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General Remarks

Let M = (M, fi ,Rj) be a structure.

Model Theory deals with M-definable subsets of cartesian
powers of M and definable interactions between them.

RM (Morley Rank) is certain dimension on definable sets.

It is often important to understand the structure of
M-definable groups.
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Algebraically Closed Field

Example

Let M = (C,+, ·).
M has quantifier elimination, i.e. all definable sets are
boolean combinations of Algebraic Varieties: solutions of
systems of polynomial (algebraic) equations.

Definable subsets of C are finite or cofinite, so RM(C) = 1.

Definable Groups = Algebraic Groups: algebraic varieties with
an algebraic group operation.
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Differentially Closed Field

Example

Let M = (K , ∂), where K is a field, ∂ is a derivation and M
is differentially closed.

M has quantifier elimination, i.e. all definable sets are
boolean combinations of Differential Algebraic Varieties: sets
of solutions of systems of differential polynomial equations.

ker(∂)  ker(∂2)  . . .  ker(∂n)  K .

RM(ker(∂)) = 1,RM(ker(∂2)) = 2, . . . ,RM(K ) = ω.

Definable Groups = Differential Algebraic Groups.
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Real Closed Field

Example

Let M = (R,+, ·).
M has quantifier elimination down to (R,+, ·, <), i.e.
definable sets are boolean combinations of sets of solutions of
systems of polynomial equations and inequalities.

R =
⋃

(n, n + 1].

(0, 1] =
⋃

( 1
n+1 , 1

n ].

These intervals can be further definably subdivided. Hence no
Morley Rank can be attached to R or

RM(R) =∞� ω.
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Algebraic Groups

Fix a differential field (K ,+, ·, ∂) with C := ker(∂).

Fix an algebraic group G over K .

Example

G = (K ,+),

G = (K , ·),
G = GLn(K ),

G = E – an elliptic curve,

G = A – an abelian variety (e.g. A = En)
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Differential subgroups of algebraic groups

We are interested in differential subgroups of G .

Example

(C ,+) < (K ,+) or (C ∗, ·) < (K ∗, ·),
The same for any algebraic group G defined over C – we can
take G (C ), the group of its C -points which is a differential
subgroup. E.g. GLn(C ) < GLn(K ).
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Logarithmic Derivative

Definition

Consider

l∂ : (K , ·)→ (K ,+), l∂(x) :=
∂x

x

l∂ is called logarithmic derivative.

Remark

∂(xy)
xy = ∂(x)y+x∂(y)

xy = ∂x
x + ∂y

y .

l∂ is a differential epimorphisms.

There are no algebraic epimorphisms from (K , ·) to (K ,+)!
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Zilber Trichotomy

Zilber Trichotomy in differential fields

Zilber Trichotomy holds in (K , ∂) i.e. for each definable set X , if
RM(X ) = 1, then X as a structure is one of the following:

1 Algebraic curve over C ,

2 Vector space,

3 Set with no structure.

Definable Groups

Let H be a differential algebraic group of finite RM. Using Zilber
Trichotomy, H can be analyzed in terms of groups of the form
G (C ) and vector spaces.
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Motivations

Why differential algebraic subgroups of algebraic groups are
interesting?

1 Diophantine geometry (the next section),

2 Intersections with tori, bad field construction (the third
section),

3 Differential Galois theory (not covered).
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From diophantine equation to algebraic groups

We want to solve a diophantine equation, which means e.g.
to find rational solutions of X 7 + Y 7 = Z 7.

We consider a curve V ⊂ P2(C) defined by X 7 + Y 7 = Z 7

and want to find V (Q): the set of its rational points.

V algebraically embeds into A = J(V ) – the Jacobian of V , a
certain algebraic group.

A(Q) is finitely generated.

We are interested in V (Q) = V ∩ A(Q).

In general, we are interested in intersections of finitely
generated subgroups of A with its algebraic subvarieties.
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Diophantine geometry

Set-up in diophantine geometry

(K ,+, ·) – algebraically closed field.

A – commutative algebraic group.

Γ < A – finitely generated subgroup.

V ⊂ A – algebraic subvariety.

We want to analyze V ∩ Γ.

Problem

Γ is not definable in any reasonable fashion.
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Differential Algebraic Groups and Mordell-Lang

Solution

Expand K by ∂ such that (K , ∂) is differentially closed.

There is a differential subgroup G < A such that:

RM(G ) < ω,
Γ ⊂ G .

Using Zilber’s trichotomy we can analyze G ∩ V .

These ideas were used by Hrushovski in his proof of the
geometric Mordell-Lang conjecture.

After replacing a derivation by its positive characteristic
analogue, Hrushovski gave a proof of the positive
characteristic Mordell-Lang. This is the only proof known.
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Schanuel Conjecture

Schanuel Conjecture

Let x1, . . . , xn ∈ C be linearly independent over Q. Then

trdegQ(x1, . . . , xn, e
x1 , . . . , exn) > n.

Remark

Lindemann–Weierstrass: Schanuel Conjecture for n = 1.

Schanuel Conjecture is open for n > 2.

It is unknown if e and π are algebraically independent, which
follows from Schanuel Conjecture for n = 2.
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Ax Theorem

Differential Equation of the Exponential Map

Since (ex )′

ex = x ′, there was a hope that Schanuel Conjecture is
related with the set of solutions of the differential equation
∂y
y = ∂x in a differential field (K , ∂).

Ax Theorem

Let x1, y1, . . . , xn, yn ∈ K such that:

∂(x1) =
∂(y1)

y1
, . . . , ∂(xn) =

∂(yn)

yn

and ∂(x1), . . . , ∂(xn) are Q-linearly independent. Then

trdegC (x1, . . . , xn, y1, . . . , yn) > n + 1.
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Consequences of Ax Theorem

Unfortunately Ax Theorem does not imply Schanuel
Conjecture.

But it implies Weak CIT – a finiteness statement about
intersecting tori with algebraic varieties.

Weak CIT was crucial in the constructions of bad field.

Bad field is a field K of Morley Rank 2 having a definable
subgroup of K ∗ of Morley Rank 1 (Poizat; A. Baudisch, M.
Hills, A. Martin-Pizarro and F. Wagner).
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Generalizations of Ax Theorem

Ax Theorem is a theorem about solutions of the differential
equation related to exp : C→ C∗.

Kirby and later Bertrand proved generalizations of Ax theorem
for exp : Lie(A)→ A for certain algebraic groups A.

I generalized it further to any local analytic “very
non-algebraic” map between A,B – algebraic groups over C.
It includes:

exp : Lie(A)→ A as in Bertrand, Kirby.
C∗ 3 x 7→ xα ∈ C∗ (α non-algebraic).
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Positive Characteristic Project

The statement of Ax also makes sense in positive
characteristic. One has to:

Replace derivations with HS-derivations (a positive
characteristic analogue of a derivation).
Replace local analytic maps with formal maps (forget about
convergence of power series)

It still needs a proof.

There is hope it would imply a version of weak CIT and have
some consequences in model theory of positive characteristic
fields.
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Travel Grants

Travel grants will be paid today in cash after lunch break. It refers
to:

Invited speakers.

Students, recent PhD’s with ASL grants.

NSF-funded (American) students will NOT be paid today.
They will be paid directly by the ASL office after the meeting.
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Social Events

You can still sign up for social events!! Especially the excursion
and sightseeing.

Sightseeing: Tuesday, 13.00 Departure from the conference
site (before lunch).

Excursion: Tuesday, 14.00 Departure by bus (after lunch).

Boat Party: Tuesday, 18.30 The boat will depart from the
marina near Hala Targowa (have a look at pictures at the
conference web page).

Banquet: Wednesday, 19.30 Banquet will be held in Piwnica
Świdnicka (in the very middle of the market square).
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Świdnicka (in the very middle of the market square).

Kowalski Definability in Differential Fields


	Definable Sets
	Diophantine Geometry
	Differential equations of analytic maps
	Conference Announcements

