There may be infinitely many near coherence classes $\mbox{under } \mathfrak{u} < \mathfrak{d}$

Heike Mildenberger

Kurt Gödel Research Center for Mathematical Logic, University of Vienna

Logic Colloquium 2007 Wrocław July 13 – 20, 2007

・ロン ・四と ・ヨン ・ヨン

- 2 The case of ultrafilters
- 3 Explanation of the cardinal characteristics
- 4 Model of $\mathfrak{u} < \mathfrak{d}$ with infinitely many classes

・ロト ・回ト ・ヨト ・ヨト

Mappings between filters

Definition

A filter is a non-principal proper filter on ω .

Definition

Let $f: \omega \to \omega$ be finite-to-one. We set $f(\mathscr{F}) = \{X : f^{-1}X \in \mathscr{F}\}.$

イロト 不得下 イヨト イヨト

Mappings between filters

Definition

A filter is a non-principal proper filter on ω .

Definition

Let $f: \omega \to \omega$ be finite-to-one. We set $f(\mathscr{F}) = \{X : f^{-1}X \in \mathscr{F}\}.$

 $f(\mathscr{F})$ contains less information than \mathscr{F} :

(ロ) (部) (E) (E) (E)

Mappings between filters

Definition

A filter is a non-principal proper filter on ω .

Definition

Let $f: \omega \to \omega$ be finite-to-one. We set $f(\mathscr{F}) = \{X : f^{-1}X \in \mathscr{F}\}.$

 $f(\mathscr{F})$ contains less information than \mathscr{F} :

・ロト ・聞ト ・ヨト ・ヨト

Near coherence of filters

Definition

Two filters \mathscr{F} and \mathscr{G} on ω are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{F}) \cup f(\mathscr{G})$ generates a proper filter.

If $\mathscr U$ is an ultrafilter, then also $f(\mathscr U)$ is an ultrafilter.

Near coherence of filters

Definition

Two filters \mathscr{F} and \mathscr{G} on ω are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{F}) \cup f(\mathscr{G})$ generates a proper filter.

If \mathscr{U} is an ultrafilter, then also $f(\mathscr{U})$ is an ultrafilter. Two ultrafilters \mathscr{U} and \mathscr{V} are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{U}) = f(\mathscr{V})$.

Near coherence of filters

Definition

Two filters \mathscr{F} and \mathscr{G} on ω are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{F}) \cup f(\mathscr{G})$ generates a proper filter.

If \mathscr{U} is an ultrafilter, then also $f(\mathscr{U})$ is an ultrafilter. Two ultrafilters \mathscr{U} and \mathscr{V} are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{U}) = f(\mathscr{V})$.

(日) (同) (三) (三) (三)

Near coherence of filters

Definition

Two filters \mathscr{F} and \mathscr{G} on ω are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{F}) \cup f(\mathscr{G})$ generates a proper filter.

If \mathscr{U} is an ultrafilter, then also $f(\mathscr{U})$ is an ultrafilter. Two ultrafilters \mathscr{U} and \mathscr{V} are nearly coherent if there is a finite-to-one function $f: \omega \to \omega$ such that $f(\mathscr{U}) = f(\mathscr{V})$.

(日) (同) (三) (三) (三)

Near coherence of ultrafilters

If $f(\mathscr{U}) = f(\mathscr{V})$ and $g(\mathscr{V}) = g(\mathscr{W})$, then there is a slower growing finite-to-one function h such that $h(\mathscr{U}) = h(\mathscr{W})$.

Fact

The near-coherence relation is an equivalence relation on the ultrafilters on ω .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Near coherence of ultrafilters

If $f(\mathscr{U}) = f(\mathscr{V})$ and $g(\mathscr{V}) = g(\mathscr{W})$, then there is a slower growing finite-to-one function h such that $h(\mathscr{U}) = h(\mathscr{W})$.

Fact

The near-coherence relation is an equivalence relation on the ultrafilters on ω .

Its classes are called near-coherence classes of ultrafilters.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

Near coherence of ultrafilters

If $f(\mathscr{U}) = f(\mathscr{V})$ and $g(\mathscr{V}) = g(\mathscr{W})$, then there is a slower growing finite-to-one function h such that $h(\mathscr{U}) = h(\mathscr{W})$.

Fact

The near-coherence relation is an equivalence relation on the ultrafilters on ω .

Its classes are called near-coherence classes of ultrafilters.

Two filters ℱ and ℒ are nearly coherent iff there are nearly coherent ultrafilters ℋ and ᡟ such that ℋ ⊇ ℱ and ℋ ⊇ ℒ. Sc "NCU" implies NCF.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

Near coherence of ultrafilters

If $f(\mathscr{U}) = f(\mathscr{V})$ and $g(\mathscr{V}) = g(\mathscr{W})$, then there is a slower growing finite-to-one function h such that $h(\mathscr{U}) = h(\mathscr{W})$.

Fact

The near-coherence relation is an equivalence relation on the ultrafilters on ω .

Its classes are called near-coherence classes of ultrafilters. Two filters \mathscr{F} and \mathscr{G} are nearly coherent iff there are nearly coherent ultrafilters \mathscr{U} and \mathscr{V} such that $\mathscr{U} \supseteq \mathscr{F}$ and $\mathscr{V} \supseteq \mathscr{G}$. So "NCU" implies NCF.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

Possible numbers of near-coherence classes

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are $2^{2^{\omega}}$ near-coherence classes of ultrafilters.

Theorem. Blass, Shelah, 1987

It is consistent relative to ZFC that there is just one near-coherence class of ultrafilters.

Possible numbers of near-coherence classes

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are $2^{2^{\omega}}$ near-coherence classes of ultrafilters.

Theorem. Blass, Shelah, 1987

It is consistent relative to ZFC that there is just one near-coherence class of ultrafilters.

The fact, that there is just one near-coherence class is called the principle of near coherence of (ultra)filters, NCF.

(日) (同) (三) (三) (三)

Possible numbers of near-coherence classes

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are $2^{2^{\omega}}$ near-coherence classes of ultrafilters.

Theorem. Blass, Shelah, 1987

It is consistent relative to ZFC that there is just one near-coherence class of ultrafilters.

The fact, that there is just one near-coherence class is called the principle of near coherence of (ultra)filters, NCF. Conjecture: There is a model with exactly two near-coherence classes.

Possible numbers of near-coherence classes

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are $2^{2^{\omega}}$ near-coherence classes of ultrafilters.

Theorem. Blass, Shelah, 1987

It is consistent relative to ZFC that there is just one near-coherence class of ultrafilters.

The fact, that there is just one near-coherence class is called the principle of near coherence of (ultra)filters, NCF. Conjecture: There is a model with exactly two near-coherence classes. Big open question: Other finite numbers.

Possible numbers of near-coherence classes

Theorem. Booth, Galvin, Mary-Ellen Rudin, Blass

Under CH, there are $2^{2^{\omega}}$ near-coherence classes of ultrafilters.

Theorem. Blass, Shelah, 1987

It is consistent relative to ZFC that there is just one near-coherence class of ultrafilters.

The fact, that there is just one near-coherence class is called the principle of near coherence of (ultra)filters, NCF. Conjecture: There is a model with exactly two near-coherence classes. Big open question: Other finite numbers.

Excluded numbers

Theorem. Banakh, Blass, 2005

If there are infinitely many near-coherence classes of ultrafilters then there are $2^{2^{\omega}}$ classes.

Theorem. Blass, 1987

 $\mathfrak{d} \leq \mathfrak{u}$ implies that there are infinitely many near-coherence classes of ultrafilters.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

Excluded numbers

Theorem. Banakh, Blass, 2005

If there are infinitely many near-coherence classes of ultrafilters then there are $2^{2^{\omega}}$ classes.

Theorem. Blass, 1987

 $\mathfrak{d} \leq \mathfrak{u}$ implies that there are infinitely many near-coherence classes of ultrafilters.

Question. Banakh, Blass, 2005

Does $u < \mathfrak{d}$ imply that there are only finitely many near-coherence classes of ultrafilters?

イロト 不得下 イヨト イヨト

 $\begin{array}{l} Outline\\ Near \mbox{ coherence of filters}\\ \mbox{ The case of ultrafilters}\\ Explanation of the cardinal characteristics\\ A model of $u < 0$ with infinitely many classes } \end{array}$

Excluded numbers

Theorem. Banakh, Blass, 2005

If there are infinitely many near-coherence classes of ultrafilters then there are $2^{2^{\omega}}$ classes.

Theorem. Blass, 1987

 $\mathfrak{d} \leq \mathfrak{u}$ implies that there are infinitely many near-coherence classes of ultrafilters.

Question. Banakh, Blass, 2005

Does $u < \mathfrak{d}$ imply that there are only finitely many near-coherence classes of ultrafilters?

Bases and characters, **u**

Definition

A set $\mathscr{B} \subseteq \mathscr{F}$ is called a base for \mathscr{F} if $(\forall F \in \mathscr{F})(\exists B \in \mathscr{B})(B \subseteq F).$ A set $\mathscr{B} \subseteq [\omega]^{\omega}$ is called a pseudobase for .

Heike Mildenberger There may be infinitely many near coherence classes under a

Bases and characters, **u**

Definition

A set $\mathscr{B} \subseteq \mathscr{F}$ is called a base for \mathscr{F} if $(\forall F \in \mathscr{F})(\exists B \in \mathscr{B})(B \subseteq F)$. A set $\mathscr{B} \subseteq [\omega]^{\omega}$ is called a pseudobase for \mathscr{F} if $(\forall F \in \mathscr{F})(\exists B \in \mathscr{B})(B \subseteq F)$. The smallest size of a base of \mathscr{F} is called $\chi(\mathscr{F})$, the character of \mathscr{F} .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● 三 - のへで

Bases and characters, \mathfrak{u}

Definition

A set $\mathscr{B} \subseteq \mathscr{F}$ is called a base for \mathscr{F} if $(\forall F \in \mathscr{F})(\exists B \in \mathscr{B})(B \subseteq F)$. A set $\mathscr{B} \subseteq [\omega]^{\omega}$ is called a pseudobase for \mathscr{F} if $(\forall F \in \mathscr{F})(\exists B \in \mathscr{B})(B \subseteq F)$. The smallest size of a base of \mathscr{F} is called $\chi(\mathscr{F})$, the character of \mathscr{F} .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● 三 - のへで

Taking the minimum over all ultrafilters

Definition

The ultrafilter characteristic \mathfrak{u} is the minimal $\chi(\mathscr{U})$ for a non-principal ultrafilter \mathscr{U} .

The reaping number $\mathfrak r$ is the minimal cardinality of a pseudobase for a non-principal ultrafilter $\mathscr U$.

イロト 不得下 イヨト イヨト

Taking the minimum over all ultrafilters

Definition

The ultrafilter characteristic $\mathfrak u$ is the minimal $\chi(\mathscr U)$ for a

non-principal ultrafilter \mathscr{U} .

The reaping number \mathfrak{r} is the minimal cardinality of a pseudobase for a non-principal ultrafilter \mathscr{U} .

Theorem, Goldstern, Shelah, 1990

 $\mathfrak{r} < \mathfrak{u}$ is consistent relative to ZFC.

But then $\mathfrak{d} \leq \mathfrak{u}$ by a theorem of Aubrey.

・ロト ・回ト ・ヨト ・ヨト

Taking the minimum over all ultrafilters

Definition

The ultrafilter characteristic \mathfrak{u} is the minimal $\chi(\mathscr{U})$ for a

non-principal ultrafilter \mathscr{U} .

The reaping number $\mathfrak r$ is the minimal cardinality of a pseudobase for a non-principal ultrafilter $\mathscr U$.

Theorem, Goldstern, Shelah, 1990

 $\mathfrak{r} < \mathfrak{u}$ is consistent relative to ZFC.

But then $\mathfrak{d} \leq \mathfrak{u}$ by a theorem of Aubrey.

イロト 不得下 イヨト イヨト

Dominating numbers, ϑ

Definition

We consider the order of eventual domination: $f \leq^* g$ iff for all but finitely many n, $f(n) \leq g(n)$.

 $\{n : f(n) < \sigma(n)\} \in \mathcal{F}$

Dominating numbers, $\boldsymbol{\mathfrak{d}}$

Definition

We consider the order of eventual domination: $f \leq^* g$ iff for all but finitely many n, $f(n) \leq g(n)$. For a filter \mathscr{F} , we define the reduced order $f \leq_{\mathscr{F}} g$ iff $\{n : f(n) \leq g(n)\} \in \mathscr{F}$.

Definition

A family D is dominating [\mathscr{F} -dominating] iff for every $f \in {}^{\omega}\omega$ there is some $g \in D$ such that $f \leq^* g$ [$f \leq_{\mathscr{F}} g$].

Dominating numbers, ϑ

Definition

We consider the order of eventual domination: $f \leq^* g$ iff for all but finitely many n, $f(n) \leq g(n)$. For a filter \mathscr{F} , we define the reduced order $f \leq_{\mathscr{F}} g$ iff $\{n : f(n) \leq g(n)\} \in \mathscr{F}$.

Definition

A family *D* is dominating [\mathscr{F} -dominating] iff for every $f \in {}^{\omega}\omega$ there is some $g \in D$ such that $f \leq^* g$ [$f \leq_{\mathscr{F}} g$]. The dominating number \mathfrak{d} [the dominating number of \mathscr{F} , $\mathfrak{d}(\mathscr{F})$,] is the smallest cardinal of a dominating [\mathscr{F} -dominating] family

 $D \subseteq {}^{\omega}\omega.$

Dominating numbers, ϑ

Definition

We consider the order of eventual domination: $f \leq^* g$ iff for all but finitely many n, $f(n) \leq g(n)$. For a filter \mathscr{F} , we define the reduced order $f \leq_{\mathscr{F}} g$ iff $\{n : f(n) \leq g(n)\} \in \mathscr{F}$.

Definition

A family D is dominating $[\mathscr{F}$ -dominating] iff for every $f \in {}^{\omega}\omega$ there is some $g \in D$ such that $f \leq^* g$ $[f \leq_{\mathscr{F}} g]$. The dominating number \mathfrak{d} [the dominating number of \mathscr{F} , $\mathfrak{d}(\mathscr{F})$,] is the smallest cardinal of a dominating $[\mathscr{F}$ -dominating] family $D \subseteq {}^{\omega}\omega$.

The role of $\mathfrak u$ and $\mathfrak d$

$\mathfrak u$ comes in as the minimal number of steps in constructing one representative of one class.

Proposition. Blass, 1987

There is a set D, a so-called test set, of size ϑ such that any two ultrafilters \mathscr{U} and \mathscr{V} are nearly coherent, if there is some $f \in D$ with $f(\mathscr{U}) = f(\mathscr{V})$.

・ロト ・四ト ・ヨト ・ヨト

The role of $\mathfrak u$ and $\mathfrak d$

 $\mathfrak u$ comes in as the minimal number of steps in constructing one representative of one class.

Proposition. Blass, 1987

There is a set D, a so-called test set, of size \mathfrak{d} such that any two ultrafilters \mathscr{U} and \mathscr{V} are nearly coherent, if there is some $f \in D$ with $f(\mathscr{U}) = f(\mathscr{V})$.

The construction of two non-nearly-coherent ultrafilters can be seen as a diagonalization with $\mathfrak u$ steps and $\mathfrak d$ tasks.

(ロ) (部) (E) (E) (E)

The role of $\mathfrak u$ and $\mathfrak d$

 $\mathfrak u$ comes in as the minimal number of steps in constructing one representative of one class.

Proposition. Blass, 1987

There is a set D, a so-called test set, of size \mathfrak{d} such that any two ultrafilters \mathscr{U} and \mathscr{V} are nearly coherent, if there is some $f \in D$ with $f(\mathscr{U}) = f(\mathscr{V})$.

The construction of two non-nearly-coherent ultrafilters can be seen as a diagonalization with $\mathfrak u$ steps and $\mathfrak d$ tasks.

(ロ) (部) (E) (E) (E)

Candidates

Models of $u < \mathfrak{d}$: The known models with *countable support* iterations fulfil the stronger inequality $u < \mathfrak{g}$, which implies NCF. There is one type of model (from [BsSh:257], 1989) of $u < \mathfrak{d}$ gotten with a *finite support iteration* of c.c.c. partial orders.

Candidates

Models of $u < \mathfrak{d}$: The known models with *countable support* iterations fulfil the stronger inequality $u < \mathfrak{g}$, which implies NCF. There is one type of model (from [BsSh:257], 1989) of $u < \mathfrak{d}$ gotten with a *finite support iteration* of c.c.c. partial orders.

Theorem. M.

It is consistent relative to ZFC that there are infinitely many near-coherence classes of ultrafilters and $\mathfrak{u}<\mathfrak{d}.$
Candidates

Models of $u < \mathfrak{d}$: The known models with *countable support* iterations fulfil the stronger inequality $u < \mathfrak{g}$, which implies NCF. There is one type of model (from [BsSh:257], 1989) of $u < \mathfrak{d}$ gotten with a *finite support iteration* of c.c.c. partial orders.

Theorem. M.

It is consistent relative to ZFC that there are infinitely many near-coherence classes of ultrafilters and $\mathfrak{u} < \mathfrak{d}$.

・ロト ・聞 ト ・ヨト ・ヨト

An iteration with a rectangular structure

An iteration with a rectangular structure

An iteration with a rectangular structure

An iteration with a rectangular structure

sξ

An iteration with a rectangular structure

An iteration with a rectangular structure

An iteration with a rectangular structure

An iteration with a rectangular structure

An iteration with a rectangular structure

An iteration with a rectangular structure

An iteration with a rectangular structure

ν

Sç Cohen reals r_{α} Heike Mildenberger There may be infinitely many near coherence classes under the first second second

Splitting families and reaping

Definition

 $\mathscr{S} \subseteq [\omega]^{\omega}$ is a splitting family iff $(\forall X \in [\omega]^{\omega})(\exists S \in \mathscr{S})(X \cap S \text{ and } X \setminus S \text{ are both infinite})$. The splitting number \mathfrak{s} is the smallest size

of a splitting family.

Splitting families and reaping

Definition

 $\mathscr{S} \subseteq [\omega]^{\omega}$ is a splitting family iff $(\forall X \in [\omega]^{\omega})(\exists S \in \mathscr{S})(X \cap S \text{ and } X \setminus S \text{ are both infinite})$. The splitting number \mathfrak{s} is the smallest size of a splitting family.

Theorem. Blass, M., 1999

If $\mathfrak{s} > \mathfrak{r}$ then there are at most two near-coherence classes.

Splitting families and reaping

Definition

 $\mathscr{S} \subseteq [\omega]^{\omega}$ is a splitting family iff $(\forall X \in [\omega]^{\omega})(\exists S \in \mathscr{S})(X \cap S \text{ and } X \setminus S \text{ are both infinite})$. The splitting number \mathfrak{s} is the smallest size of a splitting family.

Theorem. Blass, M., 1999

If $\mathfrak{s} > \mathfrak{r}$ then there are at most two near-coherence classes.

Theorem. Aubrey, 2004

If $\mathfrak{r} < \mathfrak{d}$ then $\mathfrak{r} = \mathfrak{u}$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Splitting families and reaping

Definition

 $\mathscr{S} \subseteq [\omega]^{\omega}$ is a splitting family iff $(\forall X \in [\omega]^{\omega})(\exists S \in \mathscr{S})(X \cap S \text{ and } X \setminus S \text{ are both infinite})$. The splitting number \mathfrak{s} is the smallest size of a splitting family.

Theorem. Blass, M., 1999

If $\mathfrak{s} > \mathfrak{r}$ then there are at most two near-coherence classes.

Theorem. Aubrey, 2004

If $\mathfrak{r} < \mathfrak{d}$ then $\mathfrak{r} = \mathfrak{u}$.

Conclusion: In $V^{\mathbb{P}}$, we have $u = \mathfrak{u} = \mathfrak{r}$.

(日) (部) (E) (E) (E)

Splitting families and reaping

Definition

 $\mathscr{S} \subseteq [\omega]^{\omega}$ is a splitting family iff $(\forall X \in [\omega]^{\omega})(\exists S \in \mathscr{S})(X \cap S \text{ and } X \setminus S \text{ are both infinite})$. The splitting number \mathfrak{s} is the smallest size of a splitting family.

Theorem. Blass, M., 1999

If $\mathfrak{s} > \mathfrak{r}$ then there are at most two near-coherence classes.

Theorem. Aubrey, 2004

If $\mathfrak{r} < \mathfrak{d}$ then $\mathfrak{r} = \mathfrak{u}$.

Conclusion: In $V^{\mathbb{P}}$, we have $\nu = \mathfrak{u} = \mathfrak{r}$.

(日) (部) (E) (E) (E)

A small splitting family

Proposition In $V^{\mathbb{P}}$. $\mathfrak{s} < \nu$.

Sketch of proof: Remember, $s_{\xi},\ \xi<
u,$ are the Mathias reals. We set

$$X_{\xi}=\{n\in\omega\,:\,|s_{\xi}\cap n| ext{ is even}\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 -

A small splitting family

Proposition

In $V^{\mathbb{P}}$, $\mathfrak{s} \leq \nu$.

Sketch of proof: Remember, $s_{\xi},\ \xi<\nu,$ are the Mathias reals. We set

$$X_{\xi} = \{ n \in \omega \ : \ |s_{\xi} \cap n| \text{ is even} \}.$$

Then $\{X_{\xi} : \xi < \nu\}$ is a splitting family witnessing $\mathfrak{s} \leq \mathfrak{r}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 - のへで

A small splitting family

Proposition

In $V^{\mathbb{P}}$, $\mathfrak{s} \leq \nu$.

Sketch of proof: Remember, $s_{\xi},\ \xi<\nu,$ are the Mathias reals. We set

$$X_{\xi} = \{ n \in \omega \ : \ |s_{\xi} \cap n| \text{ is even} \}.$$

Then $\{X_{\xi} : \xi < \nu\}$ is a splitting family witnessing $\mathfrak{s} \leq \mathfrak{r}$. (We have $\mathfrak{s} = \nu$ in these models.)

A small splitting family

Proposition

In $V^{\mathbb{P}}$, $\mathfrak{s} \leq \nu$.

Sketch of proof: Remember, $s_{\xi},\ \xi<\nu,$ are the Mathias reals. We set

$$X_{\xi} = \{ n \in \omega \ : \ |s_{\xi} \cap n| \text{ is even} \}.$$

Then $\{X_{\xi} : \xi < \nu\}$ is a splitting family witnessing $\mathfrak{s} \leq \mathfrak{r}$. (We have $\mathfrak{s} = \nu$ in these models.) Conclusion: In $V^{\mathbb{P}}$, we have $\mathfrak{s} \leq \nu = \mathfrak{u} = \mathfrak{r}$ and hence the $\mathfrak{r} < \mathfrak{s}$ -Theorem does not apply.

A small splitting family

Proposition

In $V^{\mathbb{P}}$, $\mathfrak{s} \leq \nu$.

Sketch of proof: Remember, $\mathbf{s}_{\xi},\ \xi<\nu,$ are the Mathias reals. We set

$$X_{\xi} = \{ n \in \omega \ : \ |s_{\xi} \cap n| \text{ is even} \}.$$

Then $\{X_{\xi} : \xi < \nu\}$ is a splitting family witnessing $\mathfrak{s} \leq \mathfrak{r}$. (We have $\mathfrak{s} = \nu$ in these models.) Conclusion: In $V^{\mathbb{P}}$, we have $\mathfrak{s} \leq \nu = \mathfrak{u} = \mathfrak{r}$ and hence the $\mathfrak{r} < \mathfrak{s}$ -Theorem does not apply.

The answer

Claim

In the model $V^{\mathbb{P}}$ there are infinitely near-coherence classes of ultrafilters.

Sketch of proof: We have the ultrafilter \mathscr{U}_P that is generated by the Mathias reals $s_{\xi},\ \xi<\nu.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The answer

Claim

In the model $V^{\mathbb{P}}$ there are infinitely near-coherence classes of ultrafilters.

Sketch of proof: We have the ultrafilter \mathscr{U}_P that is generated by the Mathias reals $s_{\xi},\ \xi<\nu.$

By [BM] all ultrafilters $\mathscr U$ with $< \mathfrak d$ generators have $\mathrm{cf}(\omega^\omega/\mathscr U) = \mathfrak d > \mathfrak r$ and hence are nearly coherent to $\mathscr U_P$

The answer

Claim

In the model $V^{\mathbb{P}}$ there are infinitely near-coherence classes of ultrafilters.

Sketch of proof: We have the ultrafilter \mathscr{U}_P that is generated by the Mathias reals s_{ξ} , $\xi < \nu$. By [BM] all ultrafilters \mathscr{U} with $< \mathfrak{d}$ generators have $cf(\omega^{\omega}/\mathscr{U}) = \mathfrak{d} > \mathfrak{r}$ and hence are nearly coherent to \mathscr{U}_P . We shall show that there is a filter \mathscr{H}_0 that is non-nearly-coherent to \mathscr{U}_P such that \mathscr{H}_0 extended by fewer than $\mathfrak{d}(\mathscr{H}_0)$ sets is not almost ultra.

(日) (四) (종) (종) (종) (종)

The answer

Claim

In the model $V^{\mathbb{P}}$ there are infinitely near-coherence classes of ultrafilters.

Sketch of proof: We have the ultrafilter \mathscr{U}_P that is generated by the Mathias reals s_{ξ} , $\xi < \nu$. By [BM] all ultrafilters \mathscr{U} with $< \mathfrak{d}$ generators have $cf(\omega^{\omega}/\mathscr{U}) = \mathfrak{d} > \mathfrak{r}$ and hence are nearly coherent to \mathscr{U}_P . We shall show that there is a filter \mathscr{H}_0 that is non-nearly-coherent to \mathscr{U}_P such that \mathscr{H}_0 extended by fewer than $\mathfrak{d}(\mathscr{H}_0)$ sets is not almost ultra.

We shall get \mathcal{H}_0 from the Cohen reals.

The answer

Claim

In the model $V^{\mathbb{P}}$ there are infinitely near-coherence classes of ultrafilters.

Sketch of proof: We have the ultrafilter \mathscr{U}_P that is generated by the Mathias reals s_{ξ} , $\xi < \nu$. By [BM] all ultrafilters \mathscr{U} with $< \mathfrak{d}$ generators have $cf(\omega^{\omega}/\mathscr{U}) = \mathfrak{d} > \mathfrak{r}$ and hence are nearly coherent to \mathscr{U}_P . We shall show that there is a filter \mathscr{H}_0 that is non-nearly-coherent to \mathscr{U}_P such that \mathscr{H}_0 extended by fewer than $\mathfrak{d}(\mathscr{H}_0)$ sets is not almost ultra.

We shall get \mathscr{H}_0 from the Cohen reals.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

Filters not nearly coherent to \mathscr{U}_P

We think of the Cohen reals as subsets of ω and let the Cohen reals r_{α} , $\alpha < \delta$, be their strictly increasing enumerations. We set

 $X_{\alpha,\xi} = \{r_{\alpha}(n) : |s_{\xi} \cap n| \text{ even}\},\$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ
Filters not nearly coherent to \mathscr{U}_P

We think of the Cohen reals as subsets of ω and let the Cohen reals r_{α} , $\alpha < \delta$, be their strictly increasing enumerations. We set

$$\begin{array}{rcl} X_{\alpha,\xi} & = & \{r_{\alpha}(n) \, : \, |s_{\xi} \cap n| \, \operatorname{even}\}, \\ \\ \mathscr{H}_{\xi} & = & \{X_{\alpha,\xi} \, : \, \alpha < \delta\}, \end{array}$$

・ロト ・回ト ・ヨト ・ヨト

Filters not nearly coherent to \mathscr{U}_P

We think of the Cohen reals as subsets of ω and let the Cohen reals r_{α} , $\alpha < \delta$, be their strictly increasing enumerations. We set

$$\begin{array}{lll} X_{\alpha,\xi} &=& \{r_{\alpha}(n) \, : \, |s_{\xi} \cap n| \, \operatorname{even}\}, \\ \\ \mathscr{H}_{\xi} &=& \{X_{\alpha,\xi} \, : \, \alpha < \delta\}, \\ \\ \\ \mathscr{H} &=& \{X_{\alpha,\xi} \, : \, \alpha < \delta, \xi < \nu, \xi \, \operatorname{is an \ even \ ordinal}\}, \end{array}$$

イロト 不得下 イヨト イヨト

Filters not nearly coherent to \mathscr{U}_P

We think of the Cohen reals as subsets of ω and let the Cohen reals r_{α} , $\alpha < \delta$, be their strictly increasing enumerations. We set

$$\begin{array}{lll} X_{\alpha,\xi} &=& \{r_{\alpha}(n) \, : \, |s_{\xi} \cap n| \, \operatorname{even}\}, \\ & \mathscr{H}_{\xi} &=& \{X_{\alpha,\xi} \, : \, \alpha < \delta\}, \\ & \mathscr{H} &=& \{X_{\alpha,\xi} \, : \, \alpha < \delta, \xi < \nu, \xi \, \operatorname{is an \ even \ ordinal}\}, \\ & \mathscr{H}_{\operatorname{full}} &=& \{X_{\alpha,\xi} \, : \, \alpha < \delta, \xi < \nu\}. \end{array}$$

イロト 不得下 イヨト イヨト

Filters not nearly coherent to \mathscr{U}_P

We think of the Cohen reals as subsets of ω and let the Cohen reals r_{α} , $\alpha < \delta$, be their strictly increasing enumerations. We set

$$\begin{array}{lll} X_{\alpha,\xi} &=& \{r_{\alpha}(n) \, : \, |s_{\xi} \cap n| \, \operatorname{even}\}, \\ & \mathscr{H}_{\xi} &=& \{X_{\alpha,\xi} \, : \, \alpha < \delta\}, \\ & \mathscr{H} &=& \{X_{\alpha,\xi} \, : \, \alpha < \delta, \xi < \nu, \xi \text{ is an even ordinal}\}, \\ & \mathscr{H}_{\mathrm{full}} &=& \{X_{\alpha,\xi} \, : \, \alpha < \delta, \xi < \nu\}. \end{array}$$

Lemma

 $\mathscr{H}_{\mathrm{full}}$ has the finite intersection property.

Filters not nearly coherent to \mathscr{U}_P

We think of the Cohen reals as subsets of ω and let the Cohen reals r_{α} , $\alpha < \delta$, be their strictly increasing enumerations. We set

$$\begin{array}{lll} X_{\alpha,\xi} &=& \{r_{\alpha}(n) \, : \, |s_{\xi} \cap n| \, \operatorname{even}\}, \\ & \mathscr{H}_{\xi} &=& \{X_{\alpha,\xi} \, : \, \alpha < \delta\}, \\ & \mathscr{H} &=& \{X_{\alpha,\xi} \, : \, \alpha < \delta, \xi < \nu, \xi \text{ is an even ordinal}\}, \\ & \mathscr{H}_{\mathrm{full}} &=& \{X_{\alpha,\xi} \, : \, \alpha < \delta, \xi < \nu\}. \end{array}$$

Lemma

 $\mathscr{H}_{\mathrm{full}}$ has the finite intersection property.

Heike Mildenberger There may be infinitely many near coherence classes under a

$f(\mathscr{H}_0) \not\subseteq f(\mathscr{U}_P)$

Lemma

For every $\xi < \nu$, for every $Y \in V(\delta, \xi)$ for every $\alpha_i < \delta$, i < k, we have: If $Y \cap \bigcap_{i < k} \operatorname{range}(r_{\alpha_i})$ is infinite, then the set

 $Y \cap igcap_{0 \leq i < k} X_{lpha_i, \xi}$

is infinite.

Lemma

For every finite-to-one f, $f(\mathcal{H}_0) \not\subseteq f(\mathcal{U}_P)$.

$f(\mathscr{H}_0) \not\subseteq f(\mathscr{U}_P)$

Lemma

For every $\xi < \nu$, for every $Y \in V(\delta, \xi)$ for every $\alpha_i < \delta$, i < k, we have: If $Y \cap \bigcap_{i < k} \operatorname{range}(r_{\alpha_i})$ is infinite, then the set

 $Y \cap \bigcap_{0 \le i < k} X_{\alpha_i,\xi}$

is infinite.

Lemma

For every finite-to-one f, $f(\mathscr{H}_0) \not\subseteq f(\mathscr{U}_P)$.

two near coherence classes of ultrafilters. ・ ・ロト・ロー・・ マート・モー・モー・ ショー・

Heike Mildenberger There may be infinitely many near coherence classes under a

$f(\mathscr{H}_0) \not\subseteq f(\mathscr{U}_P)$

Lemma

For every $\xi < \nu$, for every $Y \in V(\delta, \xi)$ for every $\alpha_i < \delta$, i < k, we have: If $Y \cap \bigcap_{i < k} \operatorname{range}(r_{\alpha_i})$ is infinite, then the set

 $Y \cap \bigcap_{0 \leq i < k} X_{lpha_i, \xi}$

is infinite.

Lemma

For every finite-to-one f, $f(\mathscr{H}_0) \not\subseteq f(\mathscr{U}_P)$.

Small dominating families modulo filter orderings

Aim: Find a tree of pairwise non-nearly coherent ultrafilters among the supersets of \mathscr{H}_0 .

Proposition. Banakh, Blass, 2005 If a filter \mathscr{F} and a ultrafilter \mathscr{U} are not nearly coher

イロト 不得下 イヨト イヨト

Small dominating families modulo filter orderings

Aim: Find a tree of pairwise non-nearly coherent ultrafilters among the supersets of \mathscr{H}_0 .

Proposition. Banakh, Blass, 2005 If a filter \mathscr{F} and a ultrafilter \mathscr{U} are not nearly coherent, then $\mathfrak{d}(\mathscr{F}) \leq \chi(\mathscr{U}).$

So in $V^{\mathbb{P}}$, $\mathfrak{d}(\mathscr{H}_0) \leq \nu$.

(ロ) (部) (E) (E) (E)

Small dominating families modulo filter orderings

Aim: Find a tree of pairwise non-nearly coherent ultrafilters among the supersets of \mathscr{H}_0 .

Proposition. Banakh, Blass, 2005 If a filter \mathscr{F} and a ultrafilter \mathscr{U} are not nearly coherent, then $\mathfrak{d}(\mathscr{F}) \leq \chi(\mathscr{U}).$

So in $V^{\mathbb{P}}$, $\mathfrak{d}(\mathscr{H}_0) \leq \nu$.

Small test sets

Let $t(\mathscr{F})$ be the smallest size of a test set for near coherence in $[\mathscr{F}] = \{\mathscr{G} : \mathscr{G} \text{ filter}, \mathscr{G} \supseteq \mathscr{F}\}.$

Proposition. Banakh, Blass, 2005 $t(\mathscr{F}) \leq \mathfrak{d}(\mathscr{F}).$

(日) (四) (日) (日) (日)

Small test sets

Let $t(\mathscr{F})$ be the smallest size of a test set for near coherence in $[\mathscr{F}] = \{\mathscr{G} : \mathscr{G} \text{ filter}, \mathscr{G} \supseteq \mathscr{F}\}.$

Proposition. Banakh, Blass, 2005 $t(\mathscr{F}) \leq \mathfrak{d}(\mathscr{F}).$

So, in $V^{\mathbb{P}}$, $t(\mathscr{H}_0) \leq
u$.

Small test sets

Let $t(\mathscr{F})$ be the smallest size of a test set for near coherence in $[\mathscr{F}] = \{\mathscr{G} : \mathscr{G} \text{ filter}, \mathscr{G} \supseteq \mathscr{F}\}.$

Proposition. Banakh, Blass, 2005 $t(\mathscr{F}) \leq \mathfrak{d}(\mathscr{F}).$

So, in $V^{\mathbb{P}}$, $t(\mathscr{H}_0) \leq \nu$.

A tree of near-coherence classes

Lemma. Slight generalization of Blass, 1987

If all extensions of \mathcal{H}_0 by fewer than $t(\mathcal{H}_0)$ sets are not almost ultra, then we can construct infinitely many pairwise non-nearly coherent ultrafilters by an induction of length $t(\mathcal{H}_0)$.

So our proof is finished with

Lemma

In $V^{\mathbb{P}}$, each extension of \mathscr{H}_0 by fewer than ν sets is not almost ultra.

and we do not need to construct the desired tree explicitly.

・ロン ・日ン ・ヨン ・ヨン 三日

A tree of near-coherence classes

Lemma. Slight generalization of Blass, 1987

If all extensions of \mathcal{H}_0 by fewer than $t(\mathcal{H}_0)$ sets are not almost ultra, then we can construct infinitely many pairwise non-nearly coherent ultrafilters by an induction of length $t(\mathcal{H}_0)$.

So our proof is finished with

Lemma

In $V^{\mathbb{P}}$, each extension of \mathscr{H}_0 by fewer than ν sets is not almost ultra.

and we do not need to construct the desired tree explicitly.

・ロン ・日ン ・ヨン ・ヨン 三日

Bibliography, part 1

Jason Aubrey. Combinatorics for the Dominating and the Unsplitting Numbers. J. Symbolic Logic, 69:482–498, 2004.

Taras Banakh and Andreas Blass. The Number of Near-Coherence Classes of Ultrafilters is Either Finite or 2^c. Set Theory (Proceedings of the Special Year in Set Theory in Barcelona, 2003/2004). Pages 257 – 273. Eds. J. Bagaria and S. Todorcevic. Series: Trends in Mathematics. Birkhaeuser, 2006.

Andreas Blass. Near coherence of filters, II: Applications to operator ideals, the Stone-Čech remainder of a half-line, order ideals of sequences, and slenderness of groups. Trans. Amer. Math. Soc., 300:557–581, 1987.

(日) (四) (종) (종) (종) (종)

Bibliography, part 2

Andreas Blass. Groupwise density and related cardinals. Arch. Math. Logic, 30:1–11, 1990.

Andreas Blass and Claude Laflamme. Consistency results about filters and the number of inequivalent growth types. J. Symbolic Logic, 54:50–56, 1989.

Andreas Blass and Heike Mildenberger. On the cofinality of ultrapowers. J. Symbolic Logic, 64:727–736, 1999.

Andreas Blass and Saharon Shelah. [BsSh:242]. There may be simple P_{\aleph_1} - and P_{\aleph_2} -points and the Rudin-Keisler ordering may be downward directed. Ann. Pure Appl. Logic, 33:213–243, [BsSh:242], 1987.

Bibliography, part 3

Andreas Blass and Saharon Shelah. [BsSh:287]. Near coherence of filters III: A simplified consistency proof. Notre Dame J. Formal Logic, 30:530–538, [BsSh:287], 1989.

Andreas Blass and Saharon Shelah. [BsSh:257]. Ultrafilters with small generating sets. Israel J. Math., 65:259–271, [BsSh:257], 1989.

Jörg Brendle. Distinguishing Groupwise Density Numbers. Preprint, 2006.

Martin Goldstern and Saharon Shelah. Ramsey ultrafilters and the reaping number— Con(r < u). Ann. Pure Appl. Logic, 49, 1990.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Bibliography, part 4

Heike Mildenberger. Groupwise dense families. Arch. Math. Logic, 40:93 –112, 2000.

Heike Mildenberger. There may be infinitely many near coherence classes under $u < \mathfrak{d}$, to appear in JSL

Heike Mildenberger. On the groupwise density number for filters. Acta Univ. Carolinae - Math. et Phys., 46:55–63, 2005.

Heike Mildenberger, Saharon Shelah, and Boaz Tsaban. Covering the Baire Space with Meager Sets, [MdShTs:847]. Ann. Pure Appl. Logic 140:60–71, 2006.

(ロ) (部) (E) (E) (E)