A remark on a characterization of non-forking in generic structures

Koichiro IKEDA

Hosei University, Tokyo

Logic Colloquium 2007

Koichiro IKEDA A remark on a characterization of non-forking in generic structures

Let *L* be a countable relational language and **K** a class of finite *L*-structures with $\delta \ge 0$ that has finite closures.

Theorem

Let *M* be a saturated **K**-generic structure. Let $B, C \leq M$ with $A = B \cap C$. Then the following are equivalent: (i) $B \downarrow_A C$; (ii) $B \perp_{acl(A)} C$ and $BC \cup acl(A) \leq M$.

The following corollary is a partial answer to Baldwin's question.

Corollary

There is no saturated **K**-generic structure that is superstable but not ω -stable.

Notation and Definition

- $L = \{R_1, R_2, R_3, \cdots\}$
- A, B, C, ... are L-structures

•
$$R_i^A = \{\bar{e} : A \models R_i(\bar{e})\}$$

- A predimension: $\delta(A) = |A| \sum_i \alpha_i |R_i^A| \quad (0 < \alpha_i \le 1)$
- $A \leq B \Leftrightarrow \delta(X/A) \geq 0$ for any $X \subset B A$
- \mathbf{K}^* is a class of all finite *L*-structures with $\delta \geq 0$
- Fix a subclass K ⊂ K* closed under "substructures"

Warning

In my talk, the notion "substructure" will be used in the following sense: *A* is a **substructure** of *B*, if the universe of *A* is contained in that of *B*, and $\mathbb{R}^A \subset \mathbb{R}^B | A$ for every $\mathbb{R} \in L$. (A generalization of "subgraph")

Definition (Generic)

A countable *L*-structure *M* is **K-generic**, if (1) Any finite $A \subset M$ belongs to **K**; (2) For any $A \leq B \in \mathbf{K}$ with $A \leq M$ there is $B' \cong_A B$ with $B' \leq M$; (3) $M = \bigcup_i A_i$ for some $A_0 \leq A_1 \leq \cdots \in \mathbf{K}$.

Definition (Free)

Let $A = B \cap C$. Then *B* and *C* are **free** over *A* (in symbol, $B \perp_A C$), if $R^{B \cup C} = R^B \cup R^C$ for any $R \in L$.

Fact

Fact (Wagner,...)

Let *M* be a saturated K-generic structure. Let $B, C \leq M$ with $A = B \cap C$ algebraically closed. Then the following are equivalent: (i) $B \downarrow_A C$; (ii) $B \perp_A C$ and $BC \leq M$.

Note

In the above fact, one cannot omit the condition that A is algebraically closed. (There is an example.)

Theorem

Fact (Wagner, ...)

Let *M* be a saturated K-generic structure. Let $B, C \leq M$ with $A = B \cap C$ algebraically closed. Then the following are equivalent: (i) $B \downarrow_A C$; (ii) $B \perp_A C$ and $BC \leq M$.

Theorem

Let *M* be a saturated **K**-generic structure. Let *B*, $C \leq M$ with $A = B \cap C$. Then the following are equivalent: (i) $B \downarrow_A C$; (ii) $B \perp_{acl(A)} C$ and $BC \cup acl(A) \leq M$.

Lemma

Lemma

Let $A \leq C \leq \mathcal{M}$ with $A = \operatorname{acl}(A) \cap C$. Then $\operatorname{acl}(A) \perp_A C$ and $\operatorname{acl}(A) \cup C \leq \mathcal{M}$.

Outline of Proof

Let B = acl(A). For simplicity, we assume that B is finite and mult(B/A) = 1.

- Since **K** is closed under "substructures", there is $B' \cong_A B$ such that $B' \perp_A C$ and $B'C \in \mathbf{K}$.
- **2** By genericity, we can assume $B' \leq B'C \leq \mathcal{M}$.
- Since $B, B' \leq M$, we have tp(B'/A) = tp(B/A).
- Then B' = B by mult(B/A) = 1.
- Hence $B \perp_A C$ and $BC \leq M$.

Theorem

Using this lemma, we will sketch out the proof of our theorem.

Theorem

Let *M* be a saturated K-generic structure. Let $B, C \leq M$ with $A = B \cap C$. Then the following are equivalent: (i) $B \downarrow_A C$; (ii) $B \perp_{acl(A)} C$ and $BC \cup acl(A) \leq M$.

Outline of Proof of Theorem

(i) \Rightarrow (ii)

Suppose $B \downarrow_A C$.

2 Let $A^* = \operatorname{acl}(A)$ and $B^* = \operatorname{acl}(B)$, and take sufficiently saturated $C^* \supset C$ with $B^* \downarrow_{A^*} C^*$.

③ Take small
$$D ⊂ C^*$$
 such that

 $B^* \perp_{A^*D} C^*$, $\operatorname{cl}(B^*D) \cup C^* \leq \mathcal{M}$.

(4) By saturation of C^* , take small $E \subset C^*$ with $E \downarrow_{A^*} D$ such that

 $B^* \perp_{A^*E} C^*$, $\operatorname{cl}(B^*E) \cup C^* \leq \mathcal{M}$.

- Solution By 3 and 4, we have $B^* \perp_{A^*} C^*$ and $B^* C^* \leq \mathcal{M}$.
- Clearly $B \perp_{A^*} C$.
- **O** By lemma, we have $BA^*, CA^* \leq \mathcal{M}$.
- **3** By 5 and 7, we have $BCA^* \leq \mathcal{M}$.

Outline of Proof of Theorem

(ii) \Rightarrow (i)

- Suppose $B \perp_{\operatorname{acl}(A)} C$ and $BC \cup \operatorname{acl}(A) \leq \mathcal{M}$.
- **2** Take $B' \models \operatorname{tp}(B/\operatorname{acl}(A))$ with $B' \downarrow_A C$.
- Since (i) ⇒ (ii) has been proved, we get B'⊥_{acl(A)}C and B'C ∪ acl(A) ≤ M.
- Thus we have $\operatorname{tp}(B'/C \cup \operatorname{acl}(A)) = \operatorname{tp}(B/C \cup \operatorname{acl}(A))$.
- Hence $B \downarrow_A C$.

Corollary

Question (Baldwin)

Is there any "generic" structure that is superstable but not ω -stable ?

This corollary is a partial answer to Baldwin's question.

Corollary

There is no saturated **K**-generic structure that is superstable but not ω -stable.

Corollary

Outline of Proof

- **1** Take a superstable generic structure *M*.
- 2 Note that the theory T is small.
- So, to show that *T* is ω-stable, it is enough to prove that, for any *p* ∈ *S*(*M*) there is finite *A* ⊂ *M* with *p*|*A* stationary.
- Let $b_0 \models p$.
- **(b)** By superstablity, there is finite $A \leq M$ with $b_0 \downarrow_A M$.
- Take any $b_1 \models p$ with $b_1 \downarrow_A M$.
- **O** By theorem, $\operatorname{cl}(b_i A) \perp_{\operatorname{acl}(A)} M$ and $\operatorname{cl}(b_i A) M \leq M$.
- **3** By lemma, $cl(b_iA) \perp_A acl(A)$, and therefore $cl(b_iA) \perp_A M$.
- Solution By 7 and 8, $tp(b_0/M) = tp(b_1/M)$, and hence p|A is stationary.