

# MLL proof nets as error-correcting codes

### Satoshi Matsuoka AIST

独立行政法人產業技術総合研究所



### The structure of the talk

- 1. Introduction to error-correcting codes
- 2. Introduction to MLL proof nets
- 3. How to analyze MLL proof nets using coding theory
- 4. Our results so far



### Hamming <7,4> code

- A subset of {0,1}^{7} called code words
- Satisfying

1. 
$$x1 + x2 + x4 + x5 = 0$$

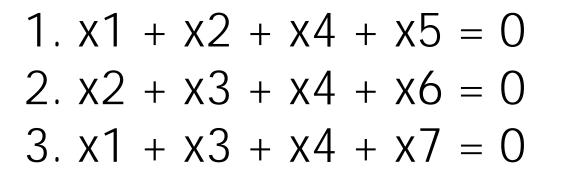
2.  $x^2 + x^3 + x^4 + x^6 = 0$ 

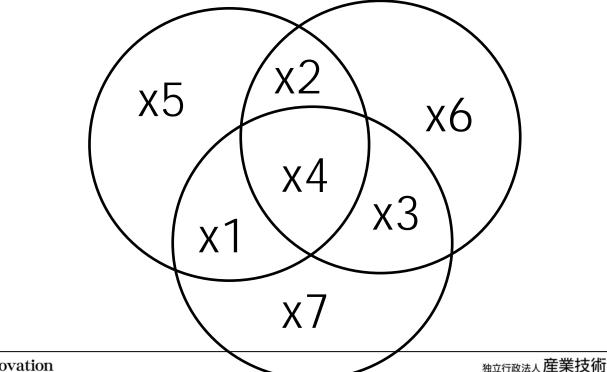
3. 
$$x1 + x3 + x4 + x7 = 0$$

where xi ¥in {0,1}

+ is exclusive or (or parity check)









| x1 | x2 | х3 | x4 | x5 | х6 | x7 |
|----|----|----|----|----|----|----|
| 0  | 0  | 0  | 0  |    |    |    |
| 1  | 0  | 0  | 0  |    |    |    |
| 0  | 1  | 0  | 0  |    |    |    |
| 0  | 0  | 1  | 0  |    |    |    |
| 0  | 0  | 0  | 1  |    |    |    |
| 1  | 0  | 0  | 0  |    |    |    |
| 0  | 1  | 0  | 1  |    |    |    |
| 0  | 0  | 1  | 1  |    |    |    |



| x1 | x2 | х3 | x4 | x5 | х6 | x7 |
|----|----|----|----|----|----|----|
| 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1  | 0  | 0  | 0  | 1  | 0  | 1  |
| 0  | 1  | 0  | 0  | 1  | 1  | 0  |
| 0  | 0  | 1  | 0  | 0  | 0  | 1  |
| 0  | 0  | 0  | 1  | 1  | 1  | 1  |
| 1  | 0  | 0  | 1  | 0  | 1  | 0  |
| 0  | 1  | 0  | 1  | 0  | 0  | 1  |
| 0  | 0  | 1  | 1  | 1  | 0  | 0  |



| x1 | x2 | x3 | x4 | x5 | х6 | x7 |
|----|----|----|----|----|----|----|
| 1  | 1  | 0  | 0  |    |    |    |
| 1  | 0  | 1  | 0  |    |    |    |
| 0  | 1  | 1  | 0  |    |    |    |
| 1  | 1  | 0  | 1  |    |    |    |
| 1  | 0  | 1  | 1  |    |    |    |
| 0  | 1  | 1  | 1  |    |    |    |
| 1  | 1  | 1  | 0  |    |    |    |
| 1  | 1  | 1  | 1  |    |    |    |



| x1 | x2 | х3 | x4 | x5 | х6 | x7 |
|----|----|----|----|----|----|----|
| 1  | 1  | 0  | 0  | 0  | 1  | 1  |
| 1  | 0  | 1  | 0  | 1  | 1  | 0  |
| 0  | 1  | 1  | 0  | 1  | 0  | 1  |
| 1  | 1  | 0  | 1  | 1  | 0  | 0  |
| 1  | 0  | 1  | 1  | 0  | 0  | 1  |
| 0  | 1  | 1  | 1  | 0  | 1  | 0  |
| 1  | 1  | 1  | 0  | 0  | 0  | 0  |
| 1  | 1  | 1  | 1  | 1  | 1  | 1  |



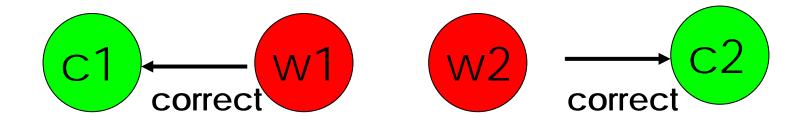
- 2^4 = 16 words are (legitimate) codewords
- Other words  $(2^7-2^4 = 112)$  are not



- distance of w1, w2 ¥in {0,1}^{7}
  d(w1, w2) = | { i | w1(i) ¥neq w2(i)} |
- Example
  d(0101000, 00110011)=4
- The distance of code C, d(C): the minimum distance of different codewords
- Hamming <7,4> code C has d(C)=3

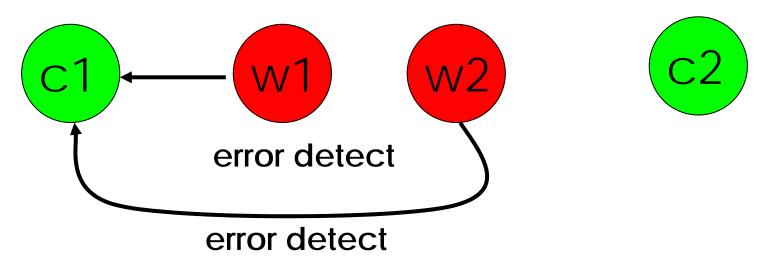


So, Hamming <7,4> code is
 1-error correcting





On the other hand, Hamming <7,4> code is
 2-error detecting



• But, 1-error correcting and 2-error detecting are not compatible

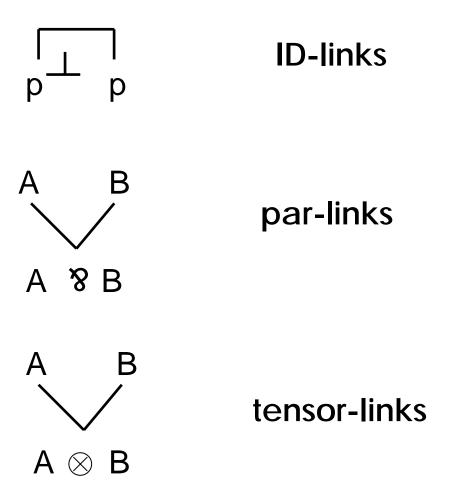


### The structure of the talk

- 1. Introduction to error-correcting codes
- 2. Introduction to MLL proof nets
- 3. How to analyze MLL proof nets using coding theory
- 4. Our results so far

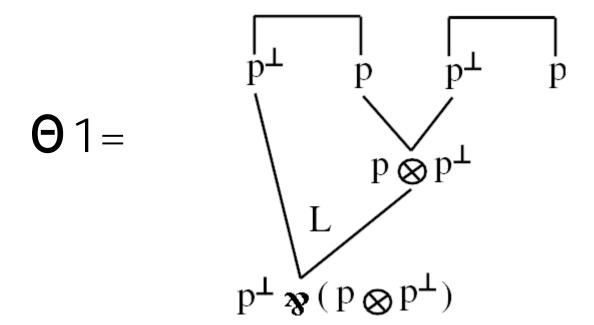


### Links





### MLL proof structure (also MLL proof net)



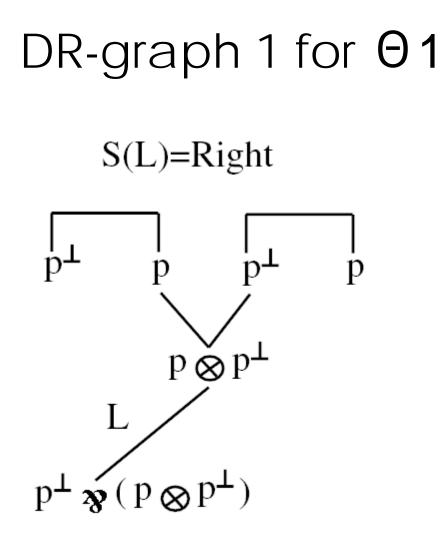
独立行政法人產業技術総合研究所



## Graph-theoretic characterization theorem

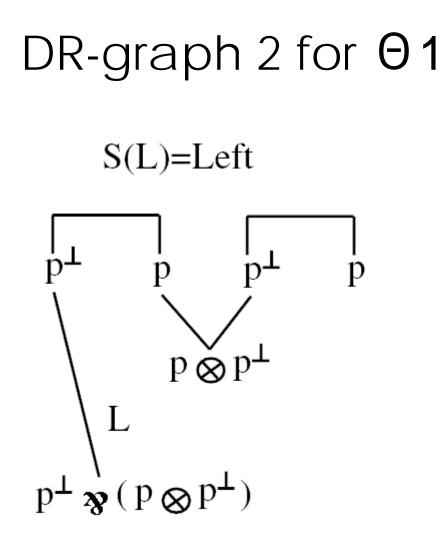
- Theorem (Girard, Danos-Regnier)
  Θ is MLL proof net
  iff
  - for any DR-switching S, the DR-graph  $\Theta_S$  is acyclic and connected





acyclic and connected(tree)

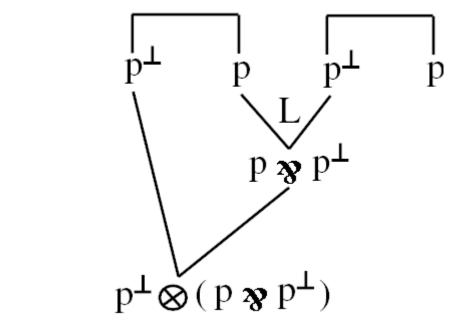




acyclic and connected(tree)



## MLL proof structure (but not MLL proof net)



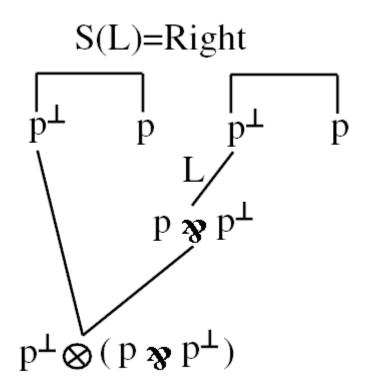
技術を社会へ-- Integration for Innovation

 $\Theta 2 =$ 

独立行政法人產業技術総合研究所



### DR-graph 1 for $\Theta 2$

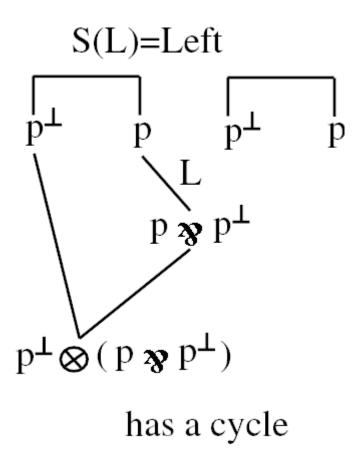


acyclic and connected(tree)

独立行政法人產業技術総合研究所



### DR-graph 2 for $\Theta 2$





### The structure of the talk

- 1. Introduction to error-correcting codes
- 2. Introduction to MLL proof nets
- 3. How to analyze MLL proof nets using coding theory
- 4. Our results so far

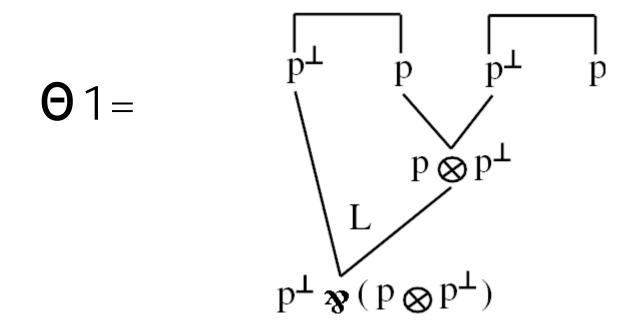


### The Basic Idea

- PS-family: a set of MLL proof structures such that each member is reachable from the other members by several tensor-par exchanges
- Partition MLL proof structures into PSfamilies
- Regard each PS-family as a code

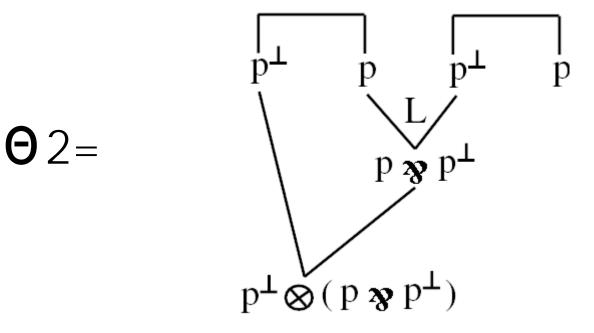


### One of four members of a PS-family





### One of four members of a PS-family

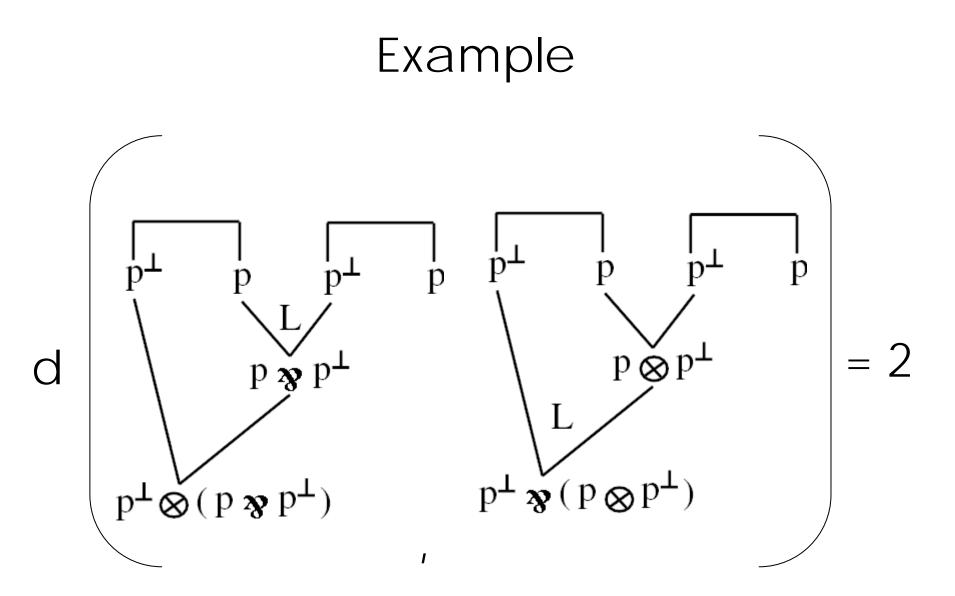




### Hamming distance on a PS-family

- distance of Θ1, Θ2 ¥in PS-family F
  d(Θ1, Θ2)
  - = the number of "locations" where multiplicative links are different
- For each PS-family F,
  d(F) is the minimum distance of different MLL proof nets in F







### The structure of the talk

- 1. Introduction to error-correcting codes
- 2. Introduction to MLL proof nets
- 3. How to analyze MLL proof nets using coding theory
- 4. Our results so far



### First Question

How do we have properties about d(F)?



### Proposition

Let F be a PS-family.

If  $\Theta$ 1 and  $\Theta$ 2 are MLL proof nets and both belong to F, then the number of IDlinks (tensor-links, and par-links) of  $\Theta$ 1 is the same as that of  $\Theta$ 2.



#### Theorem

- If PS-family F has more than two MLL proof nets, then d(F)=2.
- So, such a PS-family is just one-error detecting.

#### Idea of Proof

If  $\Theta$ ,  $\Theta$ ' **¥in** F, then we can have a

sequence

 $\Theta \Rightarrow \Theta 1 \Rightarrow \cdots \Rightarrow \Theta n \Rightarrow \Theta'$ 

such that  $\Theta_{1,...,\Theta_{n}}$  are MLL proof nets

where  $\Theta a \Rightarrow \Theta b$  if  $\Theta b$  is obtained from  $\Theta a$  by replacing a tensor-link by a par-link and a par-link by a tensor-link exactly two times

Using graph-theoretic characterization theorem, nontrivial (at least for me)

Using reduction to absurdity



### Summary

- We can incorporate the notion of Hamming distance into MLL proof nets naturally
- Got an elementary result
- But it's ongoing work
- Need to get more results (composition of two PS-families, characterization of PSfamilies with n MLL proof nets,....)
- The manuscript can be found in http://arxiv.org/abs/cs/0703018