Complexity of the isomorphism relation for countable models of ω-stable theories

Martin Koerwien

July 2, 2007

Motivation: Intuitive notion of complexity of a theory

Example: Vector spaces over a fixed field versus arbitary graphs

We compare two notions of complexity for a theory:

- Shelah's Classification Theory (stability hierarchy, NDOP, depth)
- Borel reducibility (H. Friedman, L. Stanley): a notion coming from descriptive set theory

Borel reducibility

- A Borel space is a set X equipped with a σ-algebra \mathcal{B}
- $f:(X, \mathcal{B}) \rightarrow\left(X^{\prime}, \mathcal{B}^{\prime}\right)$ is a Borel map if for all $A \in \mathcal{B}^{\prime}$, $f^{-1}[A] \in \mathcal{B}$.
- To a topological space (X, \mathcal{T}) we associate a Borel space $(X, \mathcal{B}): \mathcal{B}$ is the smallest σ-algebra containing \mathcal{T}.
- (X, \mathcal{T}) is polish iff it is completely metrisable and separable. The associated Borel spaces are called standard Borel spaces.
- Examples: finite or countable spaces with discrete topology, $\mathbb{R}, \mathcal{C}=2^{\omega}, \mathcal{N}=\omega^{\omega}$

Proposition 1. Let $(X, \mathcal{B}),\left(X^{\prime}, \mathcal{B}^{\prime}\right)$ be standard. Then (1) X is finite, countable or of cardinality $2^{\aleph_{0}}$
(2) if $|X|=|Y|$ then X and Y are Borel isomorphic
(3) The category of standard Borel spaces is closed under countable products

For X, Y standard and $E \subset X \times X$ and $F \subset Y \times Y$ equivalence relations, we define $E \leq_{B} F$ iff there is $f: X \rightarrow Y$ Borel s.t. for all $a, b \in X, a E b$ iff $f(a) F f(b)$.

Connection to model theory

Let L be countable. X_{L}, the set of L-structures living on ω is standard Borel. Example: If $L=\{c, R, f\}$ then

$$
X_{L}=\omega \times 2^{\omega \times \cdots \times \omega} \times \omega^{\omega \times \cdots \times \omega}
$$

If $\sigma \in L_{\omega_{1} \omega}$ then $\operatorname{Mod}(\sigma) \subset X_{L}$ is invariant Borel and thus standard (the converse is also true).

Notation: $\cong_{\sigma}=\cong_{L} \upharpoonright \operatorname{Mod}(\sigma)^{2}, \quad={ }_{n}(n \leq \omega), \quad=\mathbb{R}^{R}$

- E is Borel if it is a Borel subset of $X \times X$
- E is smooth if $E \leq_{B}=_{\mathbb{R}}$
- E is countable if all E-equivalence classes are
- E is essentially countable if $E \leq_{B} F$ for some countable F

ω-stability

A complete first-order theory T is ω-stable if $\left|S_{1}(A)\right|=|A|$ for all infinite A.

We then have

- Morley rank of definable sets
- non-forking extensions of types (Morley rank does not decrease)
- a notion of independence: $A \underset{C}{\downarrow} B$ (i.e. $t(A / B C) \supset t(A / C)$ is non-forking)
- strongly regular types (for which dimension is well-defined)
- prime models over any set

And we can define the property NDOP and depth for T

We have to adapt these notions to the case of countable models:

- ENI types (those which can have finite dimension)
- ENI-NDOP
- eni-depth

First results: the extremes

Let T a complete, ω-stable first order theory with infinite models.

Theorem 2. (Laskowski-Shelah)
(1) If T has ENI-DOP, then $\cong_{T} \approx_{B} \cong_{\text {graphs }}$
(2) If T has ENI-NDOP and is eni-deep, then $\cong_{T} \approx_{B} \cong_{\text {graphs }}$

Proposition 3. If T has $\kappa \leq \aleph_{0}$ countable models, then $\cong_{T} \approx_{B} \cong_{n}$

Theorem 4. If T has ENI-NDOP and eni-depth 1, then \cong_{T} is smooth.

A cofinal sequence of increasing complexity

Theorem 5. There exists a sequence $\left(T_{\alpha}\right)_{1 \leq \alpha<\omega_{1}}$ of ω stable theories having ENI-NDOP with the following properties : for all $\alpha<\omega_{1}$,

- T_{α} has depth and eni-depth α
- $\cong_{T_{\alpha}}$ est Borel
- for all β with $\alpha<\beta<\omega_{1} \cong_{T_{\alpha}} \quad<_{B} \cong_{T_{\beta}}$ (i.e. $\cong_{T_{\alpha}} \leq_{B} \cong_{T_{\beta}}$ and $\cong_{T_{\beta}} \quad \not \mathbb{Z}_{B} \cong_{T_{\alpha}}$)
Moreover, $\left(T_{\alpha}\right)_{1 \leq \alpha<\omega_{1}}$ is Borel-cofinal in the sense that for each countable L and $\sigma \in L_{\omega_{1} \omega}$, if \cong_{σ} is Borel, then $\cong_{\sigma} \leq_{B} \cong_{T_{\alpha}}$ for some $\alpha<\omega_{1}$.

A non-Borel theory of depth 2

Theorem 6. There is a complete first order ω-stable theory having ENI-NDOP, of (eni-) depth 2 whose isomorphism relation is not Borel.

Let $L=\left\{\pi_{i}^{j}, S_{i}\right\}_{i<\omega, j \leq i+1}$ be the language with sorts U, V_{i}, C_{i} $(i<\omega)$ and

$$
\begin{aligned}
& \pi_{i}^{j}: V_{i} \rightarrow C_{j} \text { for } j \leq i \\
& \pi_{i}^{i+1}: V_{i} \rightarrow U \\
& S_{i}: V_{i} \rightarrow V_{i}
\end{aligned}
$$

and let T be the L-theory that states
(1) $|U|=\infty$ and $\left|C_{i}\right|=2$ for all $i<\omega$
(2) $\pi_{i}: V_{i} \rightarrow C_{0} \times C_{1} \times \cdots \times C_{i} \times U$ is onto, where $\pi_{i}(x)=$ $\left(\pi_{i}^{0}(x), \pi_{i}^{1}(x), \ldots, \pi_{i}^{i+1}(x)\right)$
(3) for all $i<\omega, S_{i}$ is a successor function on V_{i}
(4) $\pi_{i} \circ S_{i}=\pi_{i}$

Description of the isomorphism relation

We fix for all $i<\omega C_{i}=\left\{a_{i}^{0}, a_{i}^{1}\right\}$.

Essentially, the 1-types are the following:

- $r(x)=\{U(x)\}$
- for $s \in 2^{<\omega} \backslash\{\emptyset\}$ and $b \in U$:

$$
p_{s}^{b}(x)=\left\{\pi_{|s|}(x)=\left(a_{s(0)}, a_{s(1)}, \ldots, a_{|s|-1}, b\right)\right\}
$$

Let $\mathcal{A}=\left\{f \mid f: 2^{<\omega} \backslash\{\emptyset\} \rightarrow \omega+1\right\}$ and define an action of \mathcal{C} on \mathcal{A} by

$$
\text { for } \sigma \in \mathcal{C}, \delta \in \mathcal{A}, \quad \sigma \delta(s)=\delta(s+\sigma \upharpoonright|s|)
$$

For $M \models T$ countable and $b \in U(M)$ we define $\delta_{b}^{M} \in \mathcal{A}$ by $\delta_{b}^{M}(s)=\operatorname{dim}_{M}\left(p_{s}^{b}\right)-1$. Then we can prove

Proposition 7. Countable $M, N \models T$ are isomorphic if and only if there exists $\sigma \in \mathcal{C}$ and bijective $f: U(M) \rightarrow$ $U(N)$ such that for all $b \in U(M), \delta_{b}^{M}=\sigma \delta_{f(b)}^{N}$.

So, roughly speaking, isomorphism types are countable sets of countably coloured complete binary trees up to "simultaneous flips" of levels.

$\underline{\text { An idea of the proof of non-Borelness (part I) }}$

(1) We show that $\mathrm{SH}=\infty$ ("Scott Height"), which is equivalent to non-Borelness. Goal : define for all $\alpha<\omega_{1}$ models M, N such that $M \not \approx N$ and $M \equiv{ }_{\alpha} N$. Recall that

- $(M, \bar{a}) \equiv_{0}(N, \bar{b})$ iff \bar{a} and \bar{b} have same quantifier-free type
$-(M, \bar{a}) \equiv_{\lambda}(N, \bar{b})$ iff $\forall \beta<\lambda(M, \bar{a}) \equiv_{\beta}(N, \bar{b})$
$-(M, \bar{a}) \equiv_{\alpha+1}(N, \bar{b})$ iff $\forall x \in M \exists y \in N(M, \bar{a} \subset x) \equiv_{\alpha}(N, \bar{b}\ulcorner y)$ and vice versa
(2) What pairs of models $((M, \bar{u}),(N, \bar{v}))$ we consider :
- Fix $\left(X_{i}\right)_{i<\omega}$ independent
- Define trees δ_{i} with stabiliser

$$
\mathcal{C}^{X_{i}}=\left\{\sigma \in \mathcal{C} \mid \forall n \notin X_{i} \sigma(n)=0\right\}
$$

$-M, N$ realise only orbits $o_{i}=\mathcal{C} \delta_{i}$

- For all $i<\omega, M^{o_{i}} \cong N^{o_{i}}$
$-\bar{u}$ and \bar{v} have same type
$-\{\sigma \in \mathcal{C} \mid t(\bar{u} / \operatorname{acl}(\emptyset)), t(\bar{v} / \sigma \operatorname{acl}(\emptyset))$ are conjugate $\} \neq \emptyset$
(3) Define configurations : $c=(D, X, d)$ with
$-D: \omega \rightarrow \mathcal{P}(\mathcal{C})$
$-D: \omega \rightarrow \mathcal{P}(\omega)$
$-d \in \mathcal{P}(\omega)$

$\underline{\text { An idea of the proof of non-Borelness (part II) }}$

(4) Assign $((M, \bar{u}),(N, \bar{v})) \mapsto c^{((M, \bar{u}),(N, \bar{v}))}=(D, X, d)$:

- $D(i)=\left\{\sigma \mid \sigma\right.$ allows $\left.M^{o_{i}} \cong N^{o_{i}}\right\}$
$-X(i)=X_{i}$
$-d=\{\sigma \in \mathcal{C} \mid t(\bar{u} / \operatorname{acl}(\emptyset)), t(\bar{v} / \sigma \operatorname{acl}(\emptyset))$ are conjugate $\}$
(5) Define thin configurations (for \neq): $\bigcap_{i \in I} D(i) \cap d=\emptyset$ for all $I \subset \omega$ infinite

Define α-rich configurations (for $\equiv_{\alpha+\omega}$)
e.g. 0-rich : $\forall i<\omega D(i) \cap d \neq \emptyset$
(6) Construction of α-rich configurations for all $\alpha<\omega_{1}$ and show they are thin.

Some open questions

- Is the non-Borel depth 2 theory as complicated as graphs?
- Are there non-smooth first-order theories which are essentially countable?
- Are there "simple" eni-depth α theories, e.g. smooth ones for $\alpha>2$?
- What can be said about the superstable case?

