ON MODELS OF PARACONSISTENT ANALOGUE OF THE SCOTT LOGIC

Marina Stukacheva

Sobolev Institute of Mathematics Novosibirsk, Russia

We consider the class JHN of all non-trivial extensions of the minimal (or Johans-son's) logic (denoted L_j). It is well-known that JHN partition into three disjoint subclasses [Odintsov 1998]. There are

the class INT of intermediate logics,

the class NEG of negative logics containing formula $\perp,$ and

the class PAR of proper paraconsistent extensions of L_j consisting of logics not belonging to the first two classes.

In 1989 Zakharyashchev associated with every finite rooted intuitionistic frame $\mu = \langle W, R \rangle$ a formula such that it is refuted in a frame iff this frame contains a subframe reducible to μ and satisfies some other natural conditions.

M. V. Zakharyashchev [1989], *Syntax and semantics of intermediate logics*, Algebra and Logic, vol.28, pp. 402-429.

In 2005 we defined the canonical formulas for extensions of the minimal logic.

In this case we obtained a necessary and sufficient condition for the refutability of the minimal canonical formulas in general frames and proved completeness theorem for that canonical formulas.

M. Stukacheva [2006] On canonical formulas for extensions of the minimal logic // Siberian Electronic Mathematical Reports. – 2006. – Vol. 3. – P. 312–334. http:// semr.math.nsc.ru

Definition (Segerberg, 1968)

We call Kripke j-frame, or simply j-frame, a triple $\mu = \langle W, R, Q \rangle$, where $\langle W, R \rangle$ is an ordinary Kripke frame for intuitionistic logic and $Q \subseteq W$ is a cone (upward closed set) with respect to R, which we will call the cone of abnormal worlds.

Worlds lying out of Q are called normal.

Note that a valuation v of a *j*-frame μ , a model $\mathcal{M}=\langle \mu, v \rangle$ and the forcing relation \models between models and formulas are defined in just the same way as for ordinary Kripke frame. The only exception is in the case of constant \perp :

$$\mathcal{M}\models_{x} \bot \Longleftrightarrow x \in \mathcal{Q}.$$

K. Segerberg [1968] *Propositional logics related to Heyting's and Johansson's*, Theoria, vol.34, pp.26-61.

Definition

A general frame for JHN is a pair $\mathfrak{M} = \langle \mu, S \rangle$, where $\mu = \langle W, R, Q \rangle$ is a *j*-frame and S is a collection of upward closed subsets of W which contains \emptyset , Q and is closed under \cap , \cup , and operation \supset is defined as follows :

 $\forall X, Y \in S X \supset Y = \{x \in W | \forall y \in W (xRy \text{ and } y \in X) \Rightarrow y \in Y)\}.$

If *S* contains all upward closed subsets of *W*, then $\mathfrak{M} = \langle \mu, S \rangle$ is in effect an ordinary Kripke *j*-frame.

(日) (日) (日) (日) (日) (日) (日)

Let $\mathfrak{M} = \langle W, R, Q, S \rangle$ be a finite rooted general *j*-frame with $e_0, ..., e_n$ being all the distinct elements of *W* and e_0 the root.

Definition

A pair $\delta = (\overline{x}, \overline{y})$ of nonempty sets $\overline{x}, \overline{y} \subseteq W$ is called a d-domain in \mathfrak{M} if the following conditions are satisfied:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

1 \overline{x} and \overline{y} are antichains in W, and \overline{x} has at least two elements;

$$(\forall x \in \overline{x})(\forall y \in \overline{y})(\neg xRy);$$

 $(\forall z \in W) (\forall x \in \overline{x} (zRx) \Rightarrow \exists y \in \overline{y} (zRy)).$

Let \mathcal{D} be some (possibly empty) set of *d*-domains in \mathfrak{M} . By \mathcal{D}_1 we denote the set of all *d*-domains such that $\overline{y} \cap (W \setminus Q) \neq \emptyset$ and by \mathcal{D}_2 – the set of all *d*-domains with property $\overline{y} \subseteq Q$. With $\mathfrak{M}=\langle \mu, S \rangle$ and \mathcal{D} we associate the following *JHN*-canonical formula

$$J(\mu, \mathcal{D}) \rightleftharpoons (\bigwedge_{e_i Re_i} A_{ij}) \land (\bigwedge_{\delta \in \mathcal{D}} B_{\delta}) \land C \supset p_0,$$

where

$$C = \bigwedge_{i=1}^{m} (\land \Gamma_i \supset p_i \lor \bot) \supset \bot;$$

 $\Gamma_j = \{p_k \mid \neg e_j Re_k\};$

and

• if
$$\delta = (\overline{x}, \overline{y}) \in \mathcal{D}_1$$
, then

$$\begin{array}{l} B_{\delta} = \bigwedge_{e_i \in \overline{y}, e_i \notin Q} (\land \Gamma_i \supset p_i \lor \bot) \land \bigwedge_{e_i \in \overline{y}, e_i \in Q} (\land \Gamma_i \land \bot \supset p_i) \supset \\ \bigvee_{e_j \in \overline{x}} p_j, \end{array}$$

(besides it, if $\overline{y} \cap Q = \emptyset$, then there is no second conjunctive term);

• if
$$\delta = (\overline{x}, \overline{y}) \in \mathcal{D}_2$$
, then

$$B_{\delta} = \bigwedge_{e_i \in \overline{y}} (\land \Gamma_i \land \bot \supset p_i) \supset \bigvee_{e_i \in \overline{x}} p_j;$$

a term A_{ij} define as follows:

- if $e_i \notin Q$, $e_j \notin Q$, then $A_{ij} \rightleftharpoons (\land \Gamma_j \supset p_j \lor \bot) \supset p_i$;
- if $e_i \notin Q$, $e_j \in Q$, then $A_{ij} \rightleftharpoons (\land \Gamma_j \land \bot \supset p_j) \supset p_i$;

• if $e_i \in Q$, $e_j \in Q$, then $A_{ij} \rightleftharpoons (\land \Gamma_j \supset p_j) \supset p_i$.

The Scott logic

$$\mathsf{SL}=\mathsf{Li}+\{(\neg\neg p \supset p) \supset p \lor \neg p) \supset \neg p \lor \neg \neg p\}$$

(where Li is the intuitionistic logic and Li=lj + { $\perp \supset p$ })

is one of the first examples of an intermediate logic with the disjunction property.

Zakharyashchev proved that $SL=Li+X(\mu, D, \bot)$, where $X(\mu, D, \bot)$ is the intuitionistic canonical formula with the frame μ :

<□> <同> <目> <目> <目> <目> <日> <同> <日> <日> <日> <日> <日> <日</p>

We study the paraconsistent analogue

$$\mathsf{Ls}=\mathsf{Lj}+\{(\neg\neg p \supset p) \supset p \lor \neg p) \supset \neg p \lor \neg \neg p\}$$

of the Scott logic.

Theorem Ls=Lj+ $J(\eta_1, \mathcal{D}^1)+J(\eta_2, \mathcal{D}^2)+J(\eta_3, \mathcal{D}^3)+J(\eta_4, \mathcal{D}^4)+J(\eta_5, \mathcal{D}^5),$

where $J(\eta_1, D^1)$, $J(\eta_2, D^2)$, $J(\eta_3, D^3)$, $J(\eta_4, D^4)$, $J(\eta_5, D^5)$ are canonical formulas [2] with

