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The basic fuzzy propositional calculus.

The real unit interval [0,1] is taken to be the

standard set of truth values; comparative no-

tion of truth.

Continuous t-norms are taken as possible truth

functions of conjunction.

Binary operation ∗ on [0,1] is a t-norm if it is commuta-

tive (x∗y = y∗x), associative (x∗(y∗z) = (x∗y)∗z), non-

decreasing in each argument (if x ≤ x′ then x ∗ y ≤ x′ ∗ y

and dually) and 1 is a unit element (1 ∗ x = x).

x ∗ y = max(0, x + y − 1) (ÃLukasiewicz t-norm),
x ∗ y = min(x, y) (Gödel t-norm),
x ∗ y = x · y (product t-norm).
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The truth function of implication is the residuum

of the corresponding t-norm.

x ⇒ y = max{z|x ∗ z ≤ y}.

x ⇒ y = 1 iff x ≤ y; for x > y

x ⇒ y = 1− x + y (ÃLukasiewicz),
x ⇒ y = y (Gödel),
x → y = y/x (product).

negation (−)x = x ⇒ 0 (−)x = 1 − x for

ÃLukasiewicz, Gödel and product: (−)0 = 1,

(−)x = 0 for x > 0
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Basic propositional fuzzy logic BL:

propositional variables p, q, . . .

connectives &,→, truth constant 0̄

Given a continuous t-norm ∗ (and its residuum

⇒), each evaluation of variables extends to an

evaluation of all formulas.

∗-tautology: a formula ϕ such that e∗(ϕ) = 1

for each evaluation e.

t-tautology: ∗-tautology for each continuous

t-norm ∗.

Axioms for connectives:
(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
(A2) (ϕ&ψ) → ϕ
(A3) (ϕ&ψ) → (ψ&ϕ)
(A4) (ϕ&(ϕ → ψ)) → (ψ&(ψ → ϕ))
(A5a) (ϕ → (ψ → χ)) → ((ϕ&ψ) → χ)
(A5b) ((ϕ&ψ) → χ) → (ϕ → (ψ → χ))
(A6) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(A7) 0̄ → ϕ
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Deduction rule: modus ponens.

ÃLukasiewicz logic BL + ¬¬ϕ → ϕ
Gödel logic G: BL + ϕ → (ϕ&ϕ)
product logic Π: BL + (ϕ → ¬ϕ) → ¬ϕ +
¬¬χ → (((ϕ&χ) → (ψ&χ)) → (ϕ → ψ))

We write
¬ϕ for ϕ → 0̄,
ϕ ∧ ψ for ϕ&(ϕ → ψ),
ϕ ∨ ψ for ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)

Truth function of ¬: ¬x = 1−x for ÃLukasiewicz,
¬0 = 1, ¬x = 0 for x positive – Gödel, product
(Gödel negation)
Truth function of ∧, ∨ is minimum, maximum
for each ∗.

Standard Completeness: BL proves exactly all
t-tautologies.
ÃL proves exactly all [0,1]ÃL-tautologies.
G proves exactly all [01, ]G-tautologies.
Π proves exactly all [0,1]Π-tautologies.
(Cignoli-Esteva-Godo-Torrens)
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General semantics.

A BL-algebra is a residuated lattice

L = (L,≤, ∗,⇒,0L,1L)

satisfying two additional conditions:

x ∩ y = x ∗ (x ⇒ y),

(x ⇒ y) ∪ (y ⇒ x) = 1L

[0,1]ÃL, [0,1]G, [0,1]Π – ÃLukasiewicz, Gödel and

product t-algebra respectively.

Theorem strong completeness (for provability

in theories over BL): For each theory T over

BL, T proves ϕ iff for each [linearly ordered]

BL-algebra L, ϕ is true in all L-models of T .

(Here e is an L model of T if eL(α) = 1L for

each axiom α of T .)

6



Basic fuzzy predicate calculus BL∀:

Predicates, variables, connectives, quantifiers

∀,∃.

Axioms for quantifiers:
(∀1) (∀x)ϕ(x) → ϕ(y)
(∃1) ϕ(y) → (∀x)ϕ(x)
(∀2) (∀x)(χ → ψ) → (χ → (∀x)ψ)
(∃2) (∀x)(ϕ → χ) → ((∃x)ϕ → χ)
(∀3) (∀x)(ϕ ∨ χ) → ((∀x)ϕ ∨ χ)

ÃL∀, G∀, Π∀, BL∀
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Given a BL-algebra L, an L-interpretation is a

structure M = (M, (rP )P predicate) where M 6= ∅
and for each predicate P of arity n, rP is an n-

ary L-fuzzy relation on M, i.e. rP : Mn → L.

‖ϕ‖LM,v – Tarski style conditions,

‖P (x, y)‖LM,v = rP (v(x), v(y)),

‖ϕ&ψ‖LM,v = ‖ϕ‖LM,v ∗ ‖ψ‖LM,v,

‖ϕ → ψ‖LM,v = ‖ϕ‖LM,v ⇒ ‖ψ‖LM,v,

‖(∀x)ϕ‖LM,v = inf{‖ϕ‖LM,v′|v′ ≡x v}
‖(∃x)ϕ‖LM,v = sup{‖ϕ‖LM,v|v′ ≡x v}
This is always defined if L is a t-algebra (all

infima and suprema exist). For a general BL-

algebra L we call M L-safe if all truth values

‖ϕ‖LM,v are well defined. For closed ϕ write

‖ϕ‖LM.
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A closed formula ϕ of predicate logic is an L-

tautology if ‖ϕ‖LM = 1L for all L-safe M. ϕ is

L-satisfiable if ‖ϕ‖LM = 1L for some L-safe M.

ϕ is a general BL-tautology if ϕ is an L-tautology

for each linearly ordered BL-algebra (for each

BL-chain).

ϕ is a standard BL-tautology (or a t-tautology)

if it is a tautology for each t-algebra [0,1]∗.
Generally BL-satisfiable, standardly BL-satisfiable

– obvious.

Theorem (Completeness). Let T be a theory

over BL∀, let ϕ be a formula, T ` ϕ (over BL∀)
iff ϕ is true in all L-models of T, L being an

arbitrary BL-chain.
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(M,Θ) is witnessed if for each

formula ϕ(x, y, . . .) and each b, . . . ∈ M,

‖(∀x)ϕ(x, b, . . .)‖ΘM = mina ‖ϕ(a, b, . . .)‖ΘM,

‖(∃x)ϕ(x, b, . . .)‖ΘM = maxa ‖ϕ(a, b, . . .)‖ΘM,

(I.e. there is an a with minimal (maximal)

value of ‖ϕ(a, b, . . .)‖.)

Theorem 1. Over ÃL∀ with standard

semantic, each countable model M is

an elementary submodel of a witnessed

model M′ (i.e. for each α,

‖α‖ÃLM = ‖α‖ÃLM′).

But e.g. for standard Gödel – example:

M = {1,2, . . .}, rP (n) = 1
n+1.

Not witnessed: ‖(∀x)P (x)‖ = 0, satisfies

¬(∀x)ϕ(x)&¬(∃x)¬ϕ(x)

(not elem. embed. into witnessed).
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H.–Cintula: On theories and models

in fuzzy logic, JSL:

Axiom schemas:

(C∀) (∃x)(ϕ(x) → (∀y)ϕ(y))

(C∃) (∃x)((∃y)ϕ(y) → ϕ(x))

For logic L∀, L∀w is L extended

by (C∀), (C∃).

Theorem 2. (1) (M,Θ) is elementarily

embeddable into a witnessed model

iff (C∀), (C∃) are true in (M,Θ).

(2) For our logics L,

the logic L∀w is strongly complete

w.r.t. witnessed models.
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16 classes of formulas

for each predicate calculus:

{−, w} arbitrary × witnessed models

{St, Gen} standard × general semantics

{1, Pos} designated: 1 x positive values

{Taut, Sat} tautologies, satisfiable.

E.g. Gen1Taut(ÃL)

wStPosSat(Π)

etc.

Also:

BoolTaut, BoolSat

Plan:

– some general theorems

– Tables showing, for given ∗,
equality of some classes,

arithmetical complexity,

– conclusion, problems.
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Some theorems

Theorem 3. Each logic L∀w has

prenex normal form theorem:

each formula is logically equivalent

to a prenex formula.

Theorem 4. For each ∗,
Gen1Taut(∗) and wGen1Taut(∗)
are Σ1 (complete),

Gen1Sat(∗) and wGen1Sat(∗)
are Π1 (complete).

Theorem 5. PC(∗)∀ proves C∃, C∀ iff

∗ is ÃLukasiewicz.
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Tables

Given L – 16 sets of formulas. Are some of

them equal? What is their arithmetical com-

plexity?

ÃL, G, Π, ÃL⊕, Gödel negation.

Notation:

stand gen
1 Pos 1 Pos

Taut A C E G
Sat B D F H

wTaut I K P R
wSat J L Q S

Furthermore, X is the set of all classical (Boolean)

tautologies and Y the set of all classically sat-

isfiable formulas. Note: (∃x)P1(x) ∈ all Sat, 6∈
any Taut.

In all cases, E and P are in Σ1; moreover, F

and Q are inΠ1. Moreover, G and R are in Σ1

and H and S are in Π1.
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ÃLukasiewicz

St1 StPos G1 GPos
Taut A C E C

Sat B D B H
wTaut A C E C

wSat B D B H

Taut Π2c Σ1c Σ1c Σ1c
Sat Π1c Σ2c Π1c Π1c

wTaut the same
wSat as above

A 6= E, D 6= H from arithm.

A 6= C, C 6= E − (∀x)(Px ∨ ¬Px)

B 6= D, B 6= H − (∃x)(Px ∧ ¬Px)
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Gödel

St1 StPos G1 GPos
Taut A C

Sat B B the
wTaut I X same

wSat Y Y

Taut Σ1c Σ1c
Sat Π1c Π1c the

wTaut Σ1c Σ1c same
wSat Π1c Π1c

A 6= I – (C∃, C∀)
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Product

St1 StPos G1 GPos
Taut A C E G

Sat B D F H
wTaut I X P X

wSat Y Y Y Y

Taut NA NA Σ1c Σ1c
Sat NA NA Π1c Π1c

wTaut Π2-hard Σ1c Σ1c Σ1c
wSat Π1c Π1c Π1c Π1c
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ÃL⊕

St1 StPos G1 GPos
Taut A C E C

Sat B D B H
wTaut I C P C

wSat B D B H

Taut Π2-hard Σ1c Σ1c Σ1c
Sat Π1c Σ2c Π1c Π1c

wTaut Π2-hard Σ1c Σ1c Σ1c
wSat Π1c Σ2c Π1c Π1c
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(Composed t-norms with Gödel negation)

St1 StPos G1 GPos
Taut A C E G

Sat B D F H
wTaut I X P X

wSat Y Y Y Y

Taut Σ1c Σ1c
Sat Π1c Π1c

wTaut Σ1c Σ1c Σ1c
wSat Π1c Π1c Π1c Π1c

For Π⊕: A, B, C, D are non-arithmetical.

For G⊕: A is Π2-hard, B is Π1(-complete),

C is Σ1(-compl.), D = B is Π1(-compl.)

(Montagna’s results)
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Fuzzy modal logic(s) S5.

The logic S5(L) (L a fuzzy propositional logic

extending BL). The language: that of propo-

sitional calculus extended by modalities ¤, ♦.

Kripke models: K = (W, e, A) where W is a

set of possible worlds, A is a BL-chain and

e(p, w) ∈ A for each prop. variable p and pos-

sible world w. This extends to e(ϕ, w) for each

formula ϕ using the algebra A of truth func-

tions of connectives and ¤, ♦ work as universal

and existential quantifier over possible worlds:

e(¤ϕ, w) = infv∈W e(ϕ, v), and similarly for ♦, sup.

The model is safe if e is total. We also write

‖ϕ‖K,w for e(ϕ, w).

Formulas of S5(L) are in the obvious one-one

isomorphic correspondence with formulas of the

monadic predicate calculus mL∀ with unary pred-

icates and just one object variable x, the atomic

formula Pi(x) corresponding to propositional

variable pi and modalities corresponding to quan-

tifiers.
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Axioms for S5(L) (from my book) (ν is a propo-

sitional combination of formulas beginning by

¤ or ♦):

(¤1) ¤ϕ → ϕ

(♦1) ϕ → ♦ϕ

(¤2) ¤(ν → ϕ) → (ν → ¤ϕ)

(♦2) ¤(ϕ → ν) → (♦ϕ → ν)

(¤3) ¤(ν ∨ ϕ) → (ν ∨¤ϕ)

The problem whether the above axioms for

S5(L) are complete remained open in the book.

Theorem. The modal logic S5(L) is strongly

complete with respect to its general semantics.
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Definition. (1) A Kripke model K = (W, e, A) is

witnessed if for each modal formula ϕ the truth

value ‖¤ϕ‖K is the minimum of the truth val-

ues ‖ϕ‖K,w (w ∈ W ) and similarly truth value

‖♦ϕ‖K is the maximum of the truth values

‖ϕ‖K,w (w ∈ W ). A w ∈ W such that ‖¤ϕ‖K =

‖ϕ‖K,w is called a witness for ¤ϕ (in K); simi-

larly for ♦ϕ.

(2) In S5(L) introduce the following axiom

schemata:

(C¤) ♦(ϕ → ¤ϕ),

(C♦) ♦(♦ϕ → ϕ).

S5(L)w is the extension of the logic S5(L) by

these two axiom schemata.

Theorem The logic S5(L)w is strongly com-

plete with respect to witnessed Kripke models

as well as to finite Kripke models. For each

logic L in question the set TAUT (S5(L)w) of

all tautologies of S5(L)w is decidable and so

is the the set SAT (S5(L)w) of its satisfiable

formulas.
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Summary - moral?

t-norm based fuzzy predicate logic (BL∀ and

variants) is a rich and well behaved many-valued

logic.

Double semantics: standard and general.

Arithmetical complexity - varying.

Now quadruple semantics:

only witnessed models?

Straccia: fuzzy descriptive logic??

Here: fuzzy modal S5 with finite/witnessed

models.

(Arithmetical complexity.)

Other uses? Let’s see.

23


