Sets and the Concept of Set

Donald A. Martin

UCLA

Logic Colloquium 2007 Wroclaw, Poland July 15, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline of talk

(1) The concept of set.

(2) Axioms for set theory and the negative thesis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline of talk

(1) The concept of set.

(2) Axioms for set theory and the negative thesis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline of talk

(1) The concept of set.

(2) Axioms for set theory and the negative thesis.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- (1) The concept of set.
- (2) Axioms for set theory and the negative thesis.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Basic Question. Does the concept of set determine what object the set with given members has to be?

Stage 0 $V_0 =$

 $\mathsf{Stage} \ 1 \qquad V_1 = \mathbb{N} \cup \mathcal{P}(\mathbb{N}) = V_0 \cup \mathcal{P}(V_0)$

Stage 2 $V_2 = V_1 \cup \mathcal{P}(V_1)$

Etc. Through the transfinite

Stage 0 $V_0 = \mathbb{N}$

Stage 1 $V_1 = \mathbb{N} \cup \mathcal{P}(\mathbb{N}) = V_0 \cup \mathcal{P}(V_0)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stage 2 $V_2 = V_1 \cup \mathcal{P}(V_1)$

Etc. Through the transfinite

Stage 0 $V_0 = \mathbb{N}$ Stage 1 $V_1 = \mathbb{N} \cup \mathcal{P}(\mathbb{N}) = V_0 \cup \mathcal{P}(V_0)$ Stage 2 $V_2 = V_1 \cup \mathcal{P}(V_1)$ Etc.Through the transfinite

Stage 0 $V_0 = \mathbb{N}$

Stage 1 $V_1 = \mathbb{N} \cup \mathcal{P}(\mathbb{N}) = V_0 \cup \mathcal{P}(V_0)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stage 2 $V_2 = V_1 \cup \mathcal{P}(V_1)$

Etc. Through the transfinite

Stage 0
$$V_0 = \mathbb{N}$$

Stage 1
$$V_1 = \mathbb{N} \cup \mathcal{P}(\mathbb{N}) = V_0 \cup \mathcal{P}(V_0)$$

Stage 2
$$V_2 = V_1 \cup \mathcal{P}(V_1)$$

Informal Separation Axiom. Let x be a set. For any property P, there is a set whose members are those members of x that have property P.

Power Set Axiom. Let *x* be a set. There is a set whose members are the subsets of *x*.

Union Axiom. Let x be a set. There is a set whose members are the members of members of x.

Informal Separation Axiom. Let x be a set. For any property P, there is a set whose members are those members of x that have property P.

Power Set Axiom. Let x be a set. There is a set whose members are the subsets of x.

Union Axiom. Let x be a set. There is a set whose members are the members of members of x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Informal Separation Axiom. Let x be a set. For any property P, there is a set whose members are those members of x that have property P.

Power Set Axiom. Let x be a set. There is a set whose members are the subsets of x.

Union Axiom. Let x be a set. There is a set whose members are the members of members of x.

Oth Thesis. The iterative concept of set is not—or, at least, is not merely—a concept of what it is for an object to be a set. It is a concept of what it is to be a universe of sets.

1st Thesis. The Informal Separation Axiom is sharp enough to guarantee that any two candidates for V_1 (for the natural numbers and the sets of natural numbers) are isomorphic, that any two candidates for V_2 are isomorphic, and so one for V_3 , V_4 , etc. Indeed, the iterative concept of set is sharp enough that any two instantiations of it are isomorphic.

2nd Thesis. In our present state of knowledge, it is an open question whether the Informal Separation Axiom (or even the iterative concept of set) is sharp enough to determine a truth-value for the Continuum Hypothesis.

Basic Question for Natural Numbers No

Basic Question for Natural NumbersNoOth Thesis for Natural NumbersYes1st Thesis for Natural NumbersYes2nd Thesis for Natural NumbersNo

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

Basic Question for Natural Numbers	No
0th Thesis for Natural Numbers	Yes
1st Thesis for Natural Numbers	Yes

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Basic Question for Natural Numbers	No
0th Thesis for Natural Numbers	Yes
1st Thesis for Natural Numbers	Yes
2nd Thesis for Natural Numbers	No

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- Informal ZFC axioms
- First-order ZFC axioms
- Second order ZFC axioms

ZFC axioms based on plural logic

Informal ZFC axioms

First-order ZFC axioms

Second order ZFC axioms

ZFC axioms based on plural logic

Informal ZFC axioms First-order ZFC axioms

Second order ZFC axioms

ZFC axioms based on plural logic

- Informal ZFC axioms
- First-order ZFC axioms
- Second order ZFC axioms

ZFC axioms based on plural logic

- Informal ZFC axioms
- First-order ZFC axioms
- Second order ZFC axioms

ZFC axioms based on plural logic

Large cardinal axioms

- Large cardinal axioms imply answers to most important questions about V₁.
- ▶ Large cardinal axioms imply nothing about the Continuum Hypothesis, which is a statement about V₂.

Large cardinal axioms

- Large cardinal axioms imply answers to most important questions about V₁.
- Large cardinal axioms imply nothing about the Continuum Hypothesis, which is a statement about V₂.

- ロ ト - 4 回 ト - 4 □ - 4

Large cardinal axioms

- Large cardinal axioms imply answers to most important questions about V₁.
- Large cardinal axioms imply nothing about the Continuum Hypothesis, which is a statement about V₂.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \mathfrak{M}_1 \mathfrak{M}_2

 $V_0(\mathfrak{M}_1) \stackrel{\pi_0}{\cong} V_0(\mathfrak{M}_2)$

 $V_1(\mathfrak{M}_1) \stackrel{\pi_1}{\cong} V_1(\mathfrak{M}_2)$

 $V_2(\mathfrak{M}_1) \stackrel{\pi_2}{\cong} V_2(\mathfrak{M}_2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \mathfrak{M}_1 \mathfrak{M}_2

 $V_0(\mathfrak{M}_1) \stackrel{\pi_0}{\cong} V_0(\mathfrak{M}_2)$

 $V_1(\mathfrak{M}_1) \stackrel{\pi_1}{\cong} V_1(\mathfrak{M}_2)$

 $V_2(\mathfrak{M}_1) \stackrel{\pi_2}{\cong} V_2(\mathfrak{M}_2)$

 $\mathfrak{M}_1 \qquad \mathfrak{M}_2$

 $V_0(\mathfrak{M}_1) \stackrel{\pi_0}{\cong} V_0(\mathfrak{M}_2)$

 $V_1(\mathfrak{M}_1) \stackrel{\pi_1}{\cong} V_1(\mathfrak{M}_2)$

 $V_2(\mathfrak{M}_1) \stackrel{\pi_2}{\cong} V_2(\mathfrak{M}_2)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \mathfrak{M}_1 \mathfrak{M}_2

 $V_0(\mathfrak{M}_1) \stackrel{\pi_0}{\cong} V_0(\mathfrak{M}_2)$

 $V_1(\mathfrak{M}_1) \stackrel{\pi_1}{\cong} V_1(\mathfrak{M}_2)$

$$V_2(\mathfrak{M}_1) \stackrel{\pi_2}{\cong} V_2(\mathfrak{M}_2)$$

```
1st Thesis for V_2 + 2nd Thesis \Rightarrow
```

We do not at present know that there is a structure instantiating the concept of set.

(ロ)、(型)、(E)、(E)、 E) の(の)