Interpretation of Arithmetic in certain finitely presented groups

Alexey Muranov (joint with Tuna Altınel)

Université Lyon 1, France

16 July 2007

Abstract

The Arithmetic $(\mathbb{N}, +, \times)$ is parametrically interpreted in all groups of Richard Thompson and Graham Higman, and also in some other groups of piecewise linear permutations of [0, 1).

In Tompson's group *F*, Arithmetic is interpreted without parameters.

Outline

Preliminaries

Groups of Thompson and Higman Interpretation of Arithmetic in groups

Interpretatability

Definable copies of $\mathbb{Z} \wr \mathbb{Z}$ and undecidability Interpretation of Arithmetic in *F* without parameters

Questions

Basics of Thompson and Higman's groups

Thompson's groups:

- ▶ appeared in 1965, now are denoted *F*, *T*, and *V*;
- $F \subset T \subset V$;
- T, V, and [F, F] are simple, $F/[F, F] \cong \mathbb{Z} \oplus \mathbb{Z}$;
- all are finitely presented.

Higman's groups:

- appeared in 1974, are denoted $G_{n,r}$, n = 2, 3, ..., r = 1, 2, 3, ...;
- $G_{2,1} \cong V;$
- If *n* is even, then G_{n,r} is simple;
 if *n* is odd, then [G_{n,r}, G_{n,r}] is simple, G_{n,r}/[G_{n,r}, G_{n,r}] ≅ Z₂ = Z/2Z;
- all are finitely presented.

Can be realized by piecewise linear permutations of [0; 1). Elements of *F* are represented by piecewise linear homeomorphisms $[0; 1) \rightarrow [0; 1)$.

Representation by piecewise linear permutations

Figure: An element of F and an element of V as piecewise linear permutations of [0,1).

Arithmetic in virtually solvable groups

Theorem (Noskov, 1983)

A finitely generated virtually solvable group parametrically interprets Arithmetic if and only if it is not virtually abelian.

Remark

In his paper, Noskov actually does not claim to prove this.

F interprets Arithmetic

Theorem (Bardakov, Tolstykh, 2007, arXiv:math/0701748)

F has a parametrically definable subgroup isomorphic to $\mathbb{Z} \wr \mathbb{Z}$. Therefore, *F* parametrically interprets Arithmetic, and Th(*F*) is hereditarily undecidable.

The proof is based on results of Yu. Ershov, G. Noskov, R. Robinson. The idea: find in *F* a parametrically definable subgroup isomorphic to $\mathbb{Z} \wr \mathbb{Z}$.

$$(\mathbb{Z} \wr \mathbb{Z} \text{ is a semi-direct product of } \bigoplus_{i \in \mathbb{Z}} \mathbb{Z} \text{ with } \mathbb{Z}.)$$

$\mathbb{Z}\wr\mathbb{Z}$ and undecidability

Theorem 1 (Altinel, M.)

All groups of Thompson and Higman have parametrically definable subgroups isomorphic to $\mathbb{Z} \wr \mathbb{Z}$.

Corollary

The elementary theories of these groups are undecidable.

Arithmetic in F

Theorem 2 (Altinel, M.)

The following map $\mathbb{N} \to F/[F, F]$ is an interpretation of Arithmetic in F without parameters:

Figure: Interpretation of $(\mathbb{N}, +, \times)$ in (F, \times) .

We do not know:

Question 1

Is F parametrically definable in V?

Question 2

Is Arithmetic parametrically bi-interpretable with F?

Remark

F is interpretable in Arithmetic since the word problem for F is decidable.

Remark

Thomas Scanlon established bi-interpretability of infinite finitely generated fields with Arithmetic, and used it to prove Pop's conjecture:

two finitely generated fields having the same first-order theories in the language of rings are isomorphic.