Epistemic Logic with Questions

Michal Peliš

http://web.ff.cuni.cz/~pelis

Questions as a part of inferential structures

Inferential Erotetic Logic (A. Wiśniewski, based on classical logic)

Evocation

$$
\langle\Gamma, Q\rangle
$$

Erotetic implication

$$
\left\langle\left\langle Q_{1}, \Gamma\right\rangle, Q_{2}\right\rangle
$$

Example of e-implication
Q_{1} : What is Peter graduate of: faculty of law or faculty of economy?

I can be satisfied by the answer He is a lawyer.
even if I did not ask
Q_{2} : What is Peter: lawyer or economist?

The connection between Q_{1} and Q_{2} could be done by the following knowledge base Γ :

Someone is graduate of a faculty of law iff he/she is a lawyer.
Someone is graduate of a faculty of economy iff he/she is an economist.

One-agent propositional epistemic logic
propositional language with modality K (knowledge as "necessity") and $M(M \varphi \equiv \neg K \neg \varphi)$

- Kripke frame $\mathcal{F}=\langle S, R\rangle$ with a set of states (points, indices, possible worlds) S and an accessibility relation $R \subseteq S^{2}$.
- Kripke model $\mathbf{M}=\langle\mathcal{F}, \models\rangle$ where \models is a satisfaction relation between states and formulas.

The satisfaction relation \vDash is defined by a standard way:

1. For each $\varphi \in \mathcal{A}$ and (\mathbf{M}, s): either ($\mathbf{M}, s) \models$ φ or $(\mathrm{M}, s) \not \models \varphi$.
2. $(\mathrm{M}, s) \mid=\neg \varphi$ iff $(\mathrm{M}, s) \not \models \varphi$
3. $(\mathbf{M}, s) \vDash \psi_{1} \vee \psi_{2}$ iff $(\mathbf{M}, s) \models \psi_{1}$ or $(\mathbf{M}, s) \models$ ψ_{2}
4. $(\mathbf{M}, s) \models \psi_{1} \wedge \psi_{2} \mathrm{iff}(\mathbf{M}, s) \models \psi_{1}$ and $(\mathbf{M}, s) \models$ ψ_{2}
5. $(\mathrm{M}, s) \models \psi_{1} \rightarrow \psi_{2}$ iff $(\mathrm{M}, s) \models \psi_{1}$ implies $(\mathbf{M}, s)=\psi_{2}$
6. $(\mathbf{M}, s) \models K \varphi$ iff $\left(\mathbf{M}, s_{1}\right) \models \varphi$, for each s_{1} such that $s R s_{1}$

Incorporating questions

extend epistemic language by ? and appropriate brackets

$$
Q=? \underbrace{\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}}_{d Q}
$$

Q requires one of the following answers:

It is the case that α_{1}.
!
It is the case that α_{n}.

A questioner presupposes at least $\left(\alpha_{1} \vee \ldots \vee \alpha_{n}\right)$ and maybe more.

Presuppositions

presupposition of a question Q
$\varphi \in \operatorname{Pres} Q$ iff $(\forall \mathbf{M})(\forall s)(\forall \alpha \in d Q)((\mathbf{M}, s) \models \alpha \rightarrow$ φ)
prospective presupposition of a question Q
$\varphi \in \operatorname{PPres} Q$ iff $\varphi \in \operatorname{Pres} Q$ and $(\forall \mathrm{M})(\forall s)$
$(\mathrm{M}, s) \models \varphi$ implies $(\exists \alpha \in d Q)((\mathrm{M}, s) \models \alpha)$

- Each prospective presupposition is a maximal presupposition.
- If $\varphi, \psi \in \operatorname{PPres} Q$, then $\varphi \equiv \psi$.

Q is sound at (M,s)

$$
(\mathrm{M}, s) \models Q
$$

iff

1. $(\forall \alpha \in d Q)$
(a) $(\mathrm{M}, s) \models M \alpha$
(b) $(\mathbf{M}, s) \not \models K \alpha$
2. $(\forall \varphi \in \operatorname{Pres} Q)((\mathrm{M}, s) \models K \varphi)$

A question sound at (M, s) forms a partitioning on the afterset.

Examples 1

The same is for $(\mathrm{M}, s) \vDash ? \neg \alpha$.

Analogously for ? $(\alpha \vee \beta)$.

Examples 2

- ? $|\alpha, \beta|$ is equal to ? $\{(\alpha \wedge \beta),(\neg \alpha \wedge \beta),(\alpha \wedge$ $\neg \beta),(\neg \alpha \wedge \neg \beta)\}$.

- $(\mathrm{M}, s) \vDash$? $\{\alpha, \beta\}$, then $(\mathrm{M}, s) \models K(\alpha \vee \beta)$

Evocation

$$
(\mathrm{M}, s) \models \Gamma \xrightarrow{i} Q
$$

iff
$(\mathrm{M}, s) \models K \Gamma$ and
$(\mathrm{M}, s) \models Q$
coincides with question in an information set (J. Groenendijk, M. Stokhof)

E-implication

$$
(\mathrm{M}, s) \models\left(\left\ulcorner, Q_{1}\right) \Rightarrow Q_{2}\right.
$$

iff

$$
\begin{gathered}
\left((\mathrm{M}, s) \models K\left\ulcorner\text { and }(\mathbf{M}, s) \models Q_{1}\right)\right. \\
\text { implies }
\end{gathered}
$$

$$
(\mathbf{M}, s) \models Q_{2}
$$

Pure e-implication ($\Gamma=\emptyset$)

$$
(\mathrm{M}, s) \models Q_{1} \rightarrow Q_{2}
$$

iff

$$
(\mathrm{M}, s) \models Q_{1} \text { implies }(\mathrm{M}, s) \models Q_{2}
$$

Examples of pure e-implication

- $\vDash ? \alpha \rightarrow ? \neg \alpha$ as well as $\vDash ? \alpha \leftarrow$? $\neg \alpha$
$\bullet \models ?(\alpha \wedge \beta) \leftarrow ?|\alpha, \beta|$, the same for \vee instead of \wedge
$\bullet \vDash ?|\alpha, \beta| \rightarrow$? α and $\vDash ?|\alpha, \beta| \rightarrow ? \beta$
$\bullet \models ?|\alpha, \beta| \rightarrow ?(\alpha \mid \beta)$
- \vDash ? $|\alpha, \beta| \rightarrow$? $\{\alpha, \beta,(\neg \alpha \wedge \neg \beta)\}$
$\bullet \models ?\{(\alpha \vee \beta), \alpha\} \rightarrow ?\{\alpha, \beta\}$
$\bullet \models ?\{\alpha, \beta, \gamma\} \rightarrow ? \alpha$ (as well as $? \beta$ and $? \gamma$)

Example of e-implication

$$
\begin{aligned}
\Gamma=\left\{\left(\alpha_{1}\right.\right. & \left.\left.\leftrightarrow \beta_{1}\right),\left(\alpha_{2} \leftrightarrow \beta_{2}\right)\right\} \\
& \models\left(\Gamma, ?\left\{\beta_{1}, \beta_{2}\right\}\right) \Rightarrow ?\left\{\alpha_{1}, \alpha_{2}\right\}
\end{aligned}
$$

as well as

$$
\vDash\left(\Gamma, ?\left\{\alpha_{1}, \alpha_{2}\right\}\right) \Rightarrow ?\left\{\beta_{1}, \beta_{2}\right\}
$$

both questions are equal with respect to 「

An agent gets a complete answer φ to a question Q at (M,s) iff ($\mathbf{M}, s) \models K \varphi$ such that $\varphi \models \alpha$ for some $\alpha \in d Q$.

An agent gets a partial answer to a question Q at (M, s) iff she gets a complete answer to a question $? \varphi$ at (M, s) such that $Q \rightarrow ? \varphi$.
α is a partial answer to ? $|\alpha, \beta|$

Basic references
D. Harrah. The logic of questions. In D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic. Kluwer, 2002. Volume 8, pages 1-60.
A. Wiśniewski. The Posing of Questions. Kluwer, 1995.
J. Groenendijk and M. Stokhof. Questions. In J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Language. Elsevier, 1997. Pages 1055-1125.

