ON MODELS
 OF PARACONSISTENT ANALOGUE OF THE SCOTT LOGIC

Marina Stukacheva

Sobolev Institute of Mathematics
Novosibirsk, Russia

We consider the class JHN of all non-trivial extensions of the minimal (or Johans-son's) logic (denoted L_{j}).
It is well-known that JHN partition into three disjoint subclasses
[Odintsov 1998].
There are
the class INT of intermediate logics,
the class NEG of negative logics containing formula \perp, and
the class PAR of proper paraconsistent extensions of L_{j} consisting of logics not belonging to the first two classes.

In 1989 Zakharyashchev associated with every finite rooted intuitionistic frame $\mu=\langle W, R\rangle$ a formula such that it is refuted in a frame iff this frame contains a subframe reducible to μ and satisfies some other natural conditions.
M. V. Zakharyashchev [1989], Syntax and semantics of intermediate logics, Algebra and Logic, vol.28, pp. 402-429.

In 2005 we defined the canonical formulas for extensions of the minimal logic.
In this case we obtained a necessary and sufficient condition for the refutability of the minimal canonical formulas in general frames and proved completeness theorem for that canonical formulas.
M. Stukacheva [2006] On canonical formulas for extensions of the minimal logic // Siberian Electronic Mathematical Reports. 2006. - Vol. 3. - P. 312-334.
http:// semr.math.nsc.ru

Definition (Segerberg, 1968)
We call Kripke j-frame, or simply j-frame, a triple $\mu=\langle W, R, Q\rangle$, where $\langle W, R\rangle$ is an ordinary Kripke frame for intuitionistic logic and $Q \subseteq W$ is a cone (upward closed set) with respect to R, which we will call the cone of abnormal worlds.
Worlds lying out of Q are called normal.

Note that a valuation v of a j-frame μ, a model $\mathcal{M}=\langle\mu, v\rangle$ and the forcing relation \vDash between models and formulas are defined in just the same way as for ordinary Kripke frame. The only exception is in the case of constant \perp :

$$
\mathcal{M} \models_{x} \perp \Longleftrightarrow x \in Q
$$

K. Segerberg [1968] Propositional logics related to Heyting's and Johansson's, Theoria, vol.34, pp.26-61.

Definition

A general frame for $J H N$ is a pair $\mathfrak{M}=\langle\mu, S\rangle$, where $\mu=\langle W, R, Q\rangle$ is a j-frame and S is a collection of upward closed subsets of W which contains \emptyset, Q and is closed under \cap, \cup, and operation \supset is defined as follows :
$\forall X, Y \in S X \supset Y=\{x \in W \mid \forall y \in W(x R y$ and $y \in X) \Rightarrow$
$y \in Y)\}$.
If S contains all upward closed subsets of W, then $\mathfrak{M}=\langle\mu, S\rangle$
is in effect an ordinary Kripke j-frame.

Let $\mathfrak{M}=\langle W, R, Q, S\rangle$ be a finite rooted general j-frame with e_{0}, \ldots, e_{n} being all the distinct elements of W and e_{0} the root.

Definition

A pair $\delta=(\bar{x}, \bar{y})$ of nonempty sets $\bar{x}, \bar{y} \subseteq W$ is called a d-domain in \mathfrak{M} if the following conditions are satisfied:
(1) \bar{x} and \bar{y} are antichains in W, and \bar{x} has at least two elements;
(2) $(\forall x \in \bar{x})(\forall y \in \bar{y})(\neg x R y)$;
(3) $(\forall z \in W)(\forall x \in \bar{x}(z R x) \Rightarrow \exists y \in \bar{y}(z R y))$.

Let \mathcal{D} be some (possibly empty) set of d-domains in \mathfrak{M}. By \mathcal{D}_{1} we denote the set of all d-domains such that $\bar{y} \cap(W \backslash Q) \neq \emptyset$ and by \mathcal{D}_{2} - the set of all d-domains with property $\bar{y} \subseteq Q$. With $\mathfrak{M}=\langle\mu, S\rangle$ and \mathcal{D} we associate the following JHN-canonical formula

$$
J(\mu, \mathcal{D}) \rightleftharpoons\left(\bigwedge_{e_{i} R e_{j}} A_{i j}\right) \wedge\left(\bigwedge_{\delta \in \mathcal{D}} B_{\delta}\right) \wedge C \supset p_{0}
$$

where

$$
\begin{gathered}
C=\bigwedge_{i=1}^{m}\left(\wedge \Gamma_{i} \supset p_{i} \vee \perp\right) \supset \perp ; \\
\Gamma_{j}=\left\{p_{k} \mid \neg e_{j} R e_{k}\right\} ;
\end{gathered}
$$

and

- if $\delta=(\bar{x}, \bar{y}) \in \mathcal{D}_{1}$, then

$$
\begin{aligned}
& B_{\delta}=\bigwedge_{e_{i} \in \bar{y}, e_{i} \notin Q}\left(\wedge \Gamma_{i} \supset p_{i} \vee \perp\right) \wedge \bigwedge_{e_{i} \in \bar{y}, e_{i} \in Q}\left(\wedge \Gamma_{i} \wedge \perp \supset p_{i}\right) \supset \\
& \vee_{e_{j} \in \bar{x}} p_{j}
\end{aligned}
$$

(besides it, if $\bar{y} \cap Q=\emptyset$, then there is no second conjunctive term);

- if $\delta=(\bar{x}, \bar{y}) \in \mathcal{D}_{2}$, then

$$
B_{\delta}=\bigwedge_{e_{i} \in \bar{y}}\left(\wedge \Gamma_{i} \wedge \perp \supset p_{i}\right) \supset \bigvee_{e_{j} \in \bar{x}} p_{j}
$$

a term $A_{i j}$ define as follows:

- if $e_{i} \notin Q, e_{j} \notin Q$, then $A_{i j} \rightleftharpoons\left(\wedge \Gamma_{j} \supset p_{j} \vee \perp\right) \supset p_{i}$;
- if $e_{i} \notin Q, e_{j} \in Q$, then $A_{i j} \rightleftharpoons\left(\wedge \Gamma_{j} \wedge \perp \supset p_{j}\right) \supset p_{i}$;
- if $e_{i} \in Q, e_{j} \in Q$, then $A_{i j} \rightleftharpoons\left(\wedge \Gamma_{j} \supset p_{j}\right) \supset p_{i}$.

The Scott logic

$$
\mathbf{S L}=\mathbf{L i}+\{(\neg \neg p \supset p) \supset p \vee \neg p) \supset \neg p \vee \neg \neg p\}
$$

(where $\mathbf{L i}$ is the intuitionistic logic and $\mathbf{L i}=\mathbf{l} \mathbf{j}+\{\perp \supset \mathbf{p}\}$)
is one of the first examples of an intermediate logic with the disjunction property.

Zakharyashchev proved that $\mathbf{S L}=\mathbf{L i}+X(\mu, \mathcal{D}, \perp)$, where $X(\mu, \mathcal{D}, \perp)$ is the intuitionistic canonical formula with the frame μ :

We study the paraconsistent analogue

$$
\mathbf{L s}=\mathbf{L}+\{(\neg \neg p \supset p) \supset p \vee \neg p) \supset \neg p \vee \neg \neg p\}
$$

of the Scott logic.

Theorem
$\mathbf{L s}=\mathbf{L j}+J\left(\eta_{1}, \mathcal{D}^{1}\right)+J\left(\eta_{2}, \mathcal{D}^{2}\right)+J\left(\eta_{3}, \mathcal{D}^{3}\right)+J\left(\eta_{4}, \mathcal{D}^{4}\right)+J\left(\eta_{5}, \mathcal{D}^{5}\right)$, where $J\left(\eta_{1}, \mathcal{D}^{1}\right), J\left(\eta_{2}, \mathcal{D}^{2}\right), J\left(\eta_{3}, \mathcal{D}^{3}\right), J\left(\eta_{4}, \mathcal{D}^{4}\right), J\left(\eta_{5}, \mathcal{D}^{5}\right)$ are canonical formulas [2] with

frame η_{5}

