theorem

Let $\kappa \geq \omega_{1}$. Then every κ-fold cover of \mathbb{R}^{2} by closed discs has a good κ-colouring.
But!

Theorem

Assume $M A_{\kappa}(\sigma$-centered $)$. Then there exists a κ-fold cover of \mathbb{R}^{2} by isometric copies of a strictly convex compact set that has no good 2-colouring.

We do not now if the isometries can be replaced by translations.

Closed sets

Let first $\kappa \leq \omega$.

Theorem

There exists an ω-fold cover of \mathbb{R}^{2} with translates of a fixed compact set that has no good 2-colouring.

Let now κ be uncountable.
As mentioned above, if CH holds then all r-fold covers have good r-colourings for every $\kappa \geq \omega_{1}$.
The next theorem shows that this positive statement is also consistent with an arbitrarily large continuum. More precisely, we can add an arbitrary number of Cohen reals to a suitable model of $Z F C$.

Theorem

Iet λ be a cardinal and V be a model of ZFC satisfying $G C H+\square_{\mu}$ for every $\omega=c f(\mu)<\mu \leq \lambda$. Denote by $V^{\mathcal{C}_{\lambda}}$ the model obtained by adding λ Cohen reals. Then in $V^{\mathcal{C}_{\lambda}}$ for every $\kappa \geq \omega_{1}$ every κ-fold cover of \mathbb{R}^{2} consisting of closed sets has a good κ-colouring.

Closed sets

Let first $\kappa \leq \omega$.

Theorem

There exists an ω-fold cover of \mathbb{R}^{2} with translates of a fixed compact set that has no good 2-colouring.

Let now κ be uncountable.
As mentioned above, if CH holds then all κ-fold covers have good k-colourings for every $\kappa \geq \omega_{1}$.
The next theorem shows that this positive statement is also consistent with an arbitrarily large continuum. More precisely, we can add an arbitrary number of Cohen reals to a suitable model of ZFC.

Theorem

Let λ be a cardinal and V be a model of ZFC satisfying $G C H+\square_{\mu}$ for every
 Then in $V^{C} \lambda$ for every $k \geq \omega_{1}$ every k-fold cover of \mathbb{R}^{2} consisting of closed sets has a good κ-colouring.

Closed sets

Let first $\kappa \leq \omega$.

Theorem

There exists an ω-fold cover of \mathbb{R}^{2} with translates of a fixed compact set that has no good 2 -colouring.

Let now κ be uncountable.
As mentioned above, if CH holds then all κ-fold covers have good κ-colourings for every
The next theorem shows that this positive statement is also consistent with an arbitrarity large continuum. More precisely, we can add an arbitrary number of Cohen reals to a suitable model of ZFC.

Theorem

Let λ be a cardinal and V be a model of ZFC satisfying $G C H+\square_{\mu}$ for every
 Then in $V^{\mathcal{C}_{\lambda}}$ for every $\kappa \geq \omega_{1}$ every κ-fold cover of \mathbb{R}^{2} consisting of closed sets has a good к-colouring.

Closed sets

Let first $\kappa \leq \omega$.

Theorem

There exists an ω-fold cover of \mathbb{R}^{2} with translates of a fixed compact set that has no good 2 -colouring.

Let now κ be uncountable.
As mentioned above, if CH holds then all κ-fold covers have good κ-colourings for every $\kappa \geq \omega_{1}$.
The next theorem shows that this positive statement is also consistent with an arbitrarily large continuum. More precisely, we can add an arbitrary number of Cohen reals to a suitable model of ZFC.

Theorem

Let λ be a cardinal and V be a model of ZFC satisfying $G C H+\square_{\mu}$ for every $\omega=c f(\mu)<\mu \leq \lambda$. Denote by $V^{\mathcal{C}_{\lambda}}$ the model obtained by adding λ Cohen reals. Then in $V^{\mathcal{C}_{\lambda}}$ for every $\kappa \geq \omega_{1}$ every κ-fold cover of \mathbb{R}^{2} consisting of closed sets has a good k -colouring.

Closed sets

Let first $\kappa \leq \omega$.

Theorem

There exists an ω-fold cover of \mathbb{R}^{2} with translates of a fixed compact set that has no good 2-colouring.

Let now κ be uncountable.
As mentioned above, if CH holds then all κ-fold covers have good κ-colourings for every $\kappa \geq \omega_{1}$.
The next theorem shows that this positive statement is also consistent with an arbitrarily large continuum. More precisely, we can add an arbitrary number of Cohen reals to a suitable model of ZFC.

Closed sets

Let first $\kappa \leq \omega$.

Theorem

There exists an ω-fold cover of \mathbb{R}^{2} with translates of a fixed compact set that has no good 2-colouring.

Let now κ be uncountable.
As mentioned above, if CH holds then all κ-fold covers have good κ-colourings for every $\kappa \geq \omega_{1}$.
The next theorem shows that this positive statement is also consistent with an arbitrarily large continuum. More precisely, we can add an arbitrary number of Cohen reals to a suitable model of ZFC.

Theorem

Let λ be a cardinal and V be a model of ZFC satisfying $G C H+\square_{\mu}$ for every $\omega=c f(\mu)<\mu \leq \lambda$. Denote by $V^{\mathcal{C}_{\lambda}}$ the model obtained by adding λ Cohen reals. Then in $V^{\mathcal{C}_{\lambda}}$ for every $\kappa \geq \omega_{1}$ every κ-fold cover of \mathbb{R}^{2} consisting of closed sets has a good κ-colouring.

Closed sets

Let first $\kappa \leq \omega$.

Theorem

There exists an ω-fold cover of \mathbb{R}^{2} with translates of a fixed compact set that has no good 2-colouring.

Let now κ be uncountable.
As mentioned above, if CH holds then all κ-fold covers have good κ-colourings for every $\kappa \geq \omega_{1}$.
The next theorem shows that this positive statement is also consistent with an arbitrarily large continuum. More precisely, we can add an arbitrary number of Cohen reals to a suitable model of ZFC.

Theorem

Let λ be a cardinal and V be a model of ZFC satisfying $G C H+\square_{\mu}$ for every $\omega=c f(\mu)<\mu \leq \lambda$. Denote by $V^{\mathcal{C}_{\lambda}}$ the model obtained by adding λ Cohen reals. Then in $V^{\mathcal{C}_{\lambda}}$ for every $\kappa \geq \omega_{1}$ every κ-fold cover of \mathbb{R}^{2} consisting of closed sets has a good κ-colouring.

How about the negative consistency?

Closed sets

Theorem

Assume $M A_{\kappa}(\sigma$-centered $)$. Then there exists a κ-fold cover of \mathbb{R}^{2} by translates of a compact set that has a no good 2-colouring.

Remark

Actually, the $\kappa=\omega$ result is a consequence of this one, as $M A_{\omega}(\sigma$-centered $)$ is true.

Closed sets

Theorem

Assume $M A_{\kappa}(\sigma$-centered $)$. Then there exists a κ-fold cover of \mathbb{R}^{2} by translates of a compact set that has a no good 2-colouring.

Remark

Actually, the $\kappa=\omega$ result is a consequence of this one, as $M A_{\omega}$ (σ-centered) is true.

Arbitrary sets

We look for 'an optimal bound for the size of elements of the κ-fold cover \mathcal{H} '. The right notion turns out to be the following.

Definition

Let $\mathcal{S}(\kappa)$ be the minimal cardinal such that for every $\lambda<\mathcal{S}(\kappa)$ every κ-fold cover \mathcal{H} with $|H|<\lambda(\forall H \in \mathcal{H})$ has a good κ-colouring.

Theorem

$$
\kappa^{++}<\boldsymbol{S}(\kappa) \leq\left(2^{\kappa}\right)+\text { for every } \kappa \geq \omega
$$

Corollary

Assume GCH. Then $S(k)=k^{t}+=\left(2^{k}\right)$ for every $k \geq \omega$.
The next slide shows that neither value is 'correct'.

Arbitrary sets

We look for 'an optimal bound for the size of elements of the κ-fold cover \mathcal{H} '. The right notion turns out to be the following.

Definition
Let $\mathcal{S}(\kappa)$ be the minimal cardinal such that for every $\lambda<\mathcal{S}(\kappa)$ every κ-fold cover \mathcal{H} with $|H|<\lambda(\forall H \in \mathcal{H})$ has a good κ-colouring.

Theorem

\square
$\kappa^{++}<\boldsymbol{S}(\kappa) \leq\left(2^{\kappa}\right)+$ for every h

Corollary

Assume GCH. Then $S(k)=k^{+t}=\left(2^{k}\right)+$ for every k
The next slide shows that neither value is 'correct'

Arbitrary sets

We look for 'an optimal bound for the size of elements of the κ-fold cover \mathcal{H} '. The right notion turns out to be the following.

Definition

Let $\mathcal{S}(\kappa)$ be the minimal cardinal such that for every $\lambda<\mathcal{S}(\kappa)$ every κ-fold cover \mathcal{H} with $|H|<\lambda(\forall H \in \mathcal{H})$ has a good κ-colouring.

Theorem

Corollary
Assume GCH. Then $S(k)=k^{t}+=\left(2^{k}\right)+$ for every $k \geq \omega$.
The next slide shows that neither value is 'correct'

Arbitrary sets

We look for 'an optimal bound for the size of elements of the κ-fold cover \mathcal{H} '. The right notion turns out to be the following.

Definition

Let $\mathcal{S}(\kappa)$ be the minimal cardinal such that for every $\lambda<\mathcal{S}(\kappa)$ every κ-fold cover \mathcal{H} with $|H|<\lambda(\forall H \in \mathcal{H})$ has a good κ-colouring.

Theorem

$$
\kappa^{++} \leq \mathcal{S}(\kappa) \leq\left(2^{\kappa}\right)^{+} \text {for every } \kappa \geq \omega
$$

Corollary
Assume GCH. Then $S(\kappa)=\kappa^{++}=\left(2^{\kappa}\right)^{+}$for every $\kappa \geq \omega$.
The next slide shows that neither value is 'correct'

Arbitrary sets

We look for 'an optimal bound for the size of elements of the κ-fold cover \mathcal{H} '. The right notion turns out to be the following.

Definition

Let $\mathcal{S}(\kappa)$ be the minimal cardinal such that for every $\lambda<\mathcal{S}(\kappa)$ every κ-fold cover \mathcal{H} with $|H|<\lambda(\forall H \in \mathcal{H})$ has a good κ-colouring.

Theorem

$$
\kappa^{++} \leq \mathcal{S}(\kappa) \leq\left(2^{\kappa}\right)^{+} \text {for every } \kappa \geq \omega
$$

Corollary

Assume GCH. Then $\mathcal{S}(\kappa)=\kappa^{++}=\left(2^{\kappa}\right)^{+}$for every $\kappa \geq \omega$.
The next slide shows that neither value is 'correct

Arbitrary sets

We look for 'an optimal bound for the size of elements of the κ-fold cover \mathcal{H} '. The right notion turns out to be the following.

Definition

Let $\mathcal{S}(\kappa)$ be the minimal cardinal such that for every $\lambda<\mathcal{S}(\kappa)$ every κ-fold cover \mathcal{H} with $|H|<\lambda(\forall H \in \mathcal{H})$ has a good κ-colouring.

Theorem

$\kappa^{++} \leq \mathcal{S}(\kappa) \leq\left(2^{\kappa}\right)^{+}$for every $\kappa \geq \omega$.

Corollary

Assume GCH. Then $\mathcal{S}(\kappa)=\kappa^{++}=\left(2^{\kappa}\right)^{+}$for every $\kappa \geq \omega$.
The next slide shows that neither value is 'correct'.

Arbitrary sets

Theorem

$$
\text { Assume }{ }^{\bullet} \kappa^{+} . \text {Then } \mathcal{S}(\kappa)=\kappa^{++} .
$$

Remark

Let $\kappa \geq \omega$. Then $S(\kappa)=\left(2^{\kappa}\right)^{+}$can fail, since ${ }^{0} \kappa^{+}+2^{\kappa}>\kappa^{+}$is consistent.

Theorem

Assume MAI countable). Then $S(\omega)=\left(2^{\omega}\right)$

Remark

This shows that $S(\omega)=\omega^{++}$can fail, since $M A($ countable $)+\neg C H$ is consistent.
So far we can only push this one cardinal higher.

Theorem

Assume Baumgartner's Axiom + CH. Then $\mathcal{S}\left(\omega_{1}\right)$

Arbitrary sets

Theorem

$$
\text { Assume }{ }_{\kappa^{+}} \text {. Then } \mathcal{S}(\kappa)=\kappa^{++}
$$

Remark

Let $\kappa \geq \omega$. Then $\mathcal{S}(\kappa)=\left(2^{\kappa}\right)^{+}$can fail, since ${ }^{\bullet}{ }_{\kappa^{+}}+2^{\kappa}>\kappa^{+}$is consistent.

Theorem

Assume MA(countable). Then $\mathcal{S}(\omega)=\left(2^{\omega}\right)$

Remark

This shows that $S(\omega)=\omega^{++}$can fail, since $M A($ countable $)+\neg C H$ is consistent.
So far we can only push this one cardinal higher.

Theorem

Assume Baumgartner's Axiom +CH . Then $\mathcal{S}\left(\omega_{1}\right)$

Arbitrary sets

Theorem

$$
\text { Assume } \bullet_{\kappa^{+}} \text {. Then } \mathcal{S}(\kappa)=\kappa^{++} .
$$

Remark

Let $\kappa \geq \omega$. Then $\mathcal{S}(\kappa)=\left(2^{\kappa}\right)^{+}$can fail, since ${ }^{\bullet}{ }_{\kappa^{+}}+2^{\kappa}>\kappa^{+}$is consistent.

Theorem

Assume MA(countable). Then $\mathcal{S}(\omega)=\left(2^{\omega}\right)^{+}$.

Remark

This shows that $\mathcal{S}(\omega)=\omega^{++}$can fail, since $M A($ countable $)+\neg C H$ is consistent.
So far we can only push this one cardinal higher.

Theorem

Assume Baumgartner's Axiom +CH . Then $S\left(\omega_{1}\right)>\omega_{1}^{++}$.

Arbitrary sets

Theorem

$$
\text { Assume } \emptyset_{\kappa^{+}} \text {. Then } \mathcal{S}(\kappa)=\kappa^{++} .
$$

Remark

Let $\kappa \geq \omega$. Then $\mathcal{S}(\kappa)=\left(2^{\kappa}\right)^{+}$can fail, since ${ }^{\bullet}{ }_{\kappa^{+}}+2^{\kappa}>\kappa^{+}$is consistent.

Theorem

Assume MA(countable). Then $\mathcal{S}(\omega)=\left(2^{\omega}\right)^{+}$.

Remark

This shows that $\mathcal{S}(\omega)=\omega^{++}$can fail, since $M A($ countable $)+\neg C H$ is consistent.
So far we can only push this one cardinal higher.

Theorem

Ascume Baumgartner's Axiom +CH . Then $S\left(\omega_{1}\right)>\omega_{1}^{+}$.

Arbitrary sets

Theorem

$$
\text { Assume }{ }^{\bullet} \kappa^{+} . \text {Then } \mathcal{S}(\kappa)=\kappa^{++}
$$

Remark

Let $\kappa \geq \omega$. Then $\mathcal{S}(\kappa)=\left(2^{\kappa}\right)^{+}$can fail, since ${ }^{\bullet}{ }_{\kappa^{+}}+2^{\kappa}>\kappa^{+}$is consistent.

Theorem

Assume MA(countable). Then $\mathcal{S}(\omega)=\left(2^{\omega}\right)^{+}$.

Remark

This shows that $\mathcal{S}(\omega)=\omega^{++}$can fail, since $M A($ countable $)+\neg C H$ is consistent.
So far we can only push this one cardinal higher.

Theorem

Assume Baumgartner's Axiom $+\mathcal{C H}$. Then $\mathcal{S}\left(\omega_{1}\right)>\omega_{1}^{++}$.

Arbitrary sets

Remark

By a simple argument all result of this section can be translated to the language of Bernstein property of families of sets.

Graphs

As this is a very special case, we are more ambitious here. We look for complete characterisations of good κ-colourable graphs.
The case of infinite κ is completely solved.

Theorem

Let $\kappa \geq \omega$ and $G=(V, E)$ be a graph such that each vertex is of degree at least κ. Then E has a good κ-colouring, that is, the edges can be coloured by κ colours so that every veriex is covered' by edges of all colours.
$\kappa=2$ is also solved ($\kappa<2$ is trivial).

Theorem

Let $G=(V, E)$ be graph such that each vertex is of degree at least 2. Then E has a good κ-colouring iff no connected component of G is an odd cycle.

Remark

For $3<\kappa<\omega$ such a characterisation seems to be difficult. Indeed, even for finite 3 -regular graphs this is NP-complete.

Graphs

As this is a very special case, we are more ambitious here. We look for complete characterisations of good κ-colourable graphs.

The case of infinite κ is completely solved.

Theorem

\square
Let $\kappa>\omega$ and $G=(V, E)$ be a graph such that each vertex is of degree at least κ Then E has a good κ-colouring, that is, the edges can be coloured by κ colours so that every vertex is covered by edges of all colours.
$\kappa=2$ is also solved $(\kappa<2$ is trivial).

Theorem

$\mathbf{L}+\mathrm{G}=(\boldsymbol{V}, E)$ be graph such that each vertex is of degree at least 2. Then E has a good κ-colouring iff no connected component of G is an odd cycle.

Remark

For $3 \leq \kappa<\omega$ such a characterisation seems to be difficult. Indeed, even for finite 3-regular graphs this is NP-complete.

Graphs

As this is a very special case, we are more ambitious here. We look for complete characterisations of good κ-colourable graphs.
The case of infinite κ is completely solved.

Theorem

Let $\kappa \geq \omega$ and $G=(V, E)$ be a graph such that each vertex is of degree at least κ. Then E has a good κ-colouring, that is, the edges can be coloured by κ colours so that every vertex is covered by edges of all colours.
$\kappa=2$ is also solved ($\kappa<2$ is trivial).
Theorem
Let $G=(V, E)$ be graph such that each vertex is of degree at least 2 . Then E has a
good κ-colouring iff no connected component of G is an odd cycle.

Remark
For $3 \leq \kappa<\omega$ such a characterisation seems to be difficult. Indeed, even for finite
3 -regular graphs this is NP-complete.

Graphs

As this is a very special case, we are more ambitious here. We look for complete characterisations of good κ-colourable graphs.
The case of infinite κ is completely solved.

Theorem

Let $\kappa \geq \omega$ and $G=(V, E)$ be a graph such that each vertex is of degree at least κ. Then E has a good κ-colouring, that is, the edges can be coloured by κ colours so that every vertex is covered by edges of all colours.
$\kappa=2$ is also solved ($\kappa<2$ is trivial).

Theorem

Let $G=(V, E)$ be graph such that each vertex is of degree at least 2. Then E has a good κ-colouring iff no connected component of G is an odd cycle.

[^5]
Graphs

As this is a very special case, we are more ambitious here. We look for complete characterisations of good κ-colourable graphs.
The case of infinite κ is completely solved.

Theorem

Let $\kappa \geq \omega$ and $G=(V, E)$ be a graph such that each vertex is of degree at least κ. Then E has a good κ-colouring, that is, the edges can be coloured by κ colours so that every vertex is covered by edges of all colours.
$\kappa=2$ is also solved ($\kappa<2$ is trivial).

Theorem

Let $G=(V, E)$ be graph such that each vertex is of degree at least 2. Then E has a good κ-colouring iff no connected component of G is an odd cycle.

Remark

For $3 \leq \kappa<\omega$ such a characterisation seems to be difficult. Indeed, even for finite 3 -regular graphs this is NP-complete.

Graphs

However, we have the following sufficient condition.

Theorem

Let $1 \leq \kappa<\omega$. Let $G=(V, E)$ be a graph such that every vertex is of degree at least $\kappa+1$. Then E has a good κ-colouring.

Graphs

However, we have the following sufficient condition.

Theorem

Let $1 \leq \kappa<\omega$. Let $G=(V, E)$ be a graph such that every vertex is of degree at least $\kappa+1$. Then E has a good κ-colouring.

Open problems

Question

```
\et \mathcal{H be an wr -fold cover of }\mp@subsup{\mathbb{R}}{}{2}\mathrm{ by closed sets such that |H}|=\mp@subsup{\omega}{1}{}\mathrm{ . Does it have a}
good \mp@subsup{\omega}{1}{}-colouring?
```


This follows from CH , but is this true in ZFC?

Question

Is there an ω-fold cover of \mathbb{R}^{2} by translates of a compact convex set that has no a good ω-colouring?

There are so many more! See the preprint that is going to be available soon at

> www.renyi.hu/~emarci.

Open problems

Question

Let \mathcal{H} be an ω_{1}-fold cover of \mathbb{R}^{2} by closed sets such that $|\mathcal{H}|=\omega_{1}$. Does it have a good ω_{1}-colouring?

This follows from CH , but is this true in ZFC?

Question

Is there an w-fold cover of \mathbb{R}^{2} by translates of a compact convex set that has no a good ω-colouring?

There are so many more! See the preprint that is going to be available soon at
www.renyi.hu/~emarci.

Open problems

Question

Let \mathcal{H} be an ω_{1}-fold cover of \mathbb{R}^{2} by closed sets such that $|\mathcal{H}|=\omega_{1}$. Does it have a good ω_{1}-colouring?

This follows from CH , but is this true in ZFC?

Question

Is there an w-fold cover of \mathbb{R}^{2} by translates of a compact convex set that has no a good ω-colouring?

There are so many more! See the preprint that is going to be available soon at
www.renyi.hu/~emarci.

Open problems

Question

Let \mathcal{H} be an ω_{1}-fold cover of \mathbb{R}^{2} by closed sets such that $|\mathcal{H}|=\omega_{1}$. Does it have a good ω_{1}-colouring?

This follows from CH , but is this true in ZFC ?

Question

Is there an ω-fold cover of \mathbb{R}^{2} by translates of a compact convex set that has no a good ω-colouring?

There are so many more! See the preprint that is going to be available soon at
www.renyi.hu/~emarci.

Open problems

Question

Let \mathcal{H} be an ω_{1}-fold cover of \mathbb{R}^{2} by closed sets such that $|\mathcal{H}|=\omega_{1}$. Does it have a good ω_{1}-colouring?

This follows from CH , but is this true in ZFC?

Question

Is there an ω-fold cover of \mathbb{R}^{2} by translates of a compact convex set that has no a good ω-colouring?

There are so many more! See the preprint that is going to be available soon at www.renyi.hu/~emarci.

[^0]: Remark
 It would also be natural (and useful) to define these notions relative to a set $Y \subset X$, but for the sake of simplicity we stick to $Y=X$ in this talk.

[^1]: Fact
 \mathcal{H} has a good κ-colouring iff it can be decomposed into κ many disjoint subcovers.

 Remark
 It would also be natural (and useful) to define these notions relative to a set $Y \subset X$, but for the sake of simplicity we stick to $Y=X$ in this talk.

[^2]: Conjecture
 (Pach) The same holds for every convex set.

[^3]: Conjecture
 (Pach) The same holds for every convex set.

[^4]: Remark
 Surprisingly, this theory has applications for sensor networks.

[^5]: Remark
 For $3 \leq \kappa<\omega$ such a characterisation seems to be difficult. Indeed, even for finite 3 -regular graphs this is NP-complete.

