LOGIC COLLOQUIUM WROCŁAW 2007

On the existence of a continuum of logics in NEXT $\left(\mathrm{KTB} \oplus \square^{2} p \rightarrow \square^{3} p\right)$

Zofia Kostrzycka

Extension of the Brouwer logic KTB

$\mathrm{T}_{\mathrm{n}}=\mathrm{KTB} \oplus\left(4_{n}\right)$, where

$$
\begin{array}{rl}
K & \square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q) \\
T & \square p \rightarrow p \\
B & p \rightarrow \square \diamond p \\
\left(4_{n}\right) & \square^{n} p \rightarrow \square^{n+1} p
\end{array}
$$

$$
\left(\operatorname{tran}_{n}\right) \quad \forall x, y\left(\text { if } x R^{n+1} y \text { then } x R^{n} y\right)
$$

where the relation of n-step accessibility is defined inductively as follows:

$$
\begin{array}{rll}
x R^{0} y & \text { iff } & x=y \\
x R^{n+1} y & \text { iff } & \exists_{z}\left(x R^{n} z \wedge z R y\right)
\end{array}
$$

$\mathrm{KTB} \subset \ldots \subset \mathrm{T}_{\mathrm{n}+1} \subset \mathrm{~T}_{\mathrm{n}} \subset \ldots \subset \mathrm{T}_{2} \subset \mathrm{~T}_{\mathbf{1}}=\mathbf{S} 5$.

Kripke frames for $\mathbf{T}_{\mathbf{2}}$ logic

A Kripke frame is a pair $\mathfrak{F}=\langle W, R\rangle$, where the relation R is reflexive, symmetric and 2-transitive.

Denote $\alpha:=p \wedge \neg \diamond \square p$.

Definition 1.

$$
\begin{aligned}
& A_{1}:=\neg p \wedge \square \neg \alpha \\
& A_{2}:=\neg p \wedge \neg A_{1} \wedge \diamond A_{1} \\
& A_{3}:=\alpha \wedge \diamond A_{2}
\end{aligned}
$$

For $n \geq 2$:

$$
\begin{aligned}
A_{2 n} & :=\neg p \wedge \diamond A_{2 n-1} \wedge \neg A_{2 n-2} \\
A_{2 n+1} & :=\alpha \wedge \diamond A_{2 n} \wedge \neg A_{2 n-1}
\end{aligned}
$$

Theorem 2. The formulas $\left\{A_{i}\right\}, i \geq 1$ are non-equivalent in the logic \mathbf{T}_{2}.

Proof. Let us take the following model $\mathfrak{M}=\langle W, R, V\rangle$:

。

。

where $\alpha:=p \wedge \neg \diamond \square p$.

。

。

。

。

。

For any $i \geq 1$ and for any $x \in W$ the following holds:

$$
x \vDash A_{i} \quad \text { iff } \quad x=y_{i}
$$

Theorem 3. There are infinitely many non-equivalent formulas written in one variable in the logic \mathbf{T}_{2}.
[1] Kostrzycka Z., On formulas in one variable in NEXT(KTB), Bulletin of the Section of Logic, Vol.35:2/3, (2006), 119131.

Wheel frames

Definition 4. Let $n \in \omega$ and $n \geq 5$. The wheel frame $\mathfrak{W}_{n}=\langle W, R\rangle$ where
$W=\operatorname{rim}(W) \cup h$ and $\operatorname{rim}(W):=\{1,2, \ldots, n\}$ and $h \notin$ $\operatorname{rim}(W)$.
$R:=\left\{(x, y) \in(\operatorname{rim}(W))^{2}:|x-y| \leq 1(\bmod (n-1))\right\} \cup$ $\{(h, h)\} \cup\{(h, x),(x, h): x \in \operatorname{rim}(W)\}$.

A diagram of the $\mathfrak{W I}_{8}$

Lemma 5. For $m>n \geq 5, L\left(\mathfrak{W}_{n}\right) \nsubseteq L\left(\mathfrak{W}_{m}\right)$.
Lemma 6. For $m \geq n \geq 5$, suppose there is a p-morphism from \mathfrak{W}_{m} to \mathfrak{W}_{n}. Then m is divisible by n.

On the base of these two lemmas and by using the splitting technique effectively, Y. Miyazaki constructed a continuum of normal modal logics over \mathbf{T}_{2} logic.
[2] Miyazaki Y. Normal modal logics containing KTB with some finiteness conditions, Advances in Modal Logic, Vol.5, (2005), 171-190.

Let:

$$
\begin{aligned}
& \beta:=\neg \square p \wedge \diamond \square p \\
& \gamma:=\beta \wedge \diamond A_{1} \wedge \neg \diamond A_{2} \\
& \varepsilon:=\beta \wedge \neg \diamond A_{1} \wedge \neg \diamond A_{2} \\
& C_{k}:= \square^{2}\left[A_{k-1} \rightarrow \diamond A_{k}\right], \text { for } k>2 \\
& D_{k}:=\square^{2}\left[\left(A_{k} \wedge \neg \diamond A_{k+1}\right) \rightarrow \Delta \varepsilon\right], \\
& E:= \square^{2}(\square p \rightarrow \diamond \gamma) \\
& F_{k}:=\left(\square p \wedge \bigwedge_{i=2}^{k-1} C_{i} \wedge D_{k-1} \wedge E\right) \rightarrow \diamond^{2} A_{k} .
\end{aligned}
$$

Lemma 7. Let $k \geq 5$ and k - odd number.
$\mathfrak{W}_{i} \not \models F_{k}$ iff i is divisible by $k+2$.
Proof. (\Leftarrow)
Let $i=k+2$. We define the following valuation in the frame \mathfrak{W}_{i} :

$$
\begin{aligned}
h & \neq p \\
1 & \neq p, \\
2 & \neq p, \\
3 & \nLeftarrow p \\
4 & \nLeftarrow p, \\
\vdots & \neq p, \text { for } n \geq 3 \text { and } 2 n-1 \leq i, \\
2 n-1 & \neq p, \text { for } n \geq 3 \text { and } 2 n<i . \\
2 n & \nLeftarrow p,
\end{aligned}
$$

Let $k=7$ and $i=9$.

where $\gamma=\beta \wedge \diamond A_{1} \wedge \neg \diamond A_{2}$
$\beta=\neg \square p \wedge \diamond \square p$

where $F_{7}=\left(\square p \wedge \wedge_{i=2}^{6} C_{i} \wedge D_{6} \wedge E\right) \rightarrow \diamond^{2} A_{7}$.

Then the point 1 is the only point such that $1 \models \square p$. And further:

$$
\begin{aligned}
h & \models p, \\
2 & \models \gamma, \\
3 & \models A_{1}, \\
4 & \models A_{2}, \\
\vdots & \\
k+1 & \models A_{k-1}, \\
k+2 & \not \models A_{k}, \text { and } k+2 \models \varepsilon
\end{aligned}
$$

Then we see that for all $j=3, \ldots, k+1$ we have: $j \models A_{n}$ iff $n=j-2$. We conclude that for all $j=3, \ldots, k+1$ it holds that: $j \vDash \wedge_{i=2}^{k-1} C_{i} \wedge D_{k-1} \wedge E$. Then the predecessor of the formula F_{k} : ($\left.\square p \wedge \wedge_{i=2}^{k-1} C_{i} \wedge D_{k-1} \wedge E\right)$ is true only at the point 1 . At the point 1 we also have: $1 \not \vDash \diamond^{2} A_{k}$, because
there is no point in the frame satisfying A_{k}. Hence at the point 1 , the formula F_{k} is not true.

In the case when $i=m(k+2)$ for some $m \neq 1, m \in \omega$ we define the valuation similarly:

$$
\begin{aligned}
h & \neq p, \\
1+l(k+2) & \neq p, \\
2+l(k+2) & \neq p, \\
3+l(k+2) & \not \models p, \\
4+l(k+2) & \not \models p, \\
: & \\
2 n-1+l(k+2) & \neq p, \text { for } n \geq 3 \text { and } 2 n-1 \leq i, \\
2 n+l(k+2) & \not \models p, \text { for } n \geq 3 \text { and } 2 n<i
\end{aligned}
$$

for all l such that: $0 \leq l \leq m$. The rest of the proof in this case proceeds analogously to the case $i=k+2$.
(\Rightarrow) Suppose there is a point $x \in W$ such that:

$$
\begin{aligned}
x & \models\left(\square p \wedge \bigwedge_{i=2}^{k-1} C_{i} \wedge D_{k-1} \wedge E\right) \\
x & =\neg \diamond^{2} A_{k}
\end{aligned}
$$

First, let us observe that $x \neq h$ because $x \vDash \diamond \gamma$. Let $x=1$. Then we know that there is a point 2 such that $2 \vDash \gamma$ what involves existence of the next point 3 such that $3 \vDash A_{1}$. Because of $C_{i}, i=1,2, \ldots, k-1$ we know that there is a sequence of points $3,4, \ldots, k+1$ such that $n \vDash A_{n-2}$ for $2 \leq n \leq k+1$ and $k+1 \vDash \neg \diamond A_{k}$. Then the point $k+2$ next to the point $k+1$, has to validate the
formula ε. Because $h \not \vDash \varepsilon$ and $k, k+1 \not \vDash \varepsilon$ then it must be a rim element. It has to see some point validating $\square p$ and if it sees the point 1 then we have that $i=k+2$. But suppose that $k+2$ does not see the point 1 . Anyway, it has to see another point validating $\square p$. Say, it is the point $k+3$. But it has to be $k+3 \models \diamond \gamma$. Because $h \not \vDash \gamma$ then it has to be other point, say $k+4$ such that $k+4 \models \gamma$. Then there has to be a next point $k+5$ different from h such that $k+5 \models A_{1}$. Again from C_{i} for $i=1,2, \ldots, k-1$ we have to have: $k+6 \models A_{2}, \ldots, 2 k+3 \models A_{k-1}$. Then we have that there has to be a point $2 k+4$ validating ε, and then some point validating $\square p$. If it is the point 1 then we have $i=2(k+2)$. If not, then we have analogously another sequence of $k+2$ points and so on.

The main theorem is the following:
Theorem 8. There is a continuum of normal modal logics over \mathbf{T}_{2} logic, defined by formulas written in one variable.

Proof. Let Prim $:=\{n \in \omega: n+2$ is prime, $n \geq 5\}$. Let $X, Y \subset P r i m$ and $X \neq Y$. Consider logics: $L_{X}:=\mathbf{T}_{\mathbf{2}} \oplus\left\{F_{k}:\right.$ $k \in X\}$ and $L_{Y}:=\mathbf{T}_{\mathbf{2}} \oplus\left\{F_{k}: k \in Y\right\}$. From Lemma 7 we know that if $j \notin X$ then $F_{j} \in L_{Y}$ and inversely. That means that we are able to define a continuum of different logics above \mathbf{T}_{2} by formulas of one variable.
[3] Kostrzycka Z., On the existence of a continuum of logics in NEXT (KTB $\oplus \square^{2} p \rightarrow \square^{3} p$), accepted to Bulletin of the Section of Logic.

