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Random real numbers

I A number is random if it belongs to no set of measure zero.
(?)

I But for any number x , the singleton set {x} has measure zero.

I Must restrict attention to a countable collection of measure
zero sets.

I The “computable” measure zero sets. Various definitions.

I Definition of random real numbers motivated by the
Church-Turing thesis.
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Mathematical Brownian Motion

I The basic process in modeling of the stock market in
Mathematical Finance, and important in physics and biology.



Brownian Motion

Figure: Botanist Robert Brown (1773-1858)

Pollen grains suspended in water perform a continued
swarming motion.
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Brownian Motion?

Figure: The fluctuations of the CAC40 index



Mathematical Brownian Motion

A path of Brownian motion is a function f ∈ C [0, 1] or f ∈ C (R)
that is typical with respect to Wiener measure.



Mathematical Brownian Motion

The Wiener measure is characterized by the following properties.

I Independent increments. f (1999)− f (1996) and
f (2005)− f (2003) are independent random variables.
But f (1999) and f (2005) are not independent.

I f (t) is a normally distributed random variable with variance t
and mean 0.

I Stationarity. f (1) and f (2006)− f (2005) have the same
probability distribution.
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Brownian Motion and Random Real Numbers

I Definition of Martin-Löf random continuous functions with
respect to Wiener measure: Asarin (1986).

I Work by Asarin, Pokrovskii, Fouché.
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Khintchine’s Law of the Iterated Logarithm

The Law of the Iterated Logarithm
holds for f ∈ C [0, 1] at t ∈ [0, 1] if

lim sup
h→0

|f (t + h)− f (t)|√
2|h| log log(1/|h|)

= 1.



Theorem (Khintchine)

Fix t. Then almost surely, the LIL holds at t.

Corollary (by Fubini’s Theorem)

Almost surely, the LIL holds almost everywhere.

Theorem (K and Nerode, 2006)

For each Schnorr random Brownian motion, the LIL holds almost
everywhere.

This answered a question of Fouché.

I Method: use Wiener-Carathéodory measure algebra
isomorphism theorem to translate the problem from C [0, 1]
into more familiar terrain: [0, 1].
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Kolmogorov complexity

I The complexity K (σ) of a binary string σ is the length of the
shortest description of σ by a fixed universal Turing machine
having prefix-free domain.

I For a real number x = 0.x1x2 · · · we can look at the
complexity of the prefixes x0 · · · xn.
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Definition
Let f ∈ C [0, 1], t ∈ [0, 1], and c ∈ R.
t is a c-fast time of f if

lim sup
h→0

|f (t + h)− f (t)|√
2|h| log 1/|h|

≥ c .

t is a c-slow time of f if

lim sup
h→0

|f (t + h)− f (t)|√
h

≤ c .

I Both slow and fast times almost surely exist (and form dense
sets) [Orey and Taylor 1974, Davis, Greenwood and Perkins
1983].
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Slow times

I No time given in advance is slow, but the set of slow times
has positive Hausdorff dimension.

I Any set of positive Hausdorff dimension contains some times
of high Kolmogorov complexity.

I But actually, all slow points have high Kolmogorov complexity.

I Can prove this using either computability theory or probability
theory.



Slow times

I No time given in advance is slow, but the set of slow times
has positive Hausdorff dimension.

I Any set of positive Hausdorff dimension contains some times
of high Kolmogorov complexity.

I But actually, all slow points have high Kolmogorov complexity.

I Can prove this using either computability theory or probability
theory.



Slow times

I No time given in advance is slow, but the set of slow times
has positive Hausdorff dimension.

I Any set of positive Hausdorff dimension contains some times
of high Kolmogorov complexity.

I But actually, all slow points have high Kolmogorov complexity.

I Can prove this using either computability theory or probability
theory.



Slow times

I No time given in advance is slow, but the set of slow times
has positive Hausdorff dimension.

I Any set of positive Hausdorff dimension contains some times
of high Kolmogorov complexity.

I But actually, all slow points have high Kolmogorov complexity.

I Can prove this using either computability theory or probability
theory.



Definition
A set is c.e. if it is computably enumerable.

A set A ⊆ N is infinitely often c.e. traceable if there is a
computable function p(n) such that for all f : N → N, if f is
computable in A then there is a uniformly c.e. sequence of finite
sets En of size ≤ p(n) such that

∃∞n f (n) ∈ En.
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Definition
An infinite binary sequence x is autocomplex if there is a function
f : N → N with limn f (n) = ∞, f computable from x , and

K (x � n) ≥ f (n).

A sequence x is Martin-Löf random if x 6∈ ∩nUn for any uniformly
Σ0

1 sequence of open sets Un with µUn ≤ 2−n.
A sequence x is Kurtz random if x 6∈ C for any Π0

1 class C of
measure 0.
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A sequence x is Martin-Löf random if x 6∈ ∩nUn for any uniformly
Σ0

1 sequence of open sets Un with µUn ≤ 2−n.

A sequence x is Kurtz random if x 6∈ C for any Π0
1 class C of

measure 0.



Definition
An infinite binary sequence x is autocomplex if there is a function
f : N → N with limn f (n) = ∞, f computable from x , and

K (x � n) ≥ f (n).
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Theorem (K, Merkle, Stephan)

x is infinitely often c.e. traceable iff x is not autocomplex.

Lemma
If x is not autocomplex then every Martin-Löf random real is
Kurtz-random relative to x.

This translates to:

I If t ∈ [0, 1] is not of high Kolmogorov complexity then each
sufficiently random f ∈ C [0, 1] is such that t is not a slow
point of f .

Thus we have a computability-theoretic proof that all slow points
are almost surely of high Kolmogorov complexity.
There are also probability-theoretic methods for proving such
things, that can even yield stronger results.
On the other hand, these methods can be applied to
computability-theoretic problems.
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Two notions of random closed set

Two probability distributions on closed subsets of Cantor space.

1. “Random closed set” (Barmpalias, Brodhead, Cenzer, Dashti,
and Weber (2007)). 1/3 probability each of: keeping only left
branch, keeping only right branch, keeping both branches.

2. Percolation limit set (Hawkes, R. Lyons (1990)). 2/3
probability of keeping the left branch, and independently 2/3
probability of keeping the right branch.



Bits:
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Let γ = log2(3/2) and α = 1− γ = log2(4/3).
Barmpalias, Brodhead, Cenzer, Dashti, and Weber define
(Martin-Löf-)random closed sets and show that they all have
dimension α.
We denote Hausdorff dimension by dim and effective Hausdorff
dimension by dim∅. Then

dim∅(x) = lim inf
n

K (x � n)

n

= sup{s : x is s-Martin-Löf-random}.



We define a strengthening of Reimann and Stephan’s strong
γ-randomness, vehement γ-randomness. Both notions coincide
with Martin-Löf γ-randomness for γ = 1.

Definition
Let ρ : 2<ω → R, ρ(σ) = 2−|σ|γ for some fixed γ ∈ [0, 1]. For a set
of strings V ,

ρ(V ) :=
∑
σ∈V

ρ(σ)

and
[V ] :=

⋃
{[σ] : σ ∈ V }

.



Definition
A ML-γ-test is a uniformly c.e. sequence (Un)n<ω of sets of strings
such that for all n,

ρ(Un) ≤ 2−n.

A strong ML-γ-test is a uniformly c.e. sequence (Un)n<ω of sets of
strings such that

(∀n)(∀V ⊆ Un)[V prefix-free ⇒ ρ(V ) ≤ 2−n].

A vehement ML-γ-test is a uniformly c.e. sequence (Un)n<ω such
that for each n there is a set of strings Vn with [Vn] = [Un] and
ρ(V ) ≤ 2−n.



Lemma
Vehemently γ-random ⇒ strongly γ-random ⇒ γ-random.



Theorem
Let γ = log2(3/2) and let x be a real. We have
(1)⇔(2)⇒(3)⇒(4)⇒(5).

1. x is 1-random;

2. x is vehemently 1-random;

3. x is vehemently γ + 1−γ
2 ≈ 0.8-random;

4. x belongs to some random closed set;

5. x is vehemently γ ≈ 0.6-random.

Corollary (J. Miller and A. Montálban)

The implication from (1) to (4).



Theorem
Suppose x is a member of a random closed set. Then x is
vehemently γ-random.

Proof: Random closed sets are denoted by Γ, whereas S is the set
of strings in the tree corresponding to Γ.
Let i < 2 and σ ∈ 2<ω. The probability that the concatenation
σi ∈ S given that σ ∈ S is, by definition of the BBCDW model,

P{σi ∈ S|σ ∈ S} =
2

3
.

Hence the absolute probability that σ survives is

P{σ ∈ S} =

(
2

3

)|σ|
=

(
2−γ

)|σ|
=

(
2−|σ|

)γ



Suppose x is not vehemently γ-random. So there is some
uniformly c.e. sequence Un = {σn,i : i < ω}, such that x ∈ ∩n[Un],
and for some U ′

n = {σ′n,i : i < ω} with [U ′
n] = [Un],

∞∑
i=1

2−|σ
′
n,i |γ ≤ 2−n.

Let
Vn := {Γ : ∃i σn,i ∈ S} = {Γ : ∃i σ′n,i ∈ S}.

The first expression shows Vn is uniformly Σ0
1. The equality is

proved using the fact that S is a tree without dead ends.



Now
PVn ≤

∑
i∈ω

P{σ′n,i ∈ S} =
∑
i∈ω

2−|σ
′
n,i |γ ≤ 2−n.

That is, if x ∈ Γ then x belongs to the effective null set ∩n∈ωVn.
As Γ is ML-random, this is not the case.
End of proof.



Corollary

If x belongs to a random closed set, then

dim∅(x) ≥ log2(3/2).

Corollary (BBCDW)

No member of a random closed set is 1-generic.

Theorem
For each ε > 0, each random closed set contains a real x with

dim∅(x) ≤ log2(3/2) + ε.

Corollary (BBCDW)

Not every member of a random closed set is Martin-Löf random.



Open problems

We have seen that the members of random closed sets do not
coincide with the reals of effective dimension ≥ γ, although (1)
they all have dimension ≥ γ and (2) they do not all have
dimension ≥ γ + ε for any fixed ε > 0.
There are (at least) two possible conjectures, and the answer may
help determine whether vehement or ordinary γ-randomness is the
most natural generalization of 1-randomness.

Conjecture (1)

The members of random closed sets are exactly the reals x such
that for some ε > 0, x is γ + ε-random. (That is, x has effective
dimension > γ.)

Conjecture (2)

The members of random closed sets are exactly the reals x such
that for some ε > 0, x is vehemently γ + ε-random.



Conjecture 1 would imply that

γ + ε-random ⇒ vehemently γ-random.

This seems unlikely, but J. Reimann has shown that

γ + ε-random ⇒ strongly γ-random.

Thank You
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