Substructural Fuzzy Logics

George Metcalfe

Department of Mathematics, Vanderbilt University

July 2007

Fuzzy Logics / Substructural Logics

Roughly speaking...

- *Fuzzy logics* have truth values in [0, 1] and connectives interpreted by real-valued functions.
- *Substructural logics* are obtained by removing/adding structural rules in Gentzen systems.

... but are fuzzy logics substructural?

t-Norm Fuzzy Logics

The best known fuzzy logics have truth values in [0, 1] and interpret conjunction and implication connectives by *t*-norms and their residua, e.g.

t-NORM	x * y	$x \to_* y$
ŁUKASIEWICZ	max(0, x + y - 1)	$\min(1, 1 - x + y)$
Gödel	$\min(x,y)$	y if $x > y$; 1 o/w
PRODUCT	$x \cdot y$	y/x if $x > y$; 1 o/w

Valid formulas are those which always take value 1.

Uninorm Fuzzy Logics

More generally, fuzzy logics can be based on *uninorms* (commutative associative increasing binary functions on [0, 1] with a unit element); e.g.

$$x * y = \begin{cases} \min(x, y) & \text{if } x + y \leq 1 \\ \max(x, y) & \text{otherwise} \end{cases}$$

and their residua, defined as:

$$x \to_* y = \sup\{z \in [0,1] : x * z \le y\}$$

Standard Algebras

A fuzzy logic ${\bf L}$ is based on "standard L-algebras":

 $\langle [0,1], *, \rightarrow_*, \min, \max, e_*, 0, 1 \rangle$

where * is a uninorm with residuum \rightarrow_* and unit e_* .

LOGIC	UNINORMS
Uninorm Logic UL	left-continuous uninorms
Monoidal t -norm logic MTL	left-continuous t-norms
Basic Logic BL	continuous <i>t</i> -norms
Gödel Logic G	idempotent t-norms

 $\models_{L} A \text{ iff } A \text{ is } \geq e \text{ in all standard L-algebras.}$

Sequents

A (single-conclusion) sequent is an ordered pair:

 $\Gamma \Rightarrow \Delta$

where Γ is a finite multiset of formulas and Δ is a multiset containing at most one formula.

We write Γ , Π and Γ , A for $\Gamma \uplus \Pi$ and $\Gamma \uplus \{A\}$.

A Simple Sequent Calculus

Initial Sequents

$$\overline{A \Rightarrow A} \text{ (id)}$$

Logical Rules

$$\frac{\Gamma \Rightarrow A \quad \Pi, B \Rightarrow \Delta}{\Gamma, \Pi, A \to B \Rightarrow \Delta} (\to \Rightarrow) \qquad \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \to B} (\Rightarrow \to)$$

Cut Rule

$$\frac{\Gamma, A \Rightarrow \Delta \quad \Pi \Rightarrow A}{\Gamma, \Pi \Rightarrow \Delta} \text{ (cut)}$$

Some Structural Rules

Weakening

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} (\text{wl}) \qquad \frac{\Gamma \Rightarrow}{\Gamma \Rightarrow A} (\text{wr})$$

Contraction

$$\frac{\Gamma, A, A \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} (cl)$$

Some Substructural Logics

Calculus	Weakening	Contraction
GMAILL		
GAMAILL	×	
GIL	×	×

Hypersequents

A hypersequent \mathcal{G} is a finite multiset of sequents:

$$\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$$

From Sequents to Hypersequents

The *hypersequent version* of a sequent rule adds a "context side-hypersequent" G; e.g.

$$\frac{\mathcal{G} \mid \Gamma \Rightarrow A \quad \mathcal{G} \mid \Pi, B \Rightarrow \Delta}{\mathcal{G} \mid \Gamma, \Pi, A \to B \Rightarrow \Delta} (\to \Rightarrow) \qquad \frac{\mathcal{G} \mid \Gamma, A \Rightarrow B}{\mathcal{G} \mid \Gamma \Rightarrow A \to B} (\Rightarrow \to)$$

A Transfer Principle

Take the initial sequents and hypersequent versions of the rules of a sequent calculus, and add:

$$\frac{\mathcal{G}}{\mathcal{G} \mid \Gamma \Rightarrow \Delta} (\text{ew}) \qquad \frac{\mathcal{G} \mid \Gamma \Rightarrow \Delta \mid \Gamma \Rightarrow \Delta}{\mathcal{G} \mid \Gamma \Rightarrow \Delta} (\text{ec})$$

and the "communication rule":

$$\frac{\mathcal{G} \mid \Gamma_{1}, \Pi_{1} \Rightarrow \Delta \quad \mathcal{G} \mid \Gamma_{2}, \Pi_{2} \Rightarrow \Sigma}{\mathcal{G} \mid \Gamma_{1}, \Gamma_{2} \Rightarrow \Delta \mid \Pi_{1}, \Pi_{2} \Rightarrow \Sigma} (\text{com})$$

George Metcalfe, Vanderbilt University

Transferred Calculi

SEQUENT CALCULUS		HYPERSEQUENT CALCULUS
GMAILL	\Rightarrow	GUL
GAMAILL	\Rightarrow	\mathbf{GMTL}
GIL	\Rightarrow	$\mathbf{G}\mathbf{G}$

Soundness and Completeness

We want to show that for a calculus GL:

 $\vdash_{\mathbf{GL}} \Rightarrow A \quad \text{iff} \models_{\mathbf{L}} A$

We adopt the following strategy:

(1) Let $\mathbf{GL}^{\mathbf{D}}$ be \mathbf{GL} plus a "density" rule and prove:

$$\vdash_{\mathbf{GL}\mathbf{D}} \Rightarrow A \quad \text{iff} \quad \models_{\mathbf{L}} A$$

(2) Establish "density elimination" for $\mathbf{GL}^{\mathbf{D}}$.

The Takeuti-Titani Density Rule

Let $\mathbf{GL}^{\mathbf{D}}$ be \mathbf{GL} extended with:

$$\frac{\mathcal{G} \mid \Gamma, p \Rightarrow \Delta \mid \Pi \Rightarrow p}{\mathcal{G} \mid \Gamma, \Pi \Rightarrow \Delta} \text{(density)}$$

where p does not occur in the conclusion.

Under very general conditions, we get:

$$\vdash_{\mathbf{GL}\mathbf{D}} \, \Rightarrow \, A \quad \text{iff} \quad \models_{\mathbf{L}} A$$

Density Elimination

Suppose that we have a proof ending in:

$$\frac{\vdots}{\Gamma, p \Rightarrow \Delta \mid \Pi \Rightarrow p}{\Gamma, \Pi \Rightarrow \Delta} \text{ (density)}$$

Replace p on the *left* by Π ; on the *right* by Γ and Δ

$$\frac{\vdots}{\Gamma,\Pi \Rightarrow \Delta \mid \Gamma,\Pi \Rightarrow \Delta}{\Gamma,\Pi \Rightarrow \Delta} (ec)$$

Make some adjustments to get a (density)-free proof...

Putting Things Together

 \Rightarrow A is derivable in GL...

 \dots iff $\Rightarrow A$ is derivable in GL^D ...

 \ldots iff A is valid in all standard L-algebras.

Uniform Conditions

Single-conclusion hypersequent calculi with weakening admit cut and density elimination if they have:

- (a) *Substitutive rules* (making substitutions in a rule instance gives an admissible rule).
- (b) *Reductive logical rules* (applications of (cut) can be shifted upwards over logical rules).

These conditions guarantee standard completeness.

Concluding Remarks

- Many fuzzy logics occur naturally as substructural logics in the framework of hypersequents.
- Syntactic conditions guarantee "standard completeness" via cut and density elimination.
- We are investigating more general conditions for density elimination.

References

Substructural Fuzzy Logics. George Metcalfe and Franco Montagna. To Appear in *Journal of Symbolic Logic*.

Density Elimination and Rational Completeness for First-Order Logics. Agata Ciabattoni and George Metcalfe. In *Proceedings of LFCS 2007, volume 4514 of LNCS, pages 132-146, 2007.*