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Mappings between �lters

De�nition
A �lter is a non-principal proper �lter on ω.

De�nition

Let f : ω → ω be �nite-to-one. We set f (F ) = {X : f −1X ∈ F}.

f (F ) contains less information than F :

- F
�

��	

��������9
- f (F )

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

Mappings between �lters

De�nition
A �lter is a non-principal proper �lter on ω.

De�nition

Let f : ω → ω be �nite-to-one. We set f (F ) = {X : f −1X ∈ F}.

f (F ) contains less information than F :

- F
�

��	

��������9
- f (F )

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

Mappings between �lters

De�nition
A �lter is a non-principal proper �lter on ω.

De�nition

Let f : ω → ω be �nite-to-one. We set f (F ) = {X : f −1X ∈ F}.

f (F ) contains less information than F :

- F
�

��	

��������9
- f (F )

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

Near coherence of �lters

De�nition
Two �lters F and G on ω are nearly coherent if there is a
�nite-to-one function f : ω → ω such that f (F ) ∪ f (G ) generates
a proper �lter.

If U is an ultra�lter, then also f (U ) is an ultra�lter.

Two ultra�lters U and V are nearly coherent if there is a
�nite-to-one function f : ω → ω such that f (U ) = f (V ).

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

Near coherence of �lters

De�nition
Two �lters F and G on ω are nearly coherent if there is a
�nite-to-one function f : ω → ω such that f (F ) ∪ f (G ) generates
a proper �lter.

If U is an ultra�lter, then also f (U ) is an ultra�lter.
Two ultra�lters U and V are nearly coherent if there is a
�nite-to-one function f : ω → ω such that f (U ) = f (V ).

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

Near coherence of �lters

De�nition
Two �lters F and G on ω are nearly coherent if there is a
�nite-to-one function f : ω → ω such that f (F ) ∪ f (G ) generates
a proper �lter.

If U is an ultra�lter, then also f (U ) is an ultra�lter.
Two ultra�lters U and V are nearly coherent if there is a
�nite-to-one function f : ω → ω such that f (U ) = f (V ).

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

Near coherence of �lters

De�nition
Two �lters F and G on ω are nearly coherent if there is a
�nite-to-one function f : ω → ω such that f (F ) ∪ f (G ) generates
a proper �lter.

If U is an ultra�lter, then also f (U ) is an ultra�lter.
Two ultra�lters U and V are nearly coherent if there is a
�nite-to-one function f : ω → ω such that f (U ) = f (V ).

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

Near coherence of ultra�lters

If f (U ) = f (V ) and g(V ) = g(W ), then there is a slower growing
�nite-to-one function h such that h(U ) = h(W ).

Fact
The near-coherence relation is an equivalence relation on the

ultra�lters on ω.

Its classes are called near-coherence classes of ultra�lters.
Two �lters F and G are nearly coherent i� there are nearly
coherent ultra�lters U and V such that U ⊇ F and V ⊇ G . So
�NCU� implies NCF.
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Possible numbers of near-coherence classes

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are 22
ω
near-coherence classes of ultra�lters.

Theorem. Blass, Shelah, 1987
It is consistent relative to ZFC that there is just one near-coherence
class of ultra�lters.

The fact, that there is just one near-coherence class is called the
principle of near coherence of (ultra)�lters, NCF.
Conjecture: There is a model with exactly two near-coherence
classes. Big open question: Other �nite numbers.
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Excluded numbers

Theorem. Banakh, Blass, 2005
If there are in�nitely many near-coherence classes of ultra�lters
then there are 22

ω
classes.

Theorem. Blass, 1987
d ≤ u implies that there are in�nitely many near-coherence classes
of ultra�lters.

Question. Banakh, Blass, 2005
Does u < d imply that there are only �nitely many near-coherence
classes of ultra�lters?
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Bases and characters, u

De�nition
A set B ⊆ F is called a base for F if
(∀F ∈ F )(∃B ∈ B)(B ⊆ F ).
A set B ⊆ [ω]ω is called a pseudobase for F if
(∀F ∈ F )(∃B ∈ B)(B ⊆ F ).

The smallest size of a base of F is called χ(F ), the character of
F .
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Taking the minimum over all ultra�lters

De�nition
The ultra�lter characteristic u is the minimal χ(U ) for a
non-principal ultra�lter U .
The reaping number r is the minimal cardinality of a pseudobase for
a non-principal ultra�lter U .

Theorem, Goldstern, Shelah, 1990
r < u is consistent relative to ZFC.

But then d ≤ u by a theorem of Aubrey.
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Dominating numbers, d

De�nition
We consider the order of eventual domination: f ≤∗ g i� for all but
�nitely many n, f (n) ≤ g(n).
For a �lter F , we de�ne the reduced order f ≤F g i�
{n : f (n) ≤ g(n)} ∈ F .

De�nition
A family D is dominating [F -dominating] i� for every f ∈ ωω there
is some g ∈ D such that f ≤∗ g [f ≤F g ].
The dominating number d [the dominating number of F , d(F ),] is
the smallest cardinal of a dominating [F -dominating] family
D ⊆ ωω.
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Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

The role of u and d

u comes in as the minimal number of steps in constructing one
representative of one class.

Proposition. Blass, 1987

There is a set D, a so-called test set, of size d such that any two
ultra�lters U and V are nearly coherent, if there is some f ∈ D

with f (U ) = f (V ).

The construction of two non-nearly-coherent ultra�lters can be seen
as a diagonalization with u steps and d tasks.
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Candidates

Models of u < d: The known models with countable support

iterations ful�l the stronger inequality u < g, which implies NCF.
There is one type of model (from [BsSh:257], 1989) of u < d

gotten with a �nite support iteration of c.c.c. partial orders.

Theorem. M.
It is consistent relative to ZFC that there are in�nitely many
near-coherence classes of ultra�lters and u < d.
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Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

Splitting families and reaping

De�nition
S ⊆ [ω]ω is a splitting family i� (∀X ∈ [ω]ω)(∃S ∈ S )(X ∩ S and
X r S are both in�nite). The splitting number s is the smallest size
of a splitting family.

Theorem. Blass, M., 1999
If s > r then there are at most two near-coherence classes.

Theorem. Aubrey, 2004

If r < d then r = u.

Conclusion: In V P, we have ν = u = r.

Heike Mildenberger There may be in�nitely many near coherence classes under u < d
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A small splitting family

Proposition

In V P, s ≤ ν.

Sketch of proof: Remember, sξ, ξ < ν, are the Mathias reals. We
set

Xξ = {n ∈ ω : |sξ ∩ n| is even}.

Then {Xξ : ξ < ν} is a splitting family witnessing s ≤ r. �

(We have s = ν in these models.)
Conclusion: In V P, we have s ≤ ν = u = r and hence the
r < s-Theorem does not apply.
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A model of u < d with in�nitely many classes

The answer

Claim

In the model V P there are in�nitely near-coherence classes of
ultra�lters.

Sketch of proof: We have the ultra�lter UP that is generated by
the Mathias reals sξ, ξ < ν.

By [BM] all ultra�lters U with < d generators have
cf(ωω/U ) = d > r and hence are nearly coherent to UP .
We shall show that there is a �lter H0 that is non-nearly-coherent
to UP such that H0 extended by fewer than d(H0) sets is not
almost ultra.
We shall get H0 from the Cohen reals.

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

The answer

Claim

In the model V P there are in�nitely near-coherence classes of
ultra�lters.

Sketch of proof: We have the ultra�lter UP that is generated by
the Mathias reals sξ, ξ < ν.
By [BM] all ultra�lters U with < d generators have
cf(ωω/U ) = d > r and hence are nearly coherent to UP .

We shall show that there is a �lter H0 that is non-nearly-coherent
to UP such that H0 extended by fewer than d(H0) sets is not
almost ultra.
We shall get H0 from the Cohen reals.

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

The answer

Claim

In the model V P there are in�nitely near-coherence classes of
ultra�lters.

Sketch of proof: We have the ultra�lter UP that is generated by
the Mathias reals sξ, ξ < ν.
By [BM] all ultra�lters U with < d generators have
cf(ωω/U ) = d > r and hence are nearly coherent to UP .
We shall show that there is a �lter H0 that is non-nearly-coherent
to UP such that H0 extended by fewer than d(H0) sets is not
almost ultra.

We shall get H0 from the Cohen reals.

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

The answer

Claim

In the model V P there are in�nitely near-coherence classes of
ultra�lters.

Sketch of proof: We have the ultra�lter UP that is generated by
the Mathias reals sξ, ξ < ν.
By [BM] all ultra�lters U with < d generators have
cf(ωω/U ) = d > r and hence are nearly coherent to UP .
We shall show that there is a �lter H0 that is non-nearly-coherent
to UP such that H0 extended by fewer than d(H0) sets is not
almost ultra.
We shall get H0 from the Cohen reals.

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

The answer

Claim

In the model V P there are in�nitely near-coherence classes of
ultra�lters.

Sketch of proof: We have the ultra�lter UP that is generated by
the Mathias reals sξ, ξ < ν.
By [BM] all ultra�lters U with < d generators have
cf(ωω/U ) = d > r and hence are nearly coherent to UP .
We shall show that there is a �lter H0 that is non-nearly-coherent
to UP such that H0 extended by fewer than d(H0) sets is not
almost ultra.
We shall get H0 from the Cohen reals.

Heike Mildenberger There may be in�nitely many near coherence classes under u < d



Outline
Near coherence of �lters
The case of ultra�lters

Explanation of the cardinal characteristics
A model of u < d with in�nitely many classes

Filters not nearly coherent to UP

We think of the Cohen reals as subsets of ω and let the Cohen reals
rα, α < δ, be their strictly increasing enumerations. We set

Xα,ξ = {rα(n) : |sξ ∩ n| even},

Hξ = {Xα,ξ : α < δ},

H = {Xα,ξ : α < δ, ξ < ν, ξ is an even ordinal},

Hfull = {Xα,ξ : α < δ, ξ < ν}.

Lemma
Hfull has the �nite intersection property.
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f (H0) 6⊆ f (UP)

Lemma
For every ξ < ν, for every Y ∈ V (δ, ξ) for every αi < δ, i < k, we

have: If Y ∩
⋂

i<k range(rαi ) is in�nite, then the set

Y ∩
⋂

0≤i<k
Xαi ,ξ

is in�nite.

Lemma
For every �nite-to-one f , f (H0) 6⊆ f (UP).

So H0 and UP are not nearly coherent, and thus we have at least
two near coherence classes of ultra�lters.
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Small dominating families modulo �lter orderings

Aim: Find a tree of pairwise non-nearly coherent ultra�lters among
the supersets of H0.

Proposition. Banakh, Blass, 2005

If a �lter F and a ultra�lter U are not nearly coherent, then
d(F ) ≤ χ(U ).

So in V P, d(H0) ≤ ν.
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Small test sets

Let t(F ) be the smallest size of a test set for near coherence in
[F ] = {G : G �lter,G ⊇ F}.

Proposition. Banakh, Blass, 2005

t(F ) ≤ d(F ).

So, in V P, t(H0) ≤ ν.
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A tree of near-coherence classes

Lemma. Slight generalization of Blass, 1987

If all extensions of H0 by fewer than t(H0) sets are not almost
ultra, then we can construct in�nitely many pairwise non-nearly
coherent ultra�lters by an induction of length t(H0).

So our proof is �nished with

Lemma

In V P, each extension of H0 by fewer than ν sets is not almost

ultra.

and we do not need to construct the desired tree explicitly.
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