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Motivation: Intuitive notion of complexity of a theory

Example: Vector spaces over a fixed field versus arbitary

graphs

We compare two notions of complexity for a theory:

• Shelah’s Classification Theory (stability hierarchy, NDOP,

depth)

• Borel reducibility (H. Friedman, L. Stanley): a notion

coming from descriptive set theory
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Borel reducibility

• A Borel space is a set X equipped with a σ-algebra B

• f : (X,B) → (X ′,B′) is a Borel map if for all A ∈ B′,

f−1[A] ∈ B.

• To a topological space (X, T ) we associate a Borel space

(X,B): B is the smallest σ-algebra containing T .

• (X, T ) is polish iff it is completely metrisable and sep-

arable. The associated Borel spaces are called standard

Borel spaces.

• Examples: finite or countable spaces with discrete topol-

ogy, R, C = 2ω, N = ωω

Proposition 1. Let (X,B), (X ′,B′) be standard. Then

(1) X is finite, countable or of cardinality 2ℵ0

(2) if |X| = |Y | then X and Y are Borel isomorphic

(3) The category of standard Borel spaces is closed under

countable products

For X , Y standard and E ⊂ X × X and F ⊂ Y × Y

equivalence relations, we define E ≤B F iff there is

f : X → Y Borel s.t. for all a, b ∈ X , a E b iff f(a) F f(b).
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Connection to model theory

Let L be countable. XL, the set of L-structures living on ω

is standard Borel. Example: If L = {c, R, f} then

XL = ω × 2ω×···×ω × ωω×···×ω

If σ ∈ Lω1ω then Mod(σ) ⊂ XL is invariant Borel and thus

standard (the converse is also true).

Notation: ∼=σ = ∼=L↾ Mod(σ)2, =n (n ≤ ω), =R

• E is Borel if it is a Borel subset of X × X

• E is smooth if E ≤B=R

• E is countable if all E-equivalence classes are

• E is essentially countable if E ≤B F for some countable

F
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ω-stability

A complete first-order theory T is ω-stable if |S1(A)| = |A|
for all infinite A.

We then have

• Morley rank of definable sets

• non-forking extensions of types (Morley rank does not

decrease)

• a notion of independence: A ↓
C

B (i.e.

t(A/BC) ⊃ t(A/C) is non-forking)

• strongly regular types (for which dimension is well-defined)

• prime models over any set

And we can define the property NDOP and depth for T

We have to adapt these notions to the case of countable mod-

els:

• ENI types (those which can have finite dimension)

• ENI-NDOP

• eni-depth
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First results: the extremes

Let T a complete, ω-stable first order theory with infinite

models.

Theorem 2. (Laskowski-Shelah)

(1) If T has ENI-DOP, then ∼=T ≈B
∼=graphs

(2) If T has ENI-NDOP and is eni-deep, then ∼=T ≈B
∼=graphs

Proposition 3. If T has κ ≤ ℵ0 countable models, then
∼=T ≈B

∼=n

Theorem 4. If T has ENI-NDOP and eni-depth 1, then
∼=T is smooth.
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A cofinal sequence of increasing complexity

Theorem 5. There exists a sequence (Tα)1≤α<ω1
of ω-

stable theories having ENI-NDOP with the following prop-

erties : for all α < ω1,

• Tα has depth and eni-depth α

• ∼=Tα est Borel

• for all β with α < β < ω1, ∼=Tα <B
∼=Tβ

(i.e.
∼=Tα ≤B

∼=Tβ
and ∼=Tβ

6≤B
∼=Tα)

Moreover, (Tα)1≤α<ω1
is Borel-cofinal in the sense that

for each countable L and σ ∈ Lω1ω, if ∼=σ is Borel, then
∼=σ ≤B

∼=Tα for some α < ω1.
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A non-Borel theory of depth 2

Theorem 6. There is a complete first order ω-stable the-

ory having ENI-NDOP, of (eni-) depth 2 whose isomor-

phism relation is not Borel.

Let L = {πj
i , Si}i<ω,j≤i+1 be the language with sorts U, Vi, Ci

(i < ω) and

πj
i : Vi → Cj for j ≤ i

πi+1
i : Vi → U

Si : Vi → Vi

and let T be the L-theory that states

(1) |U | = ∞ and |Ci| = 2 for all i < ω

(2) πi : Vi → C0 ×C1 × · · ·×Ci ×U is onto, where πi(x) =

(π0
i (x), π1

i (x), . . . , πi+1
i (x))

(3) for all i < ω, Si is a successor function on Vi

(4) πi ◦ Si = πi
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Description of the isomorphism relation

We fix for all i < ω Ci = {a0
i , a

1
i}.

Essentially, the 1-types are the following:

• r(x) = {U(x)}

• for s ∈ 2<ω \ {∅} and b ∈ U :

pb
s(x) = {π|s|(x) = (as(0), as(1), . . . , a|s|−1, b)}

Let A = {f |f : 2<ω \ {∅} → ω + 1} and define an action of

C on A by

for σ ∈ C, δ ∈ A, σδ(s) = δ(s + σ ↾ |s|)

For M |= T countable and b ∈ U(M) we define δM
b ∈ A by

δM
b (s) = dimM(pb

s) − 1. Then we can prove

Proposition 7. Countable M, N |= T are isomorphic if

and only if there exists σ ∈ C and bijective f : U(M) →
U(N) such that for all b ∈ U(M), δM

b = σδN
f(b).

So, roughly speaking, isomorphism types are countable sets of

countably coloured complete binary trees up to “simultaneous

flips” of levels.
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An idea of the proof of non-Borelness (part I)

(1) We show that SH=∞ (“Scott Height”), which is equiva-
lent to non-Borelness. Goal : define for all α < ω1 models
M , N such that M 6∼= N and M ≡α N . Recall that

– (M, ā) ≡0 (N, b̄) iff ā and b̄ have same quantifier-free type

– (M, ā) ≡λ (N, b̄) iff ∀β < λ (M, ā) ≡β (N, b̄)

– (M, ā) ≡α+1 (N, b̄) iff ∀x ∈ M∃y ∈ N (M, ā⌢x) ≡α (N, b̄⌢y)
and vice versa

(2) What pairs of models ((M, ū), (N, v̄)) we consider :

– Fix (Xi)i<ω independent

– Define trees δi with stabiliser

CXi = {σ ∈ C|∀n /∈ Xi σ(n) = 0}

– M, N realise only orbits oi = Cδi

– For all i < ω, M oi ∼= N oi

– ū and v̄ have same type

– {σ ∈ C|t(ū/acl(∅)), t(v̄/σacl(∅)) are conjugate} 6= ∅

(3) Define configurations : c = (D, X, d) with

– D : ω → P(C)

– D : ω → P(ω)

– d ∈ P(ω)
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An idea of the proof of non-Borelness (part II)

(4) Assign ((M, ū), (N, v̄)) 7→ c((M,ū),(N,v̄)) = (D, X, d) :

– D(i) = {σ|σ allows M oi ∼= N oi}

– X(i) = Xi

– d = {σ ∈ C|t(ū/acl(∅)), t(v̄/σacl(∅)) are conjugate}

(5) Define thin configurations (for 6∼=):
⋂

i∈I

D(i) ∩ d = ∅ for

all I ⊂ ω infinite

Define α-rich configurations (for ≡α+ω)

e.g. 0-rich : ∀i < ω D(i) ∩ d 6= ∅

(6) Construction of α-rich configurations for all α < ω1 and

show they are thin.
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Some open questions

• Is the non-Borel depth 2 theory as complicated as graphs?

• Are there non-smooth first-order theories which are es-

sentially countable?

• Are there “simple” eni-depth α theories, e.g. smooth ones

for α > 2?

• What can be said about the superstable case?
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