Epistemic Logic with Questions

Michal Peliš

http://web.ff.cuni.cz/~pelis

Questions as a part of inferential structures

Inferential Erotetic Logic (A. Wiśniewski, based on classical logic)

Evocation

 $\langle \mathsf{\Gamma}, Q \rangle$

Erotetic implication

 $\langle\langle Q_1, \Gamma\rangle, Q_2\rangle$

Example of e-implication

 Q_1 : What is Peter graduate of: faculty of law or faculty of economy?

I can be satisfied by the answer

He is a lawyer.

even if I did not ask

 Q_2 : What is Peter: lawyer or economist?

The connection between Q_1 and Q_2 could be done by the following knowledge base Γ :

Someone is graduate of a faculty of law iff he/she is a lawyer. Someone is graduate of a faculty of economy iff he/she is an economist. One-agent propositional epistemic logic

propositional language with modality K (knowledge as "necessity") and M $(M\varphi \equiv \neg K \neg \varphi)$

semantics

- Kripke frame $\mathcal{F} = \langle S, R \rangle$ with a set of states (points, indices, possible worlds) S and an accessibility relation $R \subseteq S^2$.
- Kripke model $M = \langle \mathcal{F}, \models \rangle$ where \models is a satisfaction relation between states and formulas.

The satisfaction relation \models is defined by a standard way:

- 1. For each $\varphi \in \mathcal{A}$ and (\mathbf{M}, s) : either $(\mathbf{M}, s) \models \varphi$ or $(\mathbf{M}, s) \not\models \varphi$.
- 2. $(\mathbf{M}, s) \models \neg \varphi$ iff $(\mathbf{M}, s) \not\models \varphi$
- 3. $(\mathbf{M}, s) \models \psi_1 \lor \psi_2$ iff $(\mathbf{M}, s) \models \psi_1$ or $(\mathbf{M}, s) \models \psi_2$
- 4. $(\mathbf{M}, s) \models \psi_1 \land \psi_2$ iff $(\mathbf{M}, s) \models \psi_1$ and $(\mathbf{M}, s) \models \psi_2$
- 5. $(\mathbf{M}, s) \models \psi_1 \rightarrow \psi_2$ iff $(\mathbf{M}, s) \models \psi_1$ implies $(\mathbf{M}, s) \models \psi_2$
- 6. $(\mathbf{M}, s) \models K\varphi$ iff $(\mathbf{M}, s_1) \models \varphi$, for each s_1 such that sRs_1

Incorporating questions

extend epistemic language by ? and appropriate brackets

$$Q = ?\underbrace{\{\alpha_1, \dots, \alpha_n\}}_{dQ}$$

Q requires one of the following answers:

It is the case that α_1 . : It is the case that α_n .

A questioner presupposes at least $(\alpha_1 \lor \ldots \lor \alpha_n)$ and maybe more.

Presuppositions

presupposition of a question Q

 $\varphi \in \operatorname{Pres}Q$ iff $(\forall \mathbf{M})(\forall s)(\forall \alpha \in dQ)((\mathbf{M}, s) \models \alpha \rightarrow \varphi)$

prospective presupposition of a question Q

 $\varphi \in \mathsf{PPres}Q \text{ iff } \varphi \in \mathsf{Pres}Q \text{ and } (\forall \mathbf{M})(\forall s)$

 $(\mathbf{M},s) \models \varphi \text{ implies } (\exists \alpha \in dQ)((\mathbf{M},s) \models \alpha)$

- Each prospective presupposition is a maximal presupposition.
- If $\varphi, \psi \in \mathsf{PPres}Q$, then $\varphi \equiv \psi$.

${\it Q}$ is sound at $({\bf M},s)$

$$(\mathbf{M},s)\models Q$$

iff

1.
$$(\forall \alpha \in dQ)$$

(a) $(\mathbf{M}, s) \models M\alpha$
(b) $(\mathbf{M}, s) \not\models K\alpha$

2.
$$(\forall \varphi \in \mathsf{Pres}Q)((\mathbf{M}, s) \models K\varphi)$$

A question sound at (\mathbf{M}, s) forms a partitioning on the afterset.

Examples 1

The same is for $(\mathbf{M}, s) \models ?\neg \alpha$.

Analogously for $?(\alpha \lor \beta)$.

Examples 2

• $?|\alpha,\beta|$ is equal to $?\{(\alpha \land \beta), (\neg \alpha \land \beta), (\alpha \land \neg \beta), (\neg \alpha \land \neg \beta)\}.$

• $(\mathbf{M}, s) \models ?\{\alpha, \beta\}$, then $(\mathbf{M}, s) \models K(\alpha \lor \beta)$

Evocation

$$(\mathbf{M},s) \models \mathsf{\Gamma} \xrightarrow{i} Q$$

iff

$$(\mathbf{M},s) \models K\Gamma$$

and

$(\mathbf{M},s)\models Q$

coincides with *question in an information set* (J. Groenendijk, M. Stokhof)

E-implication

$$(\mathbf{M},s) \models (\mathsf{\Gamma},Q_1) \Rightarrow Q_2$$

iff

 $((\mathbf{M}, s) \models K\Gamma \text{ and } (\mathbf{M}, s) \models Q_1)$ implies $(\mathbf{M}, s) \models Q_2$

Pure e-implication ($\Gamma = \emptyset$)

$$(\mathbf{M},s) \models Q_1 \to Q_2$$

iff

$$(\mathbf{M},s) \models Q_1 \text{ implies } (\mathbf{M},s) \models Q_2$$

Examples of pure e-implication

- \models ? $\alpha \rightarrow$? $\neg \alpha$ as well as \models ? $\alpha \leftarrow$? $\neg \alpha$
- \models ?($\alpha \land \beta$) \leftarrow ? $|\alpha, \beta|$, the same for \lor instead of \land
- \models ? $|\alpha,\beta| \rightarrow$? α and \models ? $|\alpha,\beta| \rightarrow$? β
- \models ? $|\alpha, \beta| \rightarrow$? $(\alpha|\beta)$
- \models ? $|\alpha,\beta| \rightarrow$? $\{\alpha,\beta,(\neg\alpha \land \neg\beta)\}$
- \models ?{ $(\alpha \lor \beta), \alpha$ } \rightarrow ?{ α, β }
- \models ?{ α, β, γ } \rightarrow ? α (as well as ? β and ? γ)

Example of e-implication

$$\Gamma = \{ (\alpha_1 \leftrightarrow \beta_1), (\alpha_2 \leftrightarrow \beta_2) \}$$
$$\models (\Gamma, ?\{\beta_1, \beta_2\}) \Rightarrow ?\{\alpha_1, \alpha_2\}$$

as well as

$$\models (\Gamma, ?\{\alpha_1, \alpha_2\}) \Rightarrow ?\{\beta_1, \beta_2\}$$

both questions are equal with respect to $\boldsymbol{\Gamma}$

Answerhood

An agent *gets* a **complete answer** φ to a question Q at (\mathbf{M}, s) iff $(\mathbf{M}, s) \models K\varphi$ such that $\varphi \models \alpha$ for some $\alpha \in dQ$.

An agent gets a **partial answer** to a question Q at (\mathbf{M}, s) iff she gets a complete answer to a question $?\varphi$ at (\mathbf{M}, s) such that $Q \rightarrow ?\varphi$.

 α is a partial answer to $?|\alpha,\beta|$

Basic references

D. Harrah. The logic of questions. In D. Gabbay and F. Guenthner (eds.), *Handbook of Philosophical Logic*. Kluwer, 2002. Volume 8, pages 1–60.

A. Wiśniewski. *The Posing of Questions*. Kluwer, 1995.

J. Groenendijk and M. Stokhof. Questions. In J. van Benthem and A. ter Meulen (eds.), *Handbook of Logic and Language*. Elsevier, 1997. Pages 1055–1125.