Interpretation of Arithmetic in certain finitely presented groups

Alexey Muranov (joint with Tuna Altınel)

Université Lyon 1, France

16 July 2007

Abstract

The Arithmetic $(\mathbb{N},+, \times)$ is parametrically interpreted in all groups of Richard Thompson and Graham Higman, and also in some other groups of piecewise linear permutations of $[0,1)$.
In Tompson's group F, Arithmetic is interpreted without parameters.

Outline

Preliminaries

Groups of Thompson and Higman
Interpretation of Arithmetic in groups

Interpretatability
Definable copies of $\mathbb{Z} \backslash \mathbb{Z}$ and undecidability
Interpretation of Arithmetic in F without parameters

Questions

Basics of Thompson and Higman's groups

Thompson's groups:

- appeared in 1965, now are denoted F, T, and V;
- $F \subset T \subset V$;
- T, V, and $[F, F]$ are simple, $F /[F, F] \cong \mathbb{Z} \oplus \mathbb{Z}$;
- all are finitely presented.

Higman's groups:

- appeared in 1974, are denoted $G_{n, r}, n=2,3, \ldots, r=1,2,3, \ldots$;
- $G_{2,1} \cong V$;
- if n is even, then $G_{n, r}$ is simple; if n is odd, then $\left[G_{n, r}, G_{n, r}\right]$ is simple, $G_{n, r} /\left[G_{n, r}, G_{n, r}\right] \cong \mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$;
- all are finitely presented.

Can be realized by piecewise linear permutations of $[0 ; 1)$.
Elements of F are represented by piecewise linear homeomorphisms $[0 ; 1) \rightarrow[0 ; 1)$.

Representation by piecewise linear permutations

Figure: An element of F and an element of V as piecewise linear permutations of $[0,1)$.

Arithmetic in virtually solvable groups

Theorem (Noskov, 1983)
A finitely generated virtually solvable group parametrically interprets Arithmetic if and only if it is not virtually abelian.

Remark

In his paper, Noskov actually does not claim to prove this.

F interprets Arithmetic

Theorem (Bardakov, Tolstykh, 2007, arXiv:math/0701748)
F has a parametrically definable subgroup isomorphic to $\mathbb{Z} \backslash \mathbb{Z}$.
Therefore, F parametrically interprets Arithmetic, and $\mathrm{Th}(F)$ is hereditarily undecidable.

The proof is based on results of Yu. Ershov, G. Noskov, R. Robinson.
The idea: find in F a parametrically definable subgroup isomorphic to $\mathbb{Z} \backslash \mathbb{Z}$.
$\left(\mathbb{Z} \imath \mathbb{Z}\right.$ is a semi-direct product of $\bigoplus_{i \in \mathbb{Z}} \mathbb{Z}$ with \mathbb{Z}.)

$\mathbb{Z} \imath \mathbb{Z}$ and undecidability

Theorem 1 (Altınel, M.)

All groups of Thompson and Higman have parametrically definable subgroups isomorphic to $\mathbb{Z} \backslash \mathbb{Z}$.

Corollary
The elementary theories of these groups are undecidable.

Arithmetic in F

Theorem 2 (Altinel, M.)
The following map $\mathbb{N} \rightarrow F /[F, F]$ is an interpretation of Arithmetic in F without parameters:

Figure: Interpretation of $(\mathbb{N},+, \times)$ in (F, \times).

We do not know:

Question 1
Is F parametrically definable in V ?

Question 2

Is Arithmetic parametrically bi-interpretable with F ?

Remark

F is interpretable in Arithmetic since the word problem for F is decidable.

Remark

Thomas Scanlon established bi-interpretability of infinite finitely generated fields with Arithmetic, and used it to prove Pop's conjecture: two finitely generated fields having the same first-order theories in the language of rings are isomorphic.

