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Interpretability logics

» We are interested in the structural behavior of the notion of
interpretability.

> Interpretability can easily be formalized/arithmetized.

» We shall consider sentential extensions of a base theory

> > 7 1 stands for

> T+o> T+

» We are interested in the interpretability logic of a theory T:

» The set of all model propositional logical formulas in the
language [, > which are true regardless how you interpret the
variables as arithmetical sentences

» Of course, reading > as >, etc.

» Example: (o> ¥)A (P> x) — (> X)
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Why and how study interpretability

Interpretations
Interpretability logics

» For all theories T, IL(T) contains some sort of core logic IL

» IL(T) is characterized by some additional axiom schemes on
top of that

» For example, for theories with full induction, we have that
Montagna's Axiom holds

(A>B) — (AADC) > (B ATIC))

> It turns out that precisely ILM is, e.g. IL(PA) (Shavrukov
1988; Berarducci 1990)

» Likewise, the interpretability logic for finitely axiomatized
theories is known

» And no other!

» That's were PRA comes in

Marta BilkovaT, Dick de Jongh™, and Joost J. Joosten™, Interpretability in PRA



Proof theoretic characteristics of PRA Bellilemities primepite

Zambella’s Principle

» Consider again

3j Veo(Axioms () — 3p Proofr(p,"¢' 7))

Marta BilkovaT, Dick de Jongh™, and Joost J. Joosten™, Interpretability in PRA



Proof theoretic characteristics of PRA Bellilemities primepite

Zambella’s Principle

» Consider again

3j Veo(Axioms () — 3p Proofr(p,"¢' 7))

» Certainly X3

Marta BilkovaT, Dick de Jongh™, and Joost J. Joosten™, Interpretability in PRA



Proof theoretic characteristics of PRA Bellilemities primepite

Zambella’s Principle

» Consider again

3j Veo(Axioms () — 3p Proofr(p,"¢' 7))

» Certainly X3

» When S has finitely many axioms, then ¥

Marta Bilkova', Dick de Jongh™, and Joost J. Joosten™,



Proof theoretic characteristics of PRA Bellilemities primepite

Zambella’s Principle

» Consider again
3j Veo(Axioms () — 3p Proofr(p,"¢' 7))

» Certainly X3
» When S has finitely many axioms, then ¥
» When T is reflexive, then My. (Orey-Hajek).

Marta BilkovaT, Dick de Jongh™, and Joost J. Joosten™, Interpretability in PRA



Proof theoretic characteristics of PRA Bellilemities primepite

Zambella’s Principle

v

Consider again
3j Veo(Axioms () — 3p Proofr(p,"¢' 7))

» Certainly X3

» When S has finitely many axioms, then ¥

» When T is reflexive, then My. (Orey-Hajek).

» When T is reflexive, we have access to Montagna’s Principle:

(TeS)—=(TAOy)>(SAOY))

Marta BilkovaT, Dick de Jongh™, and Joost J. Joosten™, Interpretability in PRA



Proof theoretic characteristics of PRA Bellilemities primepite

Zambella’s Principle

v

Consider again

3j Veo(Axioms () — 3p Proofr(p,"¢' 7))

Certainly X3

When S has finitely many axioms, then ¥

When T is reflexive, then [My. (Orey-Héjek).

When T is reflexive, we have access to Montagna's Principle:

(TeS)—=(TAOy)>(SAOY))

v

Every extension of PRA by ¥, sentences is reflexive (Parsons,
Beklemishev, etc)

Marta BilkovaT, Dick de Jongh™, and Joost J. Joosten™, Interpretability in PRA



Proof theoretic characteristics of PRA Bellilemities primepite

Zambella’s Principle

» Consider again

3j Veo(Axioms () — 3p Proofr(p,"¢' 7))

Certainly X3

When S has finitely many axioms, then ¥

When T is reflexive, then [My. (Orey-Héjek).

When T is reflexive, we have access to Montagna's Principle:

vV v v Vv

(TeS)—=(TAOy)>(SAOY))

» Every extension of PRA by ¥, sentences is reflexive (Parsons,
Beklemishev, etc)

> (a>pra ) — ((a AOv) >pra (B A D))
whenever o € ¥»
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> where

>
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Proof theoretic characteristics of PRA eSS ICVSIENCIDS

Zambella’s Principle

» If T and S are N, axiomatized theories with
» T= S
> then, T =1 (TUYS)
» So,
(@ B)A (BB a) = (a > (ahB))
whenever,
» o, f €2y, and
> a, BTl

» In other words: «, B € Ay
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Proof theoretic characteristics of PRA SYETEIEYS Rl

Zambella’s Principle

>»Z (A>B)A(B>A) — (A>(AAB)) for Aand B in ED;
>
ED, = |:|.A|ﬁED2|ED2/\ED2|ED2\/ED2

» Is this all?
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The basics
Frame conditions

Modal matters

The logic IL

L1: O(A — B) — (OA — OB)
L2: OA — O0A
L3: O(0A — A) — DA

J1: D(A—)B)—>AI>B

J2: (A B)A(B>C) — A C

33 (A O)A(B>C)—AVB>C
J4: A B — (OA— OB)

J5: SA> A
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RCWxW,
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» R is conversely well-founded and transitive
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v

A Veltman frame F = (W, R, S),
RCWxW,
Sw C W x W for each w € W.

R is conversely well-founded and transitive
ySxz — xRy A xRz
xRyRz — ySyz

vV v v VY

S, is transitive and reflexive for each x
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A model M = (W, R, S,IF),
IFC W x Prop

> w1
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A model M = (W, R, S, I,

IFC W x Prop
> w1
» wiFA—BiffwWAorwl-B
» w Ik OA iff Vv (wRv = v IF A)
>

wlF A B iff Yu (WRu A ul- A= 3v(uSyv IF B))
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Frame conditions
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» Montagna has a nice frame condition
(A B) — (ANOC) > (BADOQ))

» Beklemishev is somewhat similar
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The basics
Frame conditions

Modal matters

A B-simulation on a frame is a binary relation S for which the
following holds.

1. S(x,x") = xT =x1

2. 8(x,x") & xRy — y'(ySxy' NS(y, y") Ay SuT C ySic1)
F = Cg if and only if there is a B-simulation S on F such that for
all x and y,

xRy — 3y’ (ySxy' AS(y,y') AVd, e (y'SxdRe — yRd)).
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ESJ = ED
» ESSTT = ESH|ESHTT AESST|ESSTTVESYT!
—(ESS > Form)
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The basics

Modal matters Frame conditions

ESJ = ED
» ESSTT = ESH|ESHTT AESST|ESSTTVESYT!
—(ESS > Form)
So(b,u) = bl=u]
Sny1(b,u) = Sp(b,u)A

g Ve (bRc — 3c’ (uRc’ A Sp(c, ')A

cSpc’ A c'SyT C cSpl))
» For every i we define the frame condition C; to be
Va,b(aRb — Ju (bS;uNSi(b,u) ANV d, e (uS;dRe — bRe))).

» Theorem
A finite frame F validates all instances of Beklemishev's principle if
and only ifVi F = C;.
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The basics
Frame conditions

Modal matters

» B-Z
» BE=Z

» Frame condition Zambella?
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