Complexity of models of fuzzy predicate logics with witnessed semantics

Petr Hájek Institute of Computer Science Academy of Sciences 182 07 Prague, Czech Republic hajek@cs.cas.cz

The basic fuzzy propositional calculus.

The real unit interval [0,1] is taken to be the standard set of truth values; comparative notion of truth.

Continuous t-norms are taken as possible truth functions of *conjunction*.

Binary operation * on [0, 1] is a t-norm if it is commutative (x*y = y*x), associative (x*(y*z) = (x*y)*z), nondecreasing in each argument (if $x \le x'$ then $x*y \le x'*y$ and dually) and 1 is a unit element (1*x = x).

 $\begin{array}{ll} x*y = \max(0, x+y-1) & (\texttt{Lukasiewicz } t\text{-norm}), \\ x*y = \min(x,y) & (\texttt{Gödel } t\text{-norm}), \\ x*y = x \cdot y & (\texttt{product } t\text{-norm}). \end{array}$

The truth function of *implication* is the *residuum* of the corresponding t-norm.

$$x \Rightarrow y = \max\{z | x * z \le y\}.$$

 $x \Rightarrow y = 1$ iff $x \leq y$; for x > y

$$x \Rightarrow y = 1 - x + y$$
 (Łukasiewicz),
 $x \Rightarrow y = y$ (Gödel),
 $x \rightarrow y = y/x$ (product).

negation $(-)x = x \Rightarrow 0$ (-)x = 1 - x for Łukasiewicz, Gödel and product: (-)0 = 1, (-)x = 0 for x > 0

Basic propositional fuzzy logic BL:

propositional variables p, q, \ldots

connectives &, \rightarrow , truth constant $\overline{0}$

Given a continuous t-norm * (and its residuum \Rightarrow), each evaluation of variables extends to an evaluation of all formulas.

-tautology: a formula φ such that $e_(\varphi) = 1$ for each evaluation e.

t-tautology: *-tautology for each continuous t-norm *.

Axioms for connectives:
(A1)
$$(\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$

(A2) $(\varphi \& \psi) \rightarrow \varphi$
(A3) $(\varphi \& \psi) \rightarrow (\psi \& \varphi)$
(A4) $(\varphi \& (\varphi \rightarrow \psi)) \rightarrow (\psi \& (\psi \rightarrow \varphi))$
(A5a) $(\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \& \psi) \rightarrow \chi)$
(A5b) $((\varphi \& \psi) \rightarrow \chi) \rightarrow (\varphi \rightarrow (\psi \rightarrow \chi))$
(A6) $((\varphi \rightarrow \psi) \rightarrow \chi) \rightarrow (((\psi \rightarrow \varphi) \rightarrow \chi) \rightarrow \chi))$
(A7) $\overline{0} \rightarrow \varphi$

Deduction rule: modus ponens.

Łukasiewicz logic BL + $\neg \neg \varphi \rightarrow \varphi$ Gödel logic G: BL + $\varphi \rightarrow (\varphi \& \varphi)$ product logic П: BL + $(\varphi \rightarrow \neg \varphi) \rightarrow \neg \varphi$ + $\neg \neg \chi \rightarrow (((\varphi \& \chi) \rightarrow (\psi \& \chi)) \rightarrow (\varphi \rightarrow \psi))$

We write $\neg \varphi$ for $\varphi \rightarrow \overline{0}$, $\varphi \land \psi$ for $\varphi \& (\varphi \rightarrow \psi)$, $\varphi \lor \psi$ for $((\varphi \rightarrow \psi) \rightarrow \psi) \land ((\psi \rightarrow \varphi) \rightarrow \varphi)$

Truth function of \neg : $\neg x = 1 - x$ for Łukasiewicz, $\neg 0 = 1$, $\neg x = 0$ for x positive – Gödel, product (Gödel negation)

Truth function of \land , \lor is minimum, maximum for each *.

Standard Completeness: BL proves exactly all t-tautologies.

Ł proves exactly all $[0,1]_{\dagger}$ -tautologies.

- G proves exactly all $[01,]_G$ -tautologies.
- Π proves exactly all $[0, 1]_{\Pi}$ -tautologies.

(Cignoli-Esteva-Godo-Torrens)

General semantics.

A *BL*-algebra is a residuated lattice

$$\mathbf{L} = (L, \leq, *, \Rightarrow, \mathsf{O}_L, \mathsf{1}_L)$$

satisfying two additional conditions:

$$x \cap y = x * (x \Rightarrow y),$$

$$(x \Rightarrow y) \cup (y \Rightarrow x) = \mathbf{1}_L$$

 $[0,1]_{L}$, $[0,1]_{G}$, $[0,1]_{\Pi}$ – Łukasiewicz, Gödel and product t-algebra respectively.

Theorem strong completeness (for provability in theories over BL): For each theory T over BL, T proves φ iff for each [linearly ordered] BL-algebra L, φ is true in all L-models of T. (Here e is an L model of T if $e_{\rm L}(\alpha) = 1_{\rm L}$ for each axiom α of T.) Basic fuzzy predicate calculus $BL\forall$:

Predicates, variables, connectives, quantifiers \forall, \exists .

Axioms for quantifiers:

$$(\forall 1) \quad (\forall x)\varphi(x) \rightarrow \varphi(y)$$

 $(\exists 1) \quad \varphi(y) \rightarrow (\forall x)\varphi(x)$
 $(\forall 2) \quad (\forall x)(\chi \rightarrow \psi) \rightarrow (\chi \rightarrow (\forall x)\psi)$
 $(\exists 2) \quad (\forall x)(\varphi \rightarrow \chi) \rightarrow ((\exists x)\varphi \rightarrow \chi))$
 $(\forall 3) \quad (\forall x)(\varphi \lor \chi) \rightarrow ((\forall x)\varphi \lor \chi)$

 $L\forall$, $G\forall$, $\Pi\forall$, $BL\forall$

Given a *BL*-algebra **L**, an **L**-*interpretation* is a structure $\mathbf{M} = (M, (r_P)_{P \ predicate})$ where $M \neq \emptyset$ and for each predicate P of arity n, r_P is an nary **L**-fuzzy relation on M, i.e. $r_P : M^n \to \mathbf{L}$. $\|\varphi\|_{\mathbf{M},v}^{\mathbf{L}}$ – Tarski style conditions, $\|P(x,y)\|_{\mathbf{M},v}^{\mathbf{L}} = r_P(v(x),v(y)),$ $\|\varphi \& \psi\|_{\mathbf{M},v}^{\mathbf{L}} = \|\varphi\|_{\mathbf{M},v}^{\mathbf{L}} * \|\psi\|_{\mathbf{M},v}^{\mathbf{L}},$ $\|\varphi \to \psi\|_{\mathbf{M},v}^{\mathbf{L}} = \|\varphi\|_{\mathbf{M},v}^{\mathbf{L}} \Rightarrow \|\psi\|_{\mathbf{M},v}^{\mathbf{L}},$ $\|(\forall x)\varphi\|_{\mathbf{M},v}^{\mathbf{L}} = \inf\{\|\varphi\|_{\mathbf{M},v'}^{\mathbf{L}}|v' \equiv_{x} v\}$ $\|(\exists x)\varphi\|_{\mathbf{M},v}^{\mathbf{L}} = \sup\{\|\varphi\|_{\mathbf{M},v}^{\mathbf{L}}|v' \equiv_{x} v\}$ This is always defined if L is a t-algebra (all infima and suprema exist). For a general BLalgebra L we call M L-safe if all truth values $\|\varphi\|_{\mathbf{M},v}^{\mathbf{L}}$ are well defined. For closed φ write $\|\varphi\|_{\mathbf{M}}^{\mathbf{L}}.$

A closed formula φ of predicate logic is an Ltautology if $\|\varphi\|_{\mathbf{M}}^{\mathbf{L}} = \mathbf{1}_{\mathbf{L}}$ for all L-safe M. φ is L-satisfiable if $\|\varphi\|_{\mathbf{M}}^{\mathbf{L}} = \mathbf{1}_{\mathbf{L}}$ for some L-safe M. φ is a general *BL*-tautology if φ is an L-tautology for each linearly ordered *BL*-algebra (for each *BL*-chain).

 φ is a standard BL-tautology (or a t-tautology) if it is a tautology for each t-algebra $[0, 1]_*$. Generally BL-satisfiable, standardly BL-satisfiable – obvious.

Theorem (Completeness). Let T be a theory over $BL\forall$, let φ be a formula, $T \vdash \varphi$ (over $BL\forall$) iff φ is true in all **L**-models of T, **L** being an arbitrary BL-chain. (\mathbf{M}, Θ) is **witnessed** if for each formula $\varphi(x, y, ...)$ and each $b, ... \in M$, $\|(\forall x)\varphi(x, b, ...)\|_{\mathbf{M}}^{\Theta} = \min_{a} \|\varphi(a, b, ...)\|_{\mathbf{M}}^{\Theta}$, $\|(\exists x)\varphi(x, b, ...)\|_{\mathbf{M}}^{\Theta} = \max_{a} \|\varphi(a, b, ...)\|_{\mathbf{M}}^{\Theta}$, (I.e. there is an *a* with minimal (maximal) value of $\|\varphi(a, b, ...)\|$.)

Theorem 1. Over $\pounds \forall$ with standard semantic, each countable model **M** is an elementary submodel of a witnessed model **M'** (i.e. for each α , $\|\alpha\|_{\mathbf{M}}^{\mathbf{t}} = \|\alpha\|_{\mathbf{M}'}^{\mathbf{t}}$).

But e.g. for standard Gödel – example: $M = \{1, 2, ...\}, r_P(n) = \frac{1}{n+1}.$ Not witnessed: $\|(\forall x)P(x)\| = 0$, satisfies $\neg(\forall x)\varphi(x)\&\neg(\exists x)\neg\varphi(x)$ (not elem. embed. into witnessed). H.-Cintula: On theories and models in fuzzy logic, JSL: Axiom schemas: $(C\forall) \ (\exists x)(\varphi(x) \rightarrow (\forall y)\varphi(y))$ $(C\exists) \ (\exists x)((\exists y)\varphi(y) \rightarrow \varphi(x))$ For logic $\mathcal{L}\forall$, $\mathcal{L}\forall^w$ is \mathcal{L} extended by $(C\forall), (C\exists)$.

Theorem 2. (1) (M, Θ) is elementarily embeddable into a witnessed model iff $(C\forall), (C\exists)$ are true in (M, Θ) .

(2) For our logics \mathcal{L} , the logic $\mathcal{L}\forall^w$ is strongly complete w.r.t. witnessed models. 16 classes of formulas for each predicate calculus: $\{-,w\}$ arbitrary \times witnessed models $\{St, Gen\}$ standard \times general semantics $\{1, Pos\}$ designated: 1 \times positive values $\{Taut, Sat\}$ tautologies, satisfiable.

```
E.g. Gen1Taut(\pounds)
wStPosSat(\Pi)
etc.
```

Also: BoolTaut, BoolSat

Plan:

- some general theorems
- Tables showing, for given *, equality of some classes, arithmetical complexity,
- conclusion, problems.

Some theorems

Theorem 3. Each logic $\mathcal{L}\forall^w$ has prenex normal form theorem: each formula is logically equivalent to a prenex formula.

Theorem 4. For each *, Gen1Taut(*) and wGen1Taut(*)are Σ_1 (complete), Gen1Sat(*) and wGen1Sat(*)are Π_1 (complete).

Theorem 5. $PC(*)\forall$ proves $C\exists, C\forall$ iff * is Łukasiewicz.

Tables

Given $\mathcal{L} - 16$ sets of formulas. Are some of them equal? What is their arithmetical complexity?

Ł, G, Π, Ł⊕, Gödel negation.

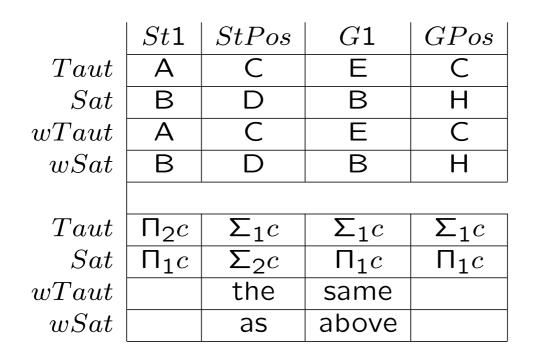
Notation:

	stand		gen	
	1	Pos	1	Pos
Taut	А	С	Ε	G
Sat	В	D	F	Н
wTaut	Ι	K	Ρ	R
wSat	J	L	Q	S

Furthermore, X is the set of all classical (Boolean) tautologies and Y the set of all classically satisfiable formulas. Note: $(\exists x)P_1(x) \in \text{all } Sat, \notin$ any Taut.

In all cases, E and P are in Σ_1 ; moreover, Fand Q are in Π_1 . Moreover, G and R are in Σ_1 and H and S are in Π_1 .

Łukasiewicz



 $A \neq E, D \neq H$ from arithm. $A \neq C, C \neq E - (\forall x)(P_x \lor \neg P_x)$ $B \neq D, B \neq H - (\exists x)(P_x \land \neg P_x)$

Gödel

	St1	StPos	G1	GPos
Taut	А	С		
Sat	В	В		the
wTaut	Ι	Х		same
wSat	Y	Y		
Taut	$\Sigma_1 c$	$\Sigma_1 c$		
Sat	$\Pi_1 c$	$\Pi_1 c$		the
wTaut	$\Sigma_1 c$	$\Sigma_1 c$		same
wSat	$\Pi_1 c$	$\Pi_1 c$		

 $A \neq I - (C \exists, C \forall)$

Product

	St1	StPos	G1	GPos
Taut	А	С	E	G
Sat	В	D	F	Н
wTaut	Ι	Х	Ρ	Х
wSat	Y	Y	Y	Y
Taut	NA	NA	$\Sigma_1 c$	$\Sigma_1 c$
Sat	NA	NA	$\Pi_1 c$	$\Pi_1 c$
wTaut	Π ₂ -hard	$\Sigma_1 c$	$\Sigma_1 c$	$\Sigma_1 c$
wSat	$\Pi_1 c$	$\Pi_1 c$	$\Pi_1 c$	$\Pi_1 c$

	~	
1	6	\square
	• \	\mathcal{V}

	St1	StPos	G1	GPos
Taut	А	С	E	С
Sat	В	D	В	Н
wTaut	Ι	С	Р	С
wSat	В	D	В	Н
Taut	Π ₂ -hard	$\Sigma_1 c$	$\Sigma_1 c$	$\Sigma_1 c$
Sat	$\Pi_1 c$	$\Sigma_2 c$	$\Pi_1 c$	$\Pi_1 c$
wTaut	Π ₂ -hard	$\Sigma_1 c$	$\Sigma_1 c$	$\Sigma_1 c$
wSat	$\Pi_1 c$	$\Sigma_2 c$	$\Pi_1 c$	$\Pi_1 c$

(Composed t-norms with Gödel negation)

	St1	StPos	G1	GPos
Taut	А	С	E	G
Sat	В	D	F	Н
wTaut	Ι	Х	Р	Х
wSat	Y	Y	Y	Y
Taut			$\Sigma_1 c$	$\Sigma_1 c$
Sat			$\Pi_1 c$	$\Pi_1 c$
wTaut		$\Sigma_1 c$	$\Sigma_1 c$	$\Sigma_1 c$
wSat	$\Pi_1 c$	$\Pi_1 c$	$\Pi_1 c$	$\Pi_1 c$

For $\Pi \oplus : A, B, C, D$ are non-arithmetical. For $G \oplus : A$ is Π_2 -hard, B is Π_1 (-complete), C is Σ_1 (-compl.), D = B is Π_1 (-compl.) (Montagna's results)

Fuzzy modal logic(s) S5.

The logic $S5(\mathcal{L})$ (\mathcal{L} a fuzzy propositional logic extending BL). The language: that of propositional calculus extended by modalities \Box, \Diamond . Kripke models: K = (W, e, A) where W is a set of possible worlds, A is a BL-chain and $e(p, w) \in A$ for each prop. variable p and possible world w. This extends to $e(\varphi, w)$ for each formula φ using the algebra A of truth functions of connectives and \Box, \Diamond work as universal and existential quantifier over possible worlds: $e(\Box \varphi, w) = \inf_{v \in W} e(\varphi, v)$, and similarly for \Diamond , sup. The model is safe if e is total. We also write $\|\varphi\|_{K,w}$ for $e(\varphi, w)$.

Formulas of $S5(\mathcal{L})$ are in the obvious one-one isomorphic correspondence with formulas of the monadic predicate calculus $m\mathcal{L}\forall$ with unary predicates and just one object variable x, the atomic formula $P_i(x)$ corresponding to propositional variable p_i and modalities corresponding to quantifiers. Axioms for $S5(\mathcal{L})$ (from my book) (ν is a propositional combination of formulas beginning by \Box or \Diamond):

 $\begin{array}{lll} (\Box 1) & \Box \varphi \to \varphi \\ (\Diamond 1) & \varphi \to \Diamond \varphi \\ (\Box 2) & \Box (\nu \to \varphi) \to (\nu \to \Box \varphi) \\ (\Diamond 2) & \Box (\varphi \to \nu) \to (\Diamond \varphi \to \nu) \\ (\Box 3) & \Box (\nu \lor \varphi) \to (\nu \lor \Box \varphi) \end{array}$

The problem whether the above axioms for $S5(\mathcal{L})$ are complete remained open in the book.

Theorem. The modal logic $S5(\mathcal{L})$ is strongly complete with respect to its general semantics.

Definition. (1) A Kripke model K = (W, e, A) is witnessed if for each modal formula φ the truth value $\|\Box \varphi\|_K$ is the minimum of the truth values $\|\varphi\|_{K,w}$ ($w \in W$) and similarly truth value $\|\Diamond \varphi\|_K$ is the maximum of the truth values $\|\varphi\|_{K,w}$ ($w \in W$). A $w \in W$ such that $\|\Box \varphi\|_K =$ $\|\varphi\|_{K,w}$ is called a witness for $\Box \varphi$ (in K); similarly for $\Diamond \varphi$.

(2) In $S5(\mathcal{L})$ introduce the following axiom schemata:

$$(C\Box) \quad \diamondsuit(\varphi \to \Box \varphi),$$

 $(C\Diamond) \ \Diamond(\Diamond \varphi \to \varphi).$

 $S5(\mathcal{L})^w$ is the extension of the logic $S5(\mathcal{L})$ by these two axiom schemata.

Theorem The logic $S5(\mathcal{L})^w$ is strongly complete with respect to witnessed Kripke models as well as to finite Kripke models. For each logic \mathcal{L} in question the set $TAUT(S5(\mathcal{L})^w)$ of all tautologies of $S5(\mathcal{L})^w$ is decidable and so is the the set $SAT(S5(\mathcal{L})^w)$ of its satisfiable formulas.

Summary - moral?

t-norm based fuzzy predicate logic ($BL\forall$ and variants) is a rich and well behaved many-valued logic.

Double semantics: standard and general.

Arithmetical complexity - varying.

Now quadruple semantics:

only witnessed models?

Straccia: fuzzy descriptive logic??

Here: fuzzy modal S5 with finite/witnessed models.

(Arithmetical complexity.)

Other uses? Let's see.