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Definition

Let X be a set and κ be a cardinal (usually infinite). We say that H ⊂ P(X) is a κ-fold
cover of X if each x ∈ X is covered at least κ times.

Question

(Main question) Under what assumptions can we decompose a κ-fold cover into κ
many disjoint subcovers?

An equivalent formulation:

Definition

Let H ⊂ P(X). We say that c : H → κ is a good colouring with κ colours, (or a good
κ-colouring), if ∀x ∈ X and ∀α < κ ∃H ∈ H such that x ∈ H and c(H) = α.

Fact

H has a good κ-colouring iff it can be decomposed into κ many disjoint subcovers.

Remark

It would also be natural (and useful) to define these notions relative to a set Y ⊂ X , but
for the sake of simplicity we stick to Y = X in this talk.
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Some discrete geometry

Theorem

(Mani-Pach, unpublished, more than 20 years old, ca. 100 pages) Every 33-fold cover
of R2 with unit discs has a good 2-colouring.

Theorem

(Tardos-Tóth) Every 43-fold cover of R2 with translates of a triangle has a good
2-colouring.

Theorem

(Tóth, ???) For every convex polygon there exists n ∈ N so that every n-fold cover of
R

2 with translates of the polygon has a good 2-colouring.

Conjecture

(Pach) The same holds for every convex set.
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Some discrete geometry

However,

Theorem

(Pach-Tardos-Tóth) For every n ∈ N there is an n-fold cover of R2 with axis-parallel
rectangles or with translates of a suitable concave quadrilateral that has no good
2-colouring.

Remark

The case of R3 or higher is dramatically different!

Remark

Surprisingly, this theory has applications for sensor networks.
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Set theory comes into the picture

J. Pach asked whether such results could be proved for infinite κ.

Theorem

(Aharoni-Hajnal-Milner) Let κ be a cardinal (finite or infinite) and L be a linearly ordered
set. Then every κ-fold cover of L consisting of convex sets has a good κ-colouring.

Question

(Pach, Hajnal) How about the higher dimensional versions? E.g. rectangles in R2?
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Two easy examples

Statement

Let κ be infinite and X be a set with |X | ≤ κ. Then every κ-fold cover of X has a good
κ-colouring.

Proof Trivial transfinite recursion. Let {xα : α < κ} be so that each x ∈ X occurs κ
times. When x shows up for the α’s time, there is an uncoloured H containing x , give it
colour α. �

Statement

Let κ be infinite and X be a set with |X | ≥ 2κ. Then there is a κ-fold cover of X that
has not even a good 2-colouring.

Proof We may assume X = [κ]κ. The cover H will be of the form {Hα : α < κ}. The
idea is that for every A ∈ [κ]κ there will be an x ∈ X so that x ∈ Hα ⇐⇒ α ∈ A. But
this is easily achieved by choosing x = A, that is, by setting Hα = {A ∈ [κ]κ : α ∈ A}.
�
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Convex bodies

The case κ < ω is very well studied by geometers.

For κ = ω there are many counterexamples.

Theorem

There is an ω-fold cover of R2 by axis-parallel closed rectangles that has no good
2-colouring.

However, we do not know if the cover can consist of translates of a fixed set.
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Let now κ be uncountable.
Recall

Statement

If H is a κ-fold cover of a set X and |X | ≤ κ then H has a good κ-colouring.

Hence κ = 2ω is easy, and so the nontrivial questions are ω1 ≤ κ < 2ω .
Hence under CH everything is clear.
The next slide summarises what we know if we do not assume CH.
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The next slide summarises what we know if we do not assume CH.
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Theorem

Let κ ≥ ω1. Then every κ-fold cover of R2 by closed polygons has a good κ-colouring.

Theorem

Let κ ≥ ω1. Then every κ-fold cover of R2 by closed discs has a good κ-colouring.

But!

Theorem

Assume MAκ(σ-centered). Then there exists a κ-fold cover of R2 by isometric copies of
a strictly convex compact set that has no good 2-colouring.

We do not now if the isometries can be replaced by translations.
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Let first κ ≤ ω.

Theorem

There exists an ω-fold cover of R2 with translates of a fixed compact set that has no
good 2-colouring.

Let now κ be uncountable.
As mentioned above, if CH holds then all κ-fold covers have good κ-colourings for
every κ ≥ ω1.
The next theorem shows that this positive statement is also consistent with an
arbitrarily large continuum. More precisely, we can add an arbitrary number of Cohen
reals to a suitable model of ZFC.

Theorem

Let λ be a cardinal and V be a model of ZFC satisfying GCH + �µ for every
ω = cf (µ) < µ ≤ λ. Denote by VCλ the model obtained by adding λ Cohen reals.
Then in VCλ for every κ ≥ ω1 every κ-fold cover of R2 consisting of closed sets has a
good κ-colouring.

How about the negative consistency?
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Theorem

Assume MAκ(σ-centered). Then there exists a κ-fold cover of R2 by translates of a
compact set that has a no good 2-colouring.

Remark

Actually, the κ = ω result is a consequence of this one, as MAω(σ-centered) is true.
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We look for ‘an optimal bound for the size of elements of the κ-fold cover H’. The right
notion turns out to be the following.

Definition

Let S(κ) be the minimal cardinal such that for every λ < S(κ) every κ-fold cover H
with |H| < λ (∀H ∈ H) has a good κ-colouring.

Theorem

κ++ ≤ S(κ) ≤ (2κ)+ for every κ ≥ ω.

Corollary

Assume GCH. Then S(κ) = κ++ = (2κ)+ for every κ ≥ ω.

The next slide shows that neither value is ‘correct’.
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Theorem

Assume |• κ+ . Then S(κ) = κ++.

Remark

Let κ ≥ ω. Then S(κ) = (2κ)+ can fail, since |• κ+ + 2κ > κ+ is consistent.

Theorem

Assume MA(countable). Then S(ω) = (2ω)+.

Remark

This shows that S(ω) = ω++ can fail, since MA(countable) + ¬CH is consistent.

So far we can only push this one cardinal higher.

Theorem

Assume Baumgartner’s Axiom +CH. Then S(ω1) > ω++
1 .
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Remark

By a simple argument all result of this section can be translated to the language of
Bernstein property of families of sets.
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As this is a very special case, we are more ambitious here. We look for complete
characterisations of good κ-colourable graphs.
The case of infinite κ is completely solved.

Theorem

Let κ ≥ ω and G = (V , E) be a graph such that each vertex is of degree at least κ.
Then E has a good κ-colouring, that is, the edges can be coloured by κ colours so that
every vertex is covered by edges of all colours.

κ = 2 is also solved (κ < 2 is trivial).

Theorem

Let G = (V , E) be graph such that each vertex is of degree at least 2. Then E has a
good κ-colouring iff no connected component of G is an odd cycle.

Remark

For 3 ≤ κ < ω such a characterisation seems to be difficult. Indeed, even for finite
3-regular graphs this is NP-complete.
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However, we have the following sufficient condition.

Theorem

Let 1 ≤ κ < ω. Let G = (V , E) be a graph such that every vertex is of degree at least
κ + 1. Then E has a good κ-colouring.
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Question

Let H be an ω1-fold cover of R2 by closed sets such that |H| = ω1. Does it have a
good ω1-colouring?

This follows from CH, but is this true in ZFC?

Question

Is there an ω-fold cover of R2 by translates of a compact convex set that has no a good
ω-colouring?

There are so many more! See the preprint that is going to be available soon at

www.renyi.hu/˜emarci.
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