# Higher-Order Reverse Topology

### James Hunter (hunter@math.wisc.edu)

University of Wisconsin

Logic Colloquium 2007 Wrocław University

A ■

< ∃⇒





2 Second-order parts of higher-order theories

- 3 Topological definitions
- A bit of reverse topology

## Review of second-order reverse math

Traditional reverse math studies subsystems of *second-order arithmetic*.

- Language: Number (type-0) and set (type-1) variables;  $\{0, +, \cdot, etc.\}$ ; "=0" for numbers (but not sets); " $\in$ " relates numbers and sets.
- Base theory, **RCA**<sub>0</sub>: Axioms for number-theoretic  $\mathbb{N}$ ; induction schema for  $\Sigma_1^0$  formulas; comprehension schema for  $\Delta_1^0$  formulas.
  - The second-order part of the minimal ω-model of RCA<sub>0</sub> consists of all computable (recursive) sets.
  - The first-order part of the theory RCA<sub>0</sub> is  $\Sigma_1^0$ -PA [4].
- A stronger theory, **ACA**<sub>0</sub>: Axioms for RCA<sub>0</sub>; comprehension schema for arithmetical (or " $\Pi^0_{\infty}$ ") formulas.
  - The second-order part of the minimal  $\omega$ -model of ACA<sub>0</sub> consists of all arithmetical sets.
  - The first-order part of the theory  $ACA_0$  is PA [4].

# Finite types

#### Definition

The finite types are defined inductively:

- 0 is a type.
- If  $\sigma$  and  $\tau$  are types then  $(\sigma \rightarrow \tau)$  is a type.

0 is the type of natural numbers;  $(\sigma \rightarrow \tau)$  is the type of a functional mapping type- $\sigma$  elements to type- $\tau$  elements.

#### Definition

The standard types are defined inductively:

- 0 is a standard type.
- If n is a standard type, then  $n + 1 := (n \rightarrow 0)$  is a standard type.

Example: reals are of type 1.

イロン イヨン イヨン イヨン

## Higher-order reverse math

The language of second-order arithmetic may be too restrictive. In a recent paper [3], Kohlenbach described a base theory in a more-flexible, higher-order language.

- Language: Variables of all finite types; {0, +, ·, etc.} as before; "=0" only for (type-0) numbers, as before; plus—
  - Combinators  $\Pi_{\rho,\tau}$ ,  $\Sigma_{\sigma,\rho,\tau}$  (for  $\lambda$ -abstraction);
  - Some symbol for application, not shown here; and
  - Symbol  $R_0$ , for primitive recursion.
- Base theory, RCA<sub>0</sub><sup>ω</sup> (= E-PRA<sup>ω</sup> + QF-AC<sup>1,0</sup>): Axioms for number-theoretic N, as before; induction schema for quantifier-free formulas; axioms defining R<sub>0</sub>, the Π<sub>ρ,τ</sub>'s, and the Σ<sub>σ,ρ,τ</sub>'s; extensionality axioms; and QF-AC<sup>1,0</sup>:

$$\forall x^1 \exists n^0(\Phi(x,n)) \rightarrow \exists F^{(1 \rightarrow 0)} \forall x^1(\Phi(x,F(x)),$$

where  $\Phi$  is a quantifier-free formula.

・ロン ・回と ・ヨン・

# The axioms $(E_1)$ and $(E_2)$

#### Definition

The axiom  $(E_1)$  is the statement:

$$\exists E_1^2 \left[ \forall x^1(E_1(x) =_0 1) \leftrightarrow \exists n^0(x(n) \neq_0 0) \right].$$

#### Definition

The axiom  $(E_2)$  is the statement:

$$\exists E_2^{3} \left[ \forall X^2(E_2(X) =_0 1) \leftrightarrow \exists x^1(X(x) \neq_0 0) \right].$$

- Higher-order equality is defined inductively. E.g.,  $x^1 =_1 y^1 \iff \forall n^0(x(n) =_0 y(n)).$
- Think of  $E_1$  as a functional determining type-1 equality:

$$x^{1} =_{1} y^{1} \iff E_{1}(\lambda n^{0}.(x(n) - y(n))) =_{0} 0.$$

### Conservation results

### Proposition (Kohlenbach [3])

 $RCA_0^{\omega}$  is conservative over and implies  $RCA_0$ .

### Proposition (H.)

- $RCA_0^{\omega} + (E_1)$  is conservative over and implies  $ACA_0$ .
- **2**  $RCA_0^{\omega} + QF-AC^{0,1}$  is conservative over and implies  $\Sigma_1^1-AC_0$ .
- $RCA_0^{\omega} + (E_2)$  is conservative over and implies  $\Pi_{\infty}^1 CA_0$ .
- I Etc.

The proof of the second proposition uses term models and is analogous to the proof of the first.

(ロ) (同) (E) (E) (E)

# Sets, families

#### Definition

- A real is a (type-1) function.
- A set is a (type-2) functional X such that  $\forall x^1(X(x) =_0 0 \lor X(x) =_0 1).$
- **③** A family is a (type-3) functional  $\mathcal{F}$  such that  $\forall X^2(\mathcal{F}(x) =_0 0 \lor \mathcal{F}(X) =_0 1).$

(We write " $x \in X$ " as shorthand for " $X(x) =_0 1$ .")

We consider only topologies on the reals.

周▶ 《 ≧ ▶

< 三 ▶ ……

# Topologies

#### Definition

A family  $\mathcal{F}$  is a topology iff:

$$0 \quad \emptyset := (\lambda x^1.0) \in \mathcal{F};$$

$$\mathbb{N} \mathbb{N} := (\lambda x^1.1) \in \mathcal{F};$$

**3** if 
$$X \in \mathcal{F}$$
 and  $Y \in \mathcal{F}$  then  
 $X \cap Y := (\lambda x. \min(X(x), Y(x))) \in \mathcal{F}$ ; and

• if 
$$\mathcal{G} \subseteq_2 \mathcal{F}$$
 and  $\bigcup \mathcal{G} := \{x : \exists X^2 \in \mathcal{G} (x \in X)\}$  exists, then  $\bigcup \mathcal{G} \in \mathcal{F}$ .

**Examples:** The indiscrete topology is  $\{\emptyset, \mathbb{N}\mathbb{N}\}$ , and the discrete topology is  $(\lambda X^2.1)$ .

・ロン ・回と ・ヨン ・ヨン

æ

# Simple equivalences

#### Proposition (H. and folklore)

Over  $RCA_0^{\omega}$ , we have the following equivalences:

- (E<sub>2</sub>) ⇔ there is a topology for a connected space (i.e., only Ø and <sup>N</sup>N are clopen).
- (E<sub>2</sub>) ⇐⇒ there is a topology with a dense, nowhere-dense set.
- (E<sub>2</sub>) ⇐⇒ there is a topology generated by a countable enumeration for a basis.

A consequence of (3) is that any topological statement examined in second-order reverse math follows, in higher-order reverse math, from the existence of such a **formal** topology. So second-order reverse topology does not carry over nicely to higher-order theories.

イロン イ部ン イヨン イヨン 三日

## More simple equivalences

#### Proposition (H. and folklore)

Over  $RCA_0^{\omega} + (E_1)$ , we have the following equivalences:

- **(** $E_2$ )  $\iff$  there is a topology with a countable dense set.
- (E<sub>2</sub>) ⇐→ there is a topology for a space that is the countable union of nowhere-dense sets (i.e., is of first category).

- < ≣ > \_\_\_\_

▲□ ▶ ▲ □ ▶ ▲ □ ▶

# Topology in $RCA_0^{\omega} + (E_1)$

#### Proposition (H.)

If T is a topology existing in a minimal term model of  $RCA_0^{\omega} + (E_1)$  then T is equivalent to  $T \times \mathcal{P}(\mathbb{N} \setminus X)$ , where  $X = \{x_0, x_1, ...\}$  is a countable set and T is a topology on X.

(In other words  $\mathcal{T}$  is essentially just a topology on  $\mathbb{N}$ .)

### Open questions

# Over $RCA_0^{\omega} + (E_2)$ :

- QF-AC<sup>1,2</sup>  $\implies$  "every  $T_2$  space has a witnessing functional"  $\implies$  QF-AC<sup>1,1</sup>.
- "Every  $T_2$  space has a witnessing functional"  $\implies$ :
  - every compact  $T_2$  space is  $T_4$ .
  - every compact  $T_2$  space has a basis of size  $\leq 2^{\aleph_0}$ .
- The principle  $(E_3) \implies$  that every compact,  $T_2$  space is  $T_4$ . Open question: what about reversals?

イロン イ部ン イヨン イヨン 三日

# Bibliography

- [1] Avigad, Jeremy, and Solomon Feferman.
  "Gödel's Functional ('Dialectica') Interpretation."
  Handbook of Proof Theory (Samuel R. Buss, ed.). (Elsevier, 1998.)
  - [2] Jech, Thomas J. The Axiom of Choice. (North-Holland, 1973.)
- 3 Kohlenbach, Ulrich.

"Higher Order Reverse Mathematics." *Reverse Mathematics 2001* (Stephen Simpson, ed.). (A K Peters, 2005.)

[4] Simpson, Stephen G. Subsystems of Second Order Arithmetic. (Springer, 1999.)