Complexity of the isomorphism relation for countable models of ω -stable theories

Martin Koerwien

July 2, 2007

Motivation: Intuitive notion of complexity of a theory

Example: Vector spaces over a fixed field versus arbitary graphs

We compare two notions of complexity for a theory:

- Shelah's Classification Theory (stability hierarchy, NDOP, depth)
- Borel reducibility (H. Friedman, L. Stanley): a notion coming from descriptive set theory

Borel reducibility

- A *Borel space* is a set X equipped with a σ -algebra \mathcal{B}
- $f: (X, \mathcal{B}) \to (X', \mathcal{B}')$ is a *Borel map* if for all $A \in \mathcal{B}'$, $f^{-1}[A] \in \mathcal{B}$.
- To a topological space (X, \mathcal{T}) we associate a Borel space (X, \mathcal{B}) : \mathcal{B} is the smallest σ -algebra containing \mathcal{T} .
- (X, \mathcal{T}) is *polish* iff it is completely metrisable and separable. The associated Borel spaces are called standard Borel spaces.
- Examples: finite or countable spaces with discrete topology, \mathbb{R} , $\mathcal{C} = 2^{\omega}$, $\mathcal{N} = \omega^{\omega}$

Proposition 1. Let (X, \mathcal{B}) , (X', \mathcal{B}') be standard. Then

- (1) X is finite, countable or of cardinality 2^{\aleph_0}
- (2) if |X| = |Y| then X and Y are Borel isomorphic
- (3) The category of standard Borel spaces is closed under countable products

For X, Y standard and $E \subset X \times X$ and $F \subset Y \times Y$ equivalence relations, we define $E \leq_B F$ iff there is $f: X \to Y$ Borel s.t. for all $a, b \in X$, $a \in b$ iff $f(a) \in f(b)$.

Connection to model theory

Let L be countable. X_L , the set of L-structures living on ω is standard Borel. Example: If $L = \{c, R, f\}$ then

$$X_L = \omega \times 2^{\omega \times \dots \times \omega} \times \omega^{\omega \times \dots \times \omega}$$

If $\sigma \in L_{\omega_1\omega}$ then $Mod(\sigma) \subset X_L$ is *invariant Borel* and thus standard (the converse is also true).

Notation: $\cong_{\sigma} = \cong_L \upharpoonright \operatorname{Mod}(\sigma)^2, \quad =_n (n \leq \omega), \quad =_{\mathbb{R}}$

- E is *Borel* if it is a Borel subset of $X \times X$
- E is smooth if $E \leq_B =_{\mathbb{R}}$
- E is *countable* if all E-equivalence classes are
- E is essentially countable if $E \leq_B F$ for some countable F

ω -stability

A complete first-order theory T is ω -stable if $|S_1(A)| = |A|$ for all infinite A.

We then have

- Morley rank of definable sets
- non-forking extensions of types (Morley rank does not decrease)
- a notion of independence: $A \underset{C}{\downarrow} B$ (i.e. $t(A/BC) \supset t(A/C)$ is non-forking)
- strongly regular types (for which dimension is well-defined)
- prime models over any set

And we can define the property NDOP and depth for ${\cal T}$

We have to adapt these notions to the case of countable models:

- ENI types (those which can have *finite* dimension)
- ENI-NDOP
- eni-depth

First results: the extremes

Let T a complete, ω -stable first order theory with infinite models.

Theorem 2. (Laskowski-Shelah) (1) If T has ENI-DOP, then $\cong_T \approx_B \cong_{\text{graphs}}$ (2) If T has ENI-NDOP and is eni-deep, then $\cong_T \approx_B \cong_{\text{graphs}}$

Proposition 3. If T has $\kappa \leq \aleph_0$ countable models, then $\cong_T \approx_B \cong_n$

Theorem 4. If T has ENI-NDOP and eni-depth 1, then \cong_T is smooth.

A cofinal sequence of increasing complexity

Theorem 5. There exists a sequence $(T_{\alpha})_{1 \leq \alpha < \omega_1}$ of ω stable theories having ENI-NDOP with the following properties : for all $\alpha < \omega_1$,

- T_{α} has depth and eni-depth α
- $\cong_{T_{\alpha}}$ est Borel
- for all β with $\alpha < \beta < \omega_1, \cong_{T_{\alpha}} <_B \cong_{T_{\beta}} (i.e. \cong_{T_{\alpha}} \leq_B \cong_{T_{\beta}} and \cong_{T_{\beta}} \not\leq_B \cong_{T_{\alpha}})$

Moreover, $(T_{\alpha})_{1 \leq \alpha < \omega_1}$ is Borel-cofinal in the sense that for each countable L and $\sigma \in L_{\omega_1\omega}$, if \cong_{σ} is Borel, then $\cong_{\sigma} \leq_B \cong_{T_{\alpha}}$ for some $\alpha < \omega_1$.

A non-Borel theory of depth 2

Theorem 6. There is a complete first order ω -stable theory having ENI-NDOP, of (eni-) depth 2 whose isomorphism relation is not Borel.

Let $L = {\pi_i^j, S_i}_{i < \omega, j \le i+1}$ be the language with sorts U, V_i, C_i $(i < \omega)$ and $\pi_i^j : V_i \to C_j$ for $j \le i$

$$\pi_i^{i+1}: V_i \to U$$

$$S_i: V_i \to V_i$$

and let T be the L-theory that states

(1)
$$|U| = \infty$$
 and $|C_i| = 2$ for all $i < \omega$

- (2) $\pi_i: V_i \to C_0 \times C_1 \times \cdots \times C_i \times U$ is onto, where $\pi_i(x) = (\pi_i^0(x), \pi_i^1(x), \dots, \pi_i^{i+1}(x))$
- (3) for all $i < \omega$, S_i is a successor function on V_i
- $(4) \ \pi_i \circ S_i = \pi_i$

We fix for all $i < \omega C_i = \{a_i^0, a_i^1\}$.

Essentially, the 1-types are the following:

- $\bullet \ r(x) = \{U(x)\}$
- for $s \in 2^{<\omega} \setminus \{\emptyset\}$ and $b \in U$: $p_s^b(x) = \{\pi_{|s|}(x) = (a_{s(0)}, a_{s(1)}, \dots, a_{|s|-1}, b)\}$

Let $\mathcal{A} = \{f | f : 2^{<\omega} \setminus \{\emptyset\} \to \omega + 1\}$ and define an action of \mathcal{C} on \mathcal{A} by

for
$$\sigma \in \mathcal{C}, \ \delta \in \mathcal{A}, \quad \sigma \delta(s) = \delta(s + \sigma \upharpoonright |s|)$$

For $M \models T$ countable and $b \in U(M)$ we define $\delta_b^M \in \mathcal{A}$ by $\delta_b^M(s) = \dim_M(p_s^b) - 1$. Then we can prove

Proposition 7. Countable $M, N \models T$ are isomorphic if and only if there exists $\sigma \in C$ and bijective $f : U(M) \rightarrow U(N)$ such that for all $b \in U(M), \ \delta_b^M = \sigma \delta_{f(b)}^N$.

So, roughly speaking, isomorphism types are countable sets of countably coloured complete binary trees up to "simultaneous flips" of levels.

An idea of the proof of non-Borelness (part I)

- (1) We show that $SH=\infty$ ("Scott Height"), which is equivalent to non-Borelness. Goal : define for all $\alpha < \omega_1$ models M, N such that $M \not\cong N$ and $M \equiv_{\alpha} N$. Recall that
 - $-(M,\bar{a}) \equiv_0 (N,\bar{b})$ iff \bar{a} and \bar{b} have same quantifier-free type
 - $-(M,\bar{a}) \equiv_{\lambda} (N,\bar{b}) \text{ iff } \forall \beta < \lambda \ (M,\bar{a}) \equiv_{\beta} (N,\bar{b})$
 - $-(M,\bar{a}) \equiv_{\alpha+1} (N,\bar{b}) \text{ iff } \forall x \in M \exists y \in N (M,\bar{a}^{\frown}x) \equiv_{\alpha} (N,\bar{b}^{\frown}y)$ and vice versa
- (2) What pairs of models $((M, \bar{u}), (N, \bar{v}))$ we consider :
 - $-\operatorname{Fix}(X_i)_{i<\omega}$ independent
 - Define trees δ_i with stabiliser $\mathcal{C}^{X_i} = \{ \sigma \in \mathcal{C} | \forall n \notin X_i \ \sigma(n) = 0 \}$
 - -M, N realise only orbits $o_i = \mathcal{C}\delta_i$

- For all
$$i < \omega, M^{o_i} \cong N^{o_i}$$

 $-\bar{u}$ and \bar{v} have same type

$$- \{ \sigma \in \mathcal{C} | t(\bar{u}/\operatorname{acl}(\emptyset)), t(\bar{v}/\sigma\operatorname{acl}(\emptyset)) \text{ are conjugate} \} \neq \emptyset$$

(3) Define configurations : c = (D, X, d) with

$$-D: \omega \to \mathcal{P}(\mathcal{C})$$
$$-D: \omega \to \mathcal{P}(\omega)$$
$$-d \in \mathcal{P}(\omega)$$

An idea of the proof of non-Borelness (part II)

(4) Assign
$$((M, \bar{u}), (N, \bar{v})) \mapsto c^{((M, \bar{u}), (N, \bar{v}))} = (D, X, d)$$
:
 $-D(i) = \{\sigma | \sigma \text{ allows } M^{o_i} \cong N^{o_i} \}$
 $-X(i) = X_i$
 $-d = \{\sigma \in \mathcal{C} | t(\bar{u}/\operatorname{acl}(\emptyset)), t(\bar{v}/\sigma\operatorname{acl}(\emptyset)) \text{ are conjugate} \}$
(5) Define thin configurations (for \ncong): $\bigcap_{i \in I} D(i) \cap d = \emptyset$ for

all $I \subset \omega$ infinite Define α -rich configurations (for $\equiv_{\alpha+\omega}$) e.g. 0-rich : $\forall i < \omega \ D(i) \cap d \neq \emptyset$

(6) Construction of α -rich configurations for all $\alpha < \omega_1$ and show they are thin.

Some open questions

- Is the non-Borel depth 2 theory as complicated as graphs?
- Are there non-smooth first-order theories which are essentially countable?
- Are there "simple" eni-depth α theories, e.g. smooth ones for α > 2?
- What can be said about the superstable case?