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A compelling idea . . .

Gerhard Gentzen: “Untersuchungen uber das logische Schliessen” Math. Zeitschrift 1934
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Inference rules define connectives

A B
[∧I]

A ∧ B

A ∧ B
[∧E1]

A

A ∧ B
[∧E2]

B

That’s all there is to conjunction.

You don’t need to give truth conditions,

satisfaction conditions
or any other sort of ‘semantics.’

These rules tie meaning to use.
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But . . . does it work?
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But . . . does it work?

A N A L Y S I S  

THE RUNABOUT INFERENCE-TICKET 

IT is sometimes alleged that there are inferences whose validity arises 
solely from the meanings of certain expressions occurring in them. 

The precise technicalities employed are not important, but let us say 
that such inferences, if any such there be, are analytically valid. 

One sort of inference which is sometimes said to be in this sense 
analytically valid is the passage from a conjunction to either of its con- 
junct~, e.g., the inference ' Grass is green and the sky is blue, therefore 
grass is green '. The validity of this inference is said to arise solely from 
the meaning of the word ' and '. For if we are asked what is the meaning 
of the word ' and ',at least in the purely conjunctive sense (as opposed 
to, e.g., its colloquial use to mean ' and then '), the answer is said to be 
completeEy given by saying that (i) from any pair of statements P and Q 
we can infer the statement formed by joining P to Q by ' and ' (which 
statement we hereafter describe as ' the statement P-and-Q '), that (ii) 
from any conjunctive statement P-and-Q we can infer P, and (iii) from 
P-and-Q we can always infer Q. Anyone who has learnt to perform 
these inferences knows the meaning of ' and ',for there is simply nothing 
more to knowing the meaning of 'and 'than being able to perform these 
inferences. 

A doubt might be raised as to whether it is really the case that, for 
any pair of statements P and Q, there is always a statement R such that 
given P and given Q we can infer R, and given R we can infer P and can 
also infer Q. But on the view we are considering such a doubt is quite 
misplaced, once we have introduced a word, say the word 'and ', 
precisely in order to form a statement R with these properties from 
any pair of statements P and Q. The doubt reflects the old superstitious 
view that an expression must have some independently determined 
meaning before we can discover whether inferences involving it are 
valid or invalid. With analytically valid inferences this just isn't so. 

I hope the conception of an analytically valid inference is now at 
least as clear to my readers as it is to myself. If not, further illumination 
is obtainable from Professor Popper's paper on 'Logic without Assump- 
tions ' in Proceedings of the Aristotelian Society for 1946-7, and from 
Professor I<neale7s contribution to Contemporaty British Philosopby, 
Volume 111. I have also been much helped in my understanding of the 
notion by some lectures of Mr. Strawson's and some notes of Mr. 
Hare's. 

I want now to draw attention to a point not generally noticed, namely 
that in this sense of 'analytically valid 'any statement whatever may be 
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But . . . does it work?

A
[tonkI]

A tonk B

A tonk B
[tonkE]

B

p
[tonkI]

p tonk q
[tonkE]

q
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But . . . does it work?

It would be bad to have tonk in your language.
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But . . . does it work?

A N A L Y S I S  

TONK, PLONK AND PLINK1 

A N. PRIOR has recently discussed2 the connective tonk, where .tonk is defined by specifying the role it plays in inference. Prior 
characterizes the role of tonk in inference by describing how it behaves 
as conclusion, and as premiss: (1) A I- A-tonk-B, and (2) A-tonk-B t B 
(where we have used the sign ' k ' for deducibility). We are then led by 
the transitivity of deducibility to the validity of A I- B, " which promises 
to banish falscbe Spitzjndigkeit from Logic for ever." 

A possible moral to be drawn is that connectives cannot be defined 
in terms of deducibility at all; that, for instance, it is illegitimate to 
define and as that connective such that (1) A-and-B t A, (2) A-and-B I- B, 
and (3) A, B I- A-and-B. We must first, so the moral goes, have a notion 
of what and means, independently of the role it plays as premiss and as 
conclusion. Truth-tables are one way of specifying this antecedent 
meaning; this seems to be the moral drawn by J. T. Stevenson.3 There 
are good reasons, however, for defending the legitimacy of defining 
connections in terms of the roles they play in deductions. 

It seems plain that throughout the whole texture of philosophy one 
can distinguish two modes of explanation: the analytic mode, which 
tends to explain wholes in terms of parts, and the synthetic mode, which 
explains parts in terms of the wholes or contexts in which they occur.4 
In logic, the analytic mode would be represented by Aristotle, who 
commences with terms as the ultimate atoms, explains propositions or 
judgments by means of these, syllogisms by means of the propositions 
which go to make them up, and finally ends with the notion of a science 
as a tissue of syllogisms. The analytic mode is also represented by the 
contemporary logician who first explains the meaning of complex 
sentences, by means of truth-tables, as a function of their parts, and then 
proceeds to give an account of correct inference in terms of the sentences 
occurring therein. The loczls classicuf of the application of the synthetic 
mode is, I suppose, Plato's treatment of justice in the Rept/blic, where he 
defines the just man by reference to the larger context of the community. 
Among formal logicians, use of the synthetic mode in logic is illustrated 
by Kneale and Popper (cited by Prior), as well as by Jaskowski, Gentzen, 
Fitch, and Curry, all of these treating the meaning of connectives as 

1 This research was supported in part by the Office of Naval Research, Group Psychology 
Branch, Contract No. SAR/Nonr-609(16). 

2 ' ,ANALYSISThe Runabout Inference-ticket 21.2, December 1960. 
3 ' 21.6, June 1961. Cf. p. 127: Roundabout the Runabout Inference-ticket ', ANALYSIS 

"The important difference between the theory of analytic validity [Prior's phrase for what is 
here called the synthetic view] as it should be stated and as Prior stated it lies in the fact 
that he gives the meaning of connectives in terms of permissive rules, whereas they should 
be stated in terms of truth-function statements in a meta-language." 

4 1 learned this way of looking at the matter from R. S. Brumbaugh. 

Nuel Belnap: “Tonk, Plonk and Plink” Analysis 1962
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But . . . does it work?

131 T O N K ,  P L O N K  AND P L I N K  

arising from the role they play in the context of formal inference. I t  
is equally well illustrated, I think, by aspects of Wittgenstein and those 
who learned from him to treat the meanings of words as arising from the 
role they play in the context of discourse. It seems to me nearly self- 
evident that employment of both modes of explanation is important 
and useful. It would therefore be truly a shame to see the synthetic 
mode in logic pass away as a result of a severe attack of tonktitis. 

Suppose, then, that we wish to hold that it is after all possible to 
define connectives contextually, in terms of deducibility. How are we to 
prevent tonktitis? How are we to make good the claim that there is no 
connective such as tonkl though there is a connective such as and (where 
tonk and and are defined as above) ? 

It seems to me that the key to a solution2 lies in observing that even 
on the synthetic view, we are not d e w g  our connectives ab initio, but 
rather in terms of an antecedently given context of dedgcibility, concerning 
which we have some definite notions. By that I mean that before 
arriving at the problem of characterizing connectives, we have already 
made some assumptions about the nature of deducibility. That this is 
so can be seen immediately by observing Prior's use of the transitivity 
of deducibility in order to secure his ingenious result. But if we note 
that we already have some assumptions about the context of deducibility 
within which we are operating, it becomes apparent that by a too careless 
use of definitions, it is possible to create a situation in which we are 
forced to say things inconsistent with those assumptions. 

The situation is thus exactly analogous to that, pointed out by 
Peano, which occurs when one attempts to define an operation, ' ? ', on 
rational numbers as follows : 

This definition is inadmissible precisely because it has consequences 
which contradict prior assumptions; for, as can easily be shown, adrnit- 

2 -3ting this definition would lead to (say) -3 - 5 .  

In short, we can distinguish between the admissibility of the defini- 
tion of and and the inadmissibility of tonk on the grounds of consistency 
-i.e., consistency with antecedent assumptions. We can give a precise 
account of the requirement of consistency from the synthetic point of 
view as follows. 

That there is no meaningful proposition expressed by A-fonk-B; that thereis no meaning- 
ful sentence A-tonk-B-distinctions suggested by these alternative modes of expression are 
irrelevant. Not myself being a victim of eidophobia, I will continue to use language which 
treats the connective-word ' fonk 'as standing for the putative propositional connective, tonk. 
It is equally irrelevant whether we take the sign k as representing a syntactic concept of 
deducibility or a semantic concept of logical consequence. 

Priqr's note is a gem, reminding one of Lewis Carroll's ' What the Tortoise said to 
Achilles . And as for the latter, so for the former, I suspect that no solution will ever be 
universally accepted as fbe solution. 

Nuel Belnap: “Tonk, Plonk and Plink” Analysis 1962
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132 A N A L Y S I S  

(1) We consider some characterization of deducibility, which may be 
treated as a formal system, i.e., as a set of axioms and rules involving the 
sign of deducibility, ' t- ',where 'A,, . . . ,A, I- B ' is read 'B is deducible 
from A,, . . . ,A,.' For definiteness, we shall choose as our characteriza- 
tion the structural rules of Gentzen: 

Axiom. A t A 

Wes. Weakening: from A,, ..., A, t C to infer A,, ..., A, B t C 
Permzltation: from A,, . . ., A, A,,,, ..., A, I- B to infer 

A,, . . ., Ai+l' Ai, . .., A, t B. 
Contraction: from A,, .. . ,A,, A, t B to infer A,, ..., A, I- B 
Transitivig: from A,, . . ., A, t- B and C,, ..., C,, B t- D 

to infer A,, ..., A,, C,, ..., C, C- D. 

In accordance with the opinions of experts (or even perhaps on more 
substantial grounds) we may take this little system as expressing all and 
only the universally valid statements and rules expressible in the given 
notation: it completely determines the context. 

(2) We may consider the proposed definition of some connective, say 
plonk, as an extension of the formal system characterizing deducibility, 
and an extension in two senses. (a) The notion of sentence is extended by 
introducing A-plonk-B as a sentence, whenever A and B are sentences. 
(b) We add some axioms or rules governing A-plonk-B as occurring as 
one of the prernisses or as conclusion of a deducibility-statement. These 
axioms or rules constitute our definition ofplonk in terms of the role it 
plays in inference. 

(3)We may now state the demand for the consistency of the definition 
of the new connective, plank, as follows: the extension must be con-

servativel; i.e., although the extension may well have new deducibility- 
statements, these new statements will all involve plonk. The extension 
will not have any new deducibility-statements which do not involve 
plonk itself. It will not lead to any deducibility-statement A,, ..., A, I- B 
not containing plonk, unless that statement is already provable in the 
absence of theplonk-axioms andplonk-rules. The justification for unpack- 
ing the demand for consistency in terms of conservativeness is precisely 
our antecedent assumption that we already had all the universally valid 
deducibility-statements not involving any special connectives. 

So the trouble with the definition of tonk given by Prior is that it is 
inconsistent. It gives us an extension of our original characterization 
of deducibility which is not conservative, since in the extension (but not 
in the original) we have, for arbitrary A and By A t B. Adding a tonkish 
role to the deducibility-context would be like adding to cricket a player 
whose role was so specified as to make it impossible to distinguish 
winning from losing. 

1 The notion of conservative extensions is due to Emil Post. 

Nuel Belnap: “Tonk, Plonk and Plink” Analysis 1962

Scene Setting 6 of 49



Existence and Uniqueness

I “existence”: Good rules conservatively extend your prior
commitments concerning consequence.

I A subtlety: you could, of course revise your account of consequence in
the original vocabulary. That’s ok for Nuel.

I example: Peirce’s Law, after adding Boolean negation to the rules for the
material conditional.

I “uniqueness”: The proposed rules should fix the concept if they are to
be definitions.

I If you add ∗1 and ∗2 using identical rules, then they should be
equivalent.

How far can we go, keeping existence and uniqueness?

Scene Setting 7 of 49



Existence and Uniqueness

I “existence”: Good rules conservatively extend your prior
commitments concerning consequence.

I A subtlety: you could, of course revise your account of consequence in
the original vocabulary. That’s ok for Nuel.

I example: Peirce’s Law, after adding Boolean negation to the rules for the
material conditional.

I “uniqueness”: The proposed rules should fix the concept if they are to
be definitions.

I If you add ∗1 and ∗2 using identical rules, then they should be
equivalent.

How far can we go, keeping existence and uniqueness?

Scene Setting 7 of 49



Existence and Uniqueness

I “existence”: Good rules conservatively extend your prior
commitments concerning consequence.

I A subtlety: you could, of course revise your account of consequence in
the original vocabulary. That’s ok for Nuel.

I example: Peirce’s Law, after adding Boolean negation to the rules for the
material conditional.

I “uniqueness”: The proposed rules should fix the concept if they are to
be definitions.

I If you add ∗1 and ∗2 using identical rules, then they should be
equivalent.

How far can we go, keeping existence and uniqueness?

Scene Setting 7 of 49



Existence and Uniqueness

I “existence”: Good rules conservatively extend your prior
commitments concerning consequence.

I A subtlety: you could, of course revise your account of consequence in
the original vocabulary. That’s ok for Nuel.

I example: Peirce’s Law, after adding Boolean negation to the rules for the
material conditional.

I “uniqueness”: The proposed rules should fix the concept if they are to
be definitions.

I If you add ∗1 and ∗2 using identical rules, then they should be
equivalent.

How far can we go, keeping existence and uniqueness?

Scene Setting 7 of 49



Existence and Uniqueness

I “existence”: Good rules conservatively extend your prior
commitments concerning consequence.

I A subtlety: you could, of course revise your account of consequence in
the original vocabulary. That’s ok for Nuel.

I example: Peirce’s Law, after adding Boolean negation to the rules for the
material conditional.

I “uniqueness”: The proposed rules should fix the concept if they are to
be definitions.

I If you add ∗1 and ∗2 using identical rules, then they should be
equivalent.

How far can we go, keeping existence and uniqueness?

Scene Setting 7 of 49



Existence and Uniqueness

I “existence”: Good rules conservatively extend your prior
commitments concerning consequence.

I A subtlety: you could, of course revise your account of consequence in
the original vocabulary. That’s ok for Nuel.

I example: Peirce’s Law, after adding Boolean negation to the rules for the
material conditional.

I “uniqueness”: The proposed rules should fix the concept if they are to
be definitions.

I If you add ∗1 and ∗2 using identical rules, then they should be
equivalent.

How far can we go, keeping existence and uniqueness?

Scene Setting 7 of 49
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Non-Conservative Extension

A tonk connective doesn’t pass the ‘existence’ test
for most accounts of logical consequence.
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Non-Conservative Extension

However it’s a bit complicated . . .

Journal of Philosophical Logic (2005) 34: 217–226 © Springer 2005
DOI: 10.1007/s10992-004-7805-x

ROY T. COOK

WHAT’S WRONG WITH TONK(?)

1. TONK AND LOGIC

In “The Runabout Inference Ticket” A. N. Prior (1960) examines the idea
that logical connectives can be given a meaning solely in virtue of the stip-
ulation of a set of rules governing them, and thus that logical truth/conse-
quence can be explicated in terms of the meanings (so understood) of
the logical connectives involved. He proposes a counterexample to such a
view, his notorious binary connective tonk (which I will symbolize as ⊗),
whose meaning is given by the following introduction and elimination
rules:

!

! ⊗ "
⊗ I

! ⊗ "

"
⊗ E

Prior noted that acceptance of such a connective as logical, and its rules as
thereby (at least) truth preserving, renders one’s logic trivial1 since for any
two sentences ! and ", we can prove that ! implies ":

!

! ⊗ "

"

The subsequent literature contains various strategies for holding onto a
view that is at least in the spirit of the inferentialist account being attacked
by Prior, yet which does not allow tonk legitimacy. I do not intend to add
anything further to the project of demarcating the bad operators (or their
rules) from the good ones here, however. Instead, I wish to examine, in a
bit more detail, what underlies the thought that the rules for tonk fail, in
fact, to define a legitimate logical operator.

The particular aspect of Prior’s quick argument that I will focus is
something that Nuel Belnap (1962) was first to notice, writing:

It seems to me that the key to a solution lies in observing that . . . we are not defining our
connectives ab initio, but rather in terms of an antecedently given context of deducibility,
concerning which we have some definite notions. By that I mean that before arriving at the

HEINRICH WANSING

CONNECTIVES STRANGER THAN TONK

Received on 30 September 2005

ABSTRACT. Many logical systems are such that the addition of Prior’s binary
connective tonk to them leads to triviality, see [1, 8]. Since tonk is given by
some introduction and elimination rules in natural deduction or sequent rules in
Gentzen’s sequent calculus, the unwanted effects of adding tonk show that
some kind of restriction has to be imposed on the acceptable operational
inferences rules, in particular if these rules are regarded as definitions of the
operations concerned. In this paper, a number of simple observations is made
showing that the unwanted phenomenon exemplified by tonk in some logics
also occurs in contexts in which tonk is acceptable. In fact, in any non-trivial
context, the acceptance of arbitrary introduction rules for logical operations
permits operations leading to triviality. Connectives that in all non-trivial
contexts lead to triviality will be called non-trivially trivializing connectives.

KEY WORDS: proof-theoretic semantics, trivializing connectives

1. INTRODUCTION

Besides the prevailing semantic paradigm, model-theoretic semantics,
there exist several other semantical frameworks. One important such
theory is proof-theoretic semantics, see [7, 13]. Whereas the general idea
of a proof-theoretic semantics is often associated with Wittgenstein’s
slogan Fmeaning is use,_ the modern development of the proof-theoretic
semantics of logical operations may be seen to have started with the
seminal work of Gentzen [5] and J!aaskowski [6]. Roughly speaking, the
basic idea is that the meaning of a logical operation is, or can be, given
by suitable inference rules in natural deduction or some version of the
sequent calculus. The example of Prior’s connective tonk [8] shows that
at the pain of triviality, not just any set of inference rules defines a
logical operation.

2. TONK-LOGIC AND TONK-CONSEQUENCE

For our purposes, a logic " may be identified with a pair ðL;‘Þ, a pair
ðL;#Þ, or a triple ðL;‘;#Þ, where L is a formal language, ‘ is a syn-
tactic derivability relation, and # is a semantic consequence relation.

Journal of Philosophical Logic (2006) 35: 653Y660
DOI: 10.1007/s10992-006-9025-z

# Springer 2006
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Non-Conservative Extension

A tonk connective doesn’t pass the ‘existence’ test
for most accounts of logical consequence.

The traditional connectives fare somewhat better.
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But not quite as well as you might think . . .

Suppose that in the vocabulary p, q, . . . the only proofs are identities. Now
add Gentzen’s conjunction.

A [Id]

A B
[∧I]

A ∧ B

A ∧ B
[∧El]

A

A ∧ B
[∧Er]

B

Now we have a proof from p and q to p.

p q
[∧I]

p ∧ q
[∧E]

p

We didn’t have one before. The addition is non-conservative.
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Why people haven’t noticed this,

and what we can do to fix it

I We have a proof whose premises are among p, q, and whose
conclusion is p – just not a proof with those premises exactly.

I Most people think that the argument from p, q to p is valid, despite
not having a (normal) proof with those premises and that conclusion.

I Accept primitive weakening proofs, like this:
p q

[K]
p

I Reject weakening as invalid, and hence reject [∧I] or [∧E].
I Put up with the mismatch between validity (the argument from p, q

to p is valid) and proofs (there is no proof from p, q to p) in the basic
language.

Propositional Logic 11 of 49
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p q

[K]
p

I Reject weakening as invalid, and hence reject [∧I] or [∧E].
I Put up with the mismatch between validity (the argument from p, q

to p is valid) and proofs (there is no proof from p, q to p) in the basic
language.

Propositional Logic 11 of 49



The Context of Deducibility — among atomic propositions

This means paying attention to the context of deducibility.

Let’s look at some of the assumptions we’ve been making.
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Choice of proof structure

p ∧ (q ∨ r)
[∧E]

q ∨ r

p ∧ (q ∨ r)
[∧E]

p [q]
[∧I]

p ∧ q
[∨I]

(p ∧ q) ∨ (p ∧ r)

p ∧ (q ∨ r)
[∧E]

p [r]
[∧I]

p ∧ r
[∨I]

(p ∧ q) ∨ (p ∧ r)
[∨E]

(p ∧ q) ∨ (p ∧ r)

Gentzen proofs have premises and a conclusion .
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Choice of proof structure

1 (1) p ∧ (q ∨ r) A
1 (2) p 1,∧E
1 (3) q ∨ r 1,∧E
4 (4) q A
5 (5) r A

1,4 (6) p ∧ q 2,4,∧I
1,4 (7) (p ∧ q) ∨ (p ∧ r) 6,∨I
1,5 (8) p ∧ r 2,5,∧I

1 , 5 (9) (p ∧ q) ∨ (p ∧ r) 8,∨I
1 (10) (p ∧ q) ∨ (p ∧ r) 3,4,5,7,9,∨E

So do Lemmon proofs.
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Choice of proof structure

1 p ∧ (q ∨ r) A

2 p 1,∧E

3 q ∨ r 1,∧E

4 q A

5 p ∧ q 2,5,∧I

6 (p ∧ q) ∨ (p ∧ r) 5,∨I

7 r A

8 p ∧ r 2,7,∧I

9 (p ∧ q) ∨ (p ∧ r) 8,∨I

10 (p ∧ q) ∨ (p ∧ r) 3,4-6,7-9,∨E

And so do Fitch proofs.
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Sequents and proof structure

These proofs match sequents with premises and a conclusion

A1 , . . . , An ` B

, . . . , Bm

The natural rules for the conditional in this context are incomplete for
classical logic.

X,A ` B

, Y

[⊃R]
X ` A ⊃ B

, Y

X ` A

,W

Y,B `
[⊃L]

X, Y,A ⊃ B `

,W

But if we allow conclusions , the rules become complete for classical logic.

Are there any proofs that look like that?
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, Y
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, Y
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,W
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[⊃L]
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Well, yes

Proofs with restart do.
A

[restart]
B

[p]1

[∨I]
p ∨ (q ⊃ p)

[restart]
q

[⊃I1]
p ⊃ q

[∨I]
p ∨ (p ⊃ q)

p ` p
[∨R]

p ` p ∨ (p ⊃ q)
[KR]

p ` p ∨ (p ⊃ q), q
[⊃R]

` p ∨ (p ⊃ q), p ⊃ q
[∨R]

` p ∨ (p ⊃ q), p ∨ (p ⊃ q)
[WR]

` p ∨ (p ⊃ q)
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Well, yes

And so do circuits.

¬I

¬I

∧I

∨I

∨I

WI¬E
A

B

A ∧ B¬(A ∧ B)

¬A

¬B

¬A ∨ ¬B

¬A ∨ ¬B

¬A ∨ ¬B

A ` A

` A,¬A

` A,¬A ∨ ¬B

A ` A

` B,¬B

` B,¬A ∨ ¬B

` A ∧ B,¬A ∨ ¬B,¬A ∨ ¬B

¬(A ∧ B) ` ¬A ∨ ¬B,¬A ∨ ¬B

¬(A ∧ B) ` ¬A ∨ ¬B
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How do we Choose?

Different contexts of deducibility motivate different logics.
I No weakening? Relevant logic.

I Two uses differs from one? linear or other contraction-free logics.
I Single conclusions? Intuitionistic logic.
I Multiple conclusions? Classical logic.

So how do we pick?

It depends, of course, on what a proof is for.
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I’ve been through this before . . .

Multiple Conclusions

Greg Restall∗

Philosophy Department, The University of Melbourne

restall@unimelb.edu.au

Abstract. I argue for the following four theses. (1) Denial is not to be analysed as

the assertion of a negation. (2) Given the concepts of assertion and denial, we have the

resources to analyse logical consequence as relating arguments with multiple premises and

multiple conclusions. Gentzen, Gerhard’s multiple conclusion calculus can be understood

in a straightforward, motivated, non-question-begging way. (3) If a broadly anti-realist

or inferentialist justification of a logical system works, it works just as well for classical

logic as it does for intuitionistic logic. The special case for an anti-realist justification of

intuitionistic logic over and above a justification of classical logic relies on an unjustified

assumption about the shape of proofs. Finally, (4) this picture of logical consequence pro-

vides a relatively neutral shared vocabulary which can help us und erstand and adjudicate

debates between proponents of classical and non-classical logics.

* * *

Our topic is the notion of logical consequence: the link between premises and con-
clusions, the glue that holds together deductively valid argument. How can we
understand this relation between premises and conclusions? It seems that any ac-
count begs questions. Painting with very broad brushtrokes, we can sketch the
landscape of disagreement like this: “Realists” prefer an analysis of logical conse-
quence in terms of the preservation of truth [29]. “Anti-realists” take this to be
unhelpful and offer alternative analyses. Some, like Dummett, look to preservation
of warrant to assert [9,36]. Others, like Brandom [5], take inference as primitive,
and analyse other notions in terms of it. There is plenty of disagreement on the
“realist” side of the fence too. It is one thing to argue that logical consequence
involves preservation of truth. It is another to explain how far truth must be
preserved. Is the preservation essentially modal (in all circumstances [25]) or an-
alytic (vouchsafed by the meanings of the terms involved) or formal (guaranteed
by the logical structure of the premises and conclusions [28,29]), or do we need a
combination of these factors [12]? If there is to be some kind of privileged logical
vocabulary, what is the principle of demarcation for that vocabulary [32]?
∗Many thanks to Allen Hazen, Graham Priest and Barry Taylor for fruitful discussions while I
was preparing a this paper. Thanks also to audiences at La Trobe University, the University of
Melbourne, the 2003 Australasian Association for Logic Conference in Adelaide, and the 12th
International Congress for Logic, Methodology and Philosophy of Science in Oviedo—including
Diderik Batens, Thierry Coquand, Jen Davoren, Philip Ebert, Joke Meheus, David Miller, Peter
Milne, Peter Schroeder–Heister, John Slaney and Tim Oakley—for comments on presentations
of this material, and to JC Beall, Richard Home, Ben Boyd, Jeremy St. John, Luke Howson
and Charlie Donahue for comments on drafts of the paper. ¶ This research is supported by the
Australian Research Council, through grant DP0343388.
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lmps, Oviedo, 2003

I A proof from X to A rules out the (assertion of the Xs and denial of A).
I This works just as well with multiple conclusions: a proof from X to Y rules

out the (assertion of the Xs and denial of the Ys).
I Proofs provide normative statuses of combinations of assertions and denials.
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Of course, there are others

I Proofs as functions converting warrants for
premises into warrant for a conclusion?

Intuitionistic logic.

I Proofs keeping track of use?

Relevant logic.

I Different contexts of deducibility track
different normative statuses. There is no need
to choose one as the whole story.
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Once you have a context of deducibility . . .

Belnap provides us with two criteria to evaluate our rules:

I conservativeness: don’t add new inferences to the old vocabulary.

− This can be supplied by a cut-elimination or normalisation theorem.
− We have this for classical propositional logic (and circuits or proofs with restart,

and many other systems).

I uniqueness: do they define, or merely describe?

− This is supplied by a simple argument for each rule:
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Once you have a context of deducibility . . .

Suppose we have two conjunctions ∧ and &, both satisfying the usual rules.

We have the following proofs

A & B
[&E]

A

A & B
[&E]

B
[∧I]

A ∧ B

A ∧ B
[∧E]

A

A ∧ B
[∧E]

B
[&I]

A & B

So ∧ is interchangeable with & as a premise or a conclusion in any
argument. They are equivalent.
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Classical Logic

Gentzen’s rules for classical propositional connectives satisfy existence and
uniqueness in this context of deducibility.
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quantification



Quantifier Rules

(∀x)A(x)
[∀E]

A(t)

(for any term t)

A(c)
[∀I]

(∀x)A(x)

(for any constant c not in the premises)

These rules seem straightforward,

but things are subtle.

They depend on an analysis of formulas, identifying constituents as terms,
and defining the appropriate notion of substitution.

Remember: multi-sorted predicate logic.
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Existence (conservative extension)

The usual cut-elimination or normalisation process an show that proofs
with the universal quantifier conservatively extend proofs without it.

X··· π

A(c)
[∀I]

(∀x)A(x)
[∀E]

A(t)

=⇒
X··· π[c7→t]

A(t)

The result πc
t is a proof from the same premises since

I The constant c does not appear in X, premises of π.

I Any rule is closed under the substitution of terms for constants.
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Unique Definition (equivalence)?

We need to do more to prove uniqueness of the universal quantifier.

But uniqueness can fail.

We can have two disjoint categories of terms, two sets of quantifiers —
two-sorted first-order logic.
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Uniqueness, relative to an analysis

However, if the two quantifiers are defined using the same class of terms,
and the same notion of substitution, then uniqueness follows:

(Ux)A(x)
[UE]

A(c)
[∀I]

(∀x)A(x)

(∀x)A(x)
[∀E]

A(c)
[UI]

(Ux)A(x)

These proofs work only when a term substituted using one quantifier may
be substituted using the other.

This analysis of the vocabulary is part of the context of deducibility.
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As for names, so for predicates?

Normalisation for the universal quantifier appealed to a closure property
concerning the constant c.

X··· π

A(c)
[∀I]

(∀x)A(x)
[∀E]

A(t)

=⇒
X··· π[c7→t]

A(t)

In any inference c be everywhere replaced by t.

Do predicates satisfy this condition?
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Predicate ‘variables’?

In the rules for first-order logic, no predicates (except for identity) are
singled out for special treatment.

In the general case we want either:

I Rules to be closed under substitution of predicates.
I A special class of predicates (predicate ‘variables’) that satisfy this

closure condition.
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Defining Identity

Identity and harmony
Stephen Read

1. Harmony

The inferentialist account of logic says that the meaning of a logical oper-
ator is given by the rules for its application. Prior (1960–61) showed that
a simple and straightforward interpretation of this account of logicality
reduces to absurdity. For if ‘tonk’ has the meaning given by the rules 
Prior proposed for it, contradiction follows. Accordingly, a more subtle 
interpretation of inferentialism is needed. Such a proposal was put forward
initially by Gentzen (1934) and elaborated by, e.g., Prawitz (1977). 
The meaning of a logical expression is given by the rules for the assertion
of statements containing that expression (as designated component); these
are its introduction-rules. The meaning so given justifies further rules 
for drawing inferences from such assertions; these are its elimination-
rules:

The introductions represent, as it were, the ‘definitions’ of the symbols
concerned, and the eliminations are no more, in the final analysis, than
the consequence of these definitions. (Gentzen 1934: 80)

For example, if the only ground for assertion of ‘p tonk q’ is given by Prior’s
rule:

then Prior mis-stated the elimination-rule. It should read

that is, given ‘p tonk q’, and a derivation of r from p (the ground for assert-
ing ‘p tonk q’), we can infer r, discharging the assumption p. We can state
the rule more simply as follows:

For if we may infer whatever, r, we can infer from p, we can infer p and
then proceed to infer r, that is, what we can infer from p. Prior’s mistake
was to give a rule

q q
p

 tonk 

p q
p
r

r
 tonk 

tonk-E

( )

p
p qtonk

tonk-I

Analysis 64.2, April 2004, pp. 113–19. © Stephen Read

Stephen Read: “Identity and Harmony” Analysis 2004

(Replacing the F with C in π yields a proof from the same premises.)
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Defining Identity

a = b C(a)
[=E]

C(b)

[Fa]
··· π

Fb
[=I]

a = b

(F not in the other premises of π)

To normalise:

[Fa]
··· π

Fb
[=I]

a = b C(a)
[=E]

C(b)

=⇒
C(a)
··· π[Fx7→Cx]

C(b)

(Replacing the F with C in π yields a proof from the same premises.)
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We have variables — why not quantify?

(∀X)A(X)
[∀2E]

A(C)

A(F)
[∀2I]

(∀X)A(X)
(F not in the premises of the proof of A)

X is a bound predicate variable of the same arity as the variable F and context C.
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Example

(∀X)(Xb ⊃ Xa)
[∀2E]

b = b ⊃ a = b

[Fb]1

[=I1]
b = b

[⊃E]
a = b [Fa]2

[=E]
Fb

[⊃I2]
Fa ⊃ Fb

[∀2I]
(∀X)(Xa ⊃ Xb)

(In the [∀2E] step, Xy is instantiated to y = b.)

This is second order logic. In multiple conclusion consequence, it’s classical
second order logic.
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Existence and Uniqueness

We have existence and uniqueness in the usual way.

I For existence, we appeal to the usual cut-elimination or normalisation
proof. (In the case of second-order logic, these results are more
difficult, but they still hold.)

I For uniqueness (relative to a single analysis of statements, again), we
reason as follows:

(UX)A(X)
[U2E]

A(F)
[∀2I]

(∀X)A(X)

(∀X)A(X)
[∀2E]

A(F)
[U2I]

(UX)A(X)

By Belnap’s criteria (in this context of deducibility) second order
quantification is properly logical.
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Ontological Innocence

None of this requires appealing to sets
as semantic values for predicate variables.
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Incompleteness

If the axiom of choice is true, then in every (standard) model of
second-order logic, it holds:

(∀X)((∀x)(∃y)Xxy ⊃ (∃f)(∀x)Xxf(x))

(We can define function quantification in terms of predicate quantification
or give separate rules, if you prefer.)

However, it has no proof

, so far, at least.

Take a model of zf without choice, and define a model for second order quantification

“internally” in that model. This is closed under each of our inference rules, but choice fails.
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mathematics



Proving Choice

I option 1: ε (a choice quantifier – indefinite description.)
I option 2: Assume the existence of a well ordering.

Both are problematic.
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ε — choice

With ε, we can derive choice:

(∀X)((∀x)(∃y)Xxy ⊃ (∀x)Xx((εy)Xxy))

But how do we define ε? We want rules like these:

F(a)
[εI]

F(εxFx) F(εxFx)

[Fc]
··· π

C
[εE]

C

(c occurs in no other premise in π.)

These rules don’t define ε uniquely.

Given a model with two different choice functions f and f ′ for every nonempty extension,

the indefinite descriptions ε and ε ′ would both satisfy these rules, yet be inequivalent.
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Ordering

One could define εxFx as the first object satisfying F.

Provided, of course, that you had a well-ordering lying around to help get
things in line.

If you were prepared to treat such an ordering (6) as a part of the context
of deducibility, you can define ε uniquely (relative to 6), and prove choice.

But who has an ordering lying around?

Why not treat choice as a statement in logical vocabulary which, if true, is
true on non-logical grounds?

Like (∃x)(∃y)x 6= y.
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modality



Modal Operators

� and ♦ seem semi-logical.

In a Kripke model, � and ♦, depend on an accessibility relation, and a
model can have more than one.

You might think that we would have severe troubles with uniqueness.
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How not to do it

Γ,A ` ∆
[�L]

Γ,�A ` ∆

Γ ` A,∆
[�R]

Γ ` �A,∆
(Γ and ∆ are modalised)

These describe, but do not define.

We don’t have uniqueness.
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How to do it

We need more structure.

In terms of assertion and denial, can see that an assertion of A doesn’t
always clash with a denial of A.

Water is h2o .

Now suppose we’re actually in a twin-earth situation. Then, water is not h2o .
It’s xyz.

We’re not contradicting ourselves here.

I’ve used this stratification to give a proof theory for the modal logic s5.
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Sequent Rules

X,A ` Y | ∆
[�L]

�A ` | X ` Y | ∆

` A | ∆
[�R]

` �A | ∆
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Example

To each modal proofnet we may
associate a sequent derivation.

A ` A
L¬

A,¬A `
L�

A ` | �¬A `
R¬

A ` | ` ¬�¬A
R�

A ` | ` �¬�¬A
merge

A ` �¬�¬A

¬I

�E

¬I

�I

A

¬A

�¬A

¬�¬A

�¬�¬A

Modality 45 of 49



Existence and Uniqueness

I existence: a straightforward cut-elimination.

I uniqueness: if both � and � ′ track the one zone shift, we have
uniqueness.

A ` A
[� ′L]

� ′A ` | ` A
[�R]

� ′A ` | ` �A
[merge]

� ′A ` �A

A ` A
[�L]

�A ` | ` A
[� ′R]

�A ` | ` � ′A
[merge]

�A ` �A ′
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And more . . .

I Actuality: @A is asserting A in the actual zone.

I 2d Modal logic: Two kinds of zone shift.
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Why this works

We have paid attention to the context of deducibility.

(In this case, how assertion/denial is stratified.)

We have explained the use of necessity talk without appealing to
possible worlds.
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that’s all, folks!
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