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A compelling idea ...
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Gerhard Gentzen: “Untersuchungen uber das logische Schliessen” Math. Zeitschrift 1934

4 of 49



Inference rules define connectives

A B ANB ANB
S [AEq]

[AE;]
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That’s all there is to conjunction.

You don’t need to give truth conditions,
satisfaction conditions
or any other sort of ‘semantics.’
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Inference rules define connectives

A B ANB ANB
_— [AEq]

[AE;]

That’s all there is to conjunction.

You don’t need to give truth conditions,
satisfaction conditions
or any other sort of ‘semantics.’

These rules tie meaning to use.

Scene Setting 50f 49



But ... does it work?
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But ... does it work?

38 ANALYSIS

THE RUNABOUT INFERENCE-TICKET
By A.N. Priog

T is sometimes alleged that there are inferences whose validity arises

solely from the meanings of cerain expressions occurring in them.
‘The precise technicalities employed are not important, but let us say
that such inferences, if any such there be, are analytically valid.

One sort of inference which is sometimes said to be in this sense
analytically valid is the passage from 2 conjunction to either of its con-
juncts, e.g., the inference * Grass is green and the sky is blue, therefore
grass i green *. The validity of this inference is said to arise solely from.
the meaning of the word ‘and”. For if we ase asked what s the meanin
of the wor *and, st It i the porely coojnctive sce (s cpposc
0, e, ts colloquial use to mean *and then "), the answer is sid to be
completly given by saying that (i) from any pair of statements P and Q

statement formed by joining P to Q by *and” (which

statement we hereafter describe as *the statement P-and-Q ), that (i)
from any conjoncive saiement Panc-Q we can e P, 0 (1) fom
490.Q e can abvaysinfer Q. Angone who bas et t0 perform

more #o knowing the meaning of *and* . ‘being able to perform these
ferences.

‘A doubt might be raised as to whether it is really the case that, for
any pair of statements P and Q, there is always a statement R such that
given P and given Q we can infer R, and given R we can infer P and can
also infer Q. But on the view we are considering such a doubt s quite
misplaced, once we have introduced a word, say the word ‘and’,
preciscly in order to form a statement R with these properties from
any pai of statements P and Q. The doubt refects the old superstitious
view that an expression must have some independently determined

g beft

vahd of invalid. With analytically valid infercnces this fus i’ 50

T hope the conception of an analytically valid inference is now at
least as clear to my readers as it is to myself. If not, further illumination
s obtainable from Professor Popper’s paper on * Logic without Assump-
oms in Brasedngs of 1 Araraon Socety for 1946-7, and from
Broessor Knalds contibution. o Conenporary British. Philesoply,
Volume IIL. T have also been much helped in my understanding of the
notion by some lectures of Mr. Strawson’s and some notes of Mr.

are’s

I want now to draw attention to a point not generally noticed, namely
that in this sense of * analytically valid * any statement whatever may be
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But ... does it work?

A A tonk B
——— [tonkI] —— [tonkE]
A tonk B B
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But ... does it work?

A A tonk B
——— [tonkI] —— [tonkE]
A tonk B B

[tonkI]
p tonk g
[tonkE]
q
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But ... does it work?

It would be bad to have tonk in your language.
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But ... does it work?

130 ANALYSIS
TONK, PLONK AND PLINK!

By Nues, D. Bewsar

N. PRIOR has recently discussed? the connective /fonk, where

« tonk is defined by specifying the role it plays in inference. Prior
characterizes the ole of ok in inference by describing how it behaves
as conclusion, and as premiss: (1) A F A-fonk-B, and (2) A-tonk-B + B
(where we have used the sign * | for deducibility). We are then led by
the ransitivity of deducibilty o the vlidity of A+ B,  which promises
© b:mxh faliche Spirsfindigheit from Logic for ever.”

ossible moral to be drawn is that connectives cannot be defined

in e of deducibiity at all; that, for instance, it is illegitimate to
define and as that connective such that (1) A-ard B A, (2) A-andB + B,
and (3) A, B + A-and-B. We must first, so the moral goes, have a notion
of what and means, independently of the role it plays as premiss and as
conclusion. Truth-tables are one way of specifying this antecedent
meaning; this seems to be the moral drawn by J. T. Stevenson There
are good reasons, however, for defending the legitimacy of defining
connections in tefms of the roles they play in deductions.

B¢ e plei ha throghout the whol estre of philosophy one
can distinguish two modes of explanation: the analytic mode,
tends to explain wholes in terms of parts, and the synthetic mode, i
explains parts in terms of the wholes or contexts in which they occur.t
In logic, the analytic mode would be represented by Aistotle, who
commences with terms s the ultimate atoms, explains propositions or
judgments by means of these, syllogisms by means of the propositions
which go to make them up, and finally ends with the notion of a science

sentences, by means of truth-tables, as a function of their parts, and then
proceeds to give an account of correct inference in terms of the sentences
ounrng therein, The law dauias o the splicaion of the et
‘mode is, I suppose, Plato’s treatment of justice in the Republic, where he
defines xlve]usr man by reference to the larger context of the community.
Among formal logicians, use of the synthetic mode in logic is llustrated
by Knealeand Poppe cled by Prir), s well s by Jskowski, Genaen,
Fitch, and Curry, all of these treating the meaning of connectives as
iy by i o N R, oo Py

 Roars 21 2 e 1960

fernce oeke , Anauss 316, June 1961 . p. 12
The o st et oy o iyl ub (PRor e G e
ci W Shoud be satd and e it s in the fact
i of connecive n tems of permimive s, whercas hey showid

o o ru funcion stement i 4 méce-ang

¥ eatne this way ofloaking st the matit from . 5. brurmbaugh.

Nuel Belnap: “Tonk, Plonk and Plink” Analysis 1962
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But ... does it work?

It seems to me that the key to a solution? lies in observing that even
on the synthetic view, we are not defining our connectives @ initio, but
rather in terms of an antecedently given context of deducibility, concerning
which we have some definite notions. By that I mean that before
arriving at the problem of characterizing connectives, we have already
made some assumptions about the nature of deducibility. That this is
so can be seen immediately by observing Prior’s use of the transitivity
of deducibility in order to secure his ingenious result. But if we note
that we already Aave some assumptions about the context of deducibility
within which we are operating, it becomes apparent that by a too cateless
use of definitions, it is possible to create a situation in which we are
forced to say things inconsistent with those assumptions.

Nuel Belnap: “Tonk, Plonk and Plink” Analysis 1962
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... does it work?

(1) We consider some characterization of deducibility, which may be
treated as a formal system, i.., as a set of axioms and rules involving the
sign of deducibility, *F’, where ‘Ay, ... , A, b B is read * B is deducible
from Ay, ..., Ay’ For definiteness, we shall choose as our characteriza-
tion the structural rules of Gentzen:
Asxiom. A+ A
Rules.  Weakening:  from Ay, .
Permutation:  £0m Ay, <co, Ay Avyry oo Ay
Aty ooy Auots Ay ooy Ay FB.
from Ay, ..., A,, A, FBtoinfer A, ..., A, FB
WA, FBandC,, ..y Gy B'HD
0 infer Ay, ey Apy Cay oery Gy F D.

<Ay FCroinfer Ay, .., A,BFC
infer

Contractic
Transitivt

In accordance with the opinions of experts (or even perhaps on more
substantial grounds) we may take this little system as expressing all and
only the universally valid statements and rules expressible in the given
notation: it completely determines the context.

(2) We may consider the proposed definition of some connective, say
plonk, as an extension of the formal system characterizing deducibility,
‘and an extension in two senses. (a) The notion of sentence is extended by
introducing A-plonkB as a sentence, whenever A and B are sentences.
(b) We add some axioms or rules governing A-plonk-B as occurring as
one of the premisses or as conclusion of a deducibility-statement. These
axioms or rules constitute our definition of plonk in terms of the role it
plays in inference.

(3) We may now state the demand for the consistency of the definition
of the new connective, plonk, as follows: the extension must be con-
servative'; i.., although the extension may well have new deducibility-
statements, these new statements will all involve plonk. The extension
will not have any new deducibility-statements which do not involve
plonk itself. It will not lead to any deducibility-statement Ay, ..., A, kB
ot containing plonk, unless that statement is already provable in the
absence of the plonk-axioms and plonk-rules. 'The justification for unpack-
ing the demand for consistency in terms of conservativeness s precisely
our antecedent assumption that we alrcady had a/ the universally valid
deducibility-statements not involving any special connectives.

Nuel Belnap: “Tonk, Plonk and Plink” Analysis 1962
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Existence and Uniqueness

» “Ex1isTENCE”: Good rules conservatively extend your prior
commitments concerning consequence.
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» “Ex1isTENCE”: Good rules conservatively extend your prior
commitments concerning consequence.

» A subtlety: you could, of course revise your account of consequence in
the original vocabulary. That's ok for Nuel.

Scene Setting 7 of 49



Existence and Uniqueness

» “Ex1isTENCE”: Good rules conservatively extend your prior
commitments concerning consequence.
» A subtlety: you could, of course revise your account of consequence in
the original vocabulary. That's ok for Nuel.
» EXAMPLE: Peirce’s Law, after adding Boolean negation to the rules for the
material conditional.
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Existence and Uniqueness

» “Ex1isTENCE”: Good rules conservatively extend your prior
commitments concerning consequence.
» A subtlety: you could, of course revise your account of consequence in
the original vocabulary. That's ok for Nuel.
» EXAMPLE: Peirce’s Law, after adding Boolean negation to the rules for the
material conditional.
» “UNIQUENESS”: The proposed rules should fix the concept if they are to
be definitions.
» If you add *; and *; using identical rules, then they should be
equivalent.

How far can we go, keeping existence and uniqueness?

Scene Setting 7 of 49
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Non-Conservative Extension

A tonk connective doesn’t pass the ‘existence’ test
for most accounts of logical consequence.
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Non-Conservative Extension

However it’s a bit complicated ...

Journal of Philosophical Logic (2005) 34: 217-226 © Springer 2005
DO 10.1007/510992-004-7805-x

ROY T. COOK

WHAT’S WRONG WITH TONK(?)

1. TONK AND LoGIC

In “The Runabout Inference Ticket” A. N. Prior (1960) examines the idea
that logical connectives can be given a meaning solely in virtue of the stip-
ulation of a set of rules governing them, and thus that logical truth/conse-
quence can be explicated in terms of the meanings (so understood) of
the logical connectives involved. He proposes a counterexample to such a
view, his notorious binary connective tonk (which I will symbolize as ®),
whose meaning is given by the following introduction and elimination
rules:

Journal of Philosophical Logic (2006) 35: 653-660
DOL: 10.1007/510992-006-9025-z

© Springer 2006

HEINRICH WANSING

CONNECTIVES STRANGER THAN TONK

Received on 30 September 2005

ABSTRACT. Many logical systems are such that the addition of Prior’s binary
connective tonk to them leads to triviality, see [1, 8]. Since tonk is given by
some introduction and elimination rules in natural deduction or sequent rules in
Gentzen’s sequent calculus, the unwanted effects of adding tonk show that
some kind of restriction has to be imposed on the acceptable operational
inferences rules, in particular if these rules are regarded as definitions of the
operations concerned. In this paper, a number of simple observations is made
showing that the unwanted phenomenon exemplified by tonk in some logics
also occurs in contexts in which tonk is acceptable. In fact, in any non-trivial
context, the acceptance of arbitrary introduction rules for logical operations
permits operations leading to triviality. Connectives that in all non-trivial
contexts lead to triviality will be called non-trivially trivializing connectives.
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Non-Conservative Extension

A tonk connective doesn't pass the ‘existence’ test
for most accounts of logical consequence.

The traditional connectives fare somewhat better.

Propositional Logic 9 of 49
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But not quite as well as you might think . ..

Suppose that in the vocabulary p, q, ... the only proofs are identities.

A [Id]
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B ANB AAB

A [Id] [AE]

[AE]
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But not quite as well as you might think ...

Suppose that in the vocabulary p, g, ... the only proofs are identities. Now
add Gentzen'’s conjunction.

B ANB AAB

A [Id] . [AI] [AE]

[AE]

Now we have a proof from p and q to p.

P q

pPAQ
— [AE]

P

[AI]
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But not quite as well as you might think ...

Suppose that in the vocabulary p, g, ... the only proofs are identities. Now
add Gentzen'’s conjunction.

B ANB AAB

A [Id] . [AI] [AE]

[AE]

Now we have a proof from p and q to p.

P q

pPAQ
— [AE]

P

[AI]

We didn’t have one before. The addition is non-conservative.

Propositional Logic 10 of 49



Why people haven’t noticed this,
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» We have a proof whose premises are among p, q, and whose
conclusion is p — just not a proof with those premises exactly.
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Why people haven't noticed this, and what we can do to fix it

» We have a proof whose premises are among p, q, and whose
conclusion is p — just not a proof with those premises exactly.

» Most people think that the argument from p, ¢ to p is valid, despite
not having a (normal) proof with those premises and that conclusion.

)
» Accept primitive weakening proofs, like this: — [K]
P
» Reject weakening as invalid, and hence reject [AI] or [AE].

» Put up with the mismatch between validity (the argument from p, g
to p is valid) and proofs (there is no proof from p, g to p) in the basic
language.

Propositional Logic 1 of 49



The Context of Deducibility — among atomic propositions

This means paying attention to the context of deducibility.
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The Context of Deducibility — among atomic propositions

This means paying attention to the context of deducibility.

Let’s look at some of the assumptions we’ve been making.
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Choice of proof structure

PA(qVr) pPA(qVrT)
——[Af] —— [NE]

p [al p 7]

— N[ — N
pA(gVrT) P4 pPAT
——[AF] - VI - VI

qVvr PAd VAT PAd VAT
[VE]
PAQ)VI(pAT)

Gentzen proofs have premises and a conclusion .
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Choice of proof structure

PA(qVT) PA(qgVT)
——[Af] — [AF]
P [q] P (1]
— A — A
PA(qVT) pAdq pPAT
—  IAE] - V] - V]
qVvr PAd)VI(pPAT) PAd)VI(pPAT)

(PAQ)VI(PAT)

Gentzen proofs have premises and a conclusion .
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Choice of proof structure

1 (1) pAQVr) A
1 (2) p 1,N\E
1 (3) qVr 1,N\E
4 @4 d A
5 () v A
1,4 (6) pPAgq 2,4,N\I
14 (7)) (PAAQVpAT) 6V
5 (8 pATr 2,5l
1,5 (9 [mAAVIPAT) 8VI

1 (10) (pPAQG)V(PAT)  3,4579VE

So do Lemmon proofs.
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Choice of proof structure

1 pA(qVr) A

2 i) 1,A\E
3 qVr 1,\E
4 q A

5 7 Nq 2,5,
6 (PAQV (AT 5VI
7 T A

8 i) AT 2,7,AI
9 PAQV (PAT) 8,VI

10 PAQ)V(pAr) 3,4-6,7-9,VE
And so do Fitch proofs.

Propositional Logic 15 of 49



Sequents and proof structure

These proofs match sequents with premises and a conclusion
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Sequents and proof structure

These proofs match sequents with premises and a conclusion

Ar,...,An - B
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Sequents and proof structure

These proofs match sequents with premises and a conclusion
Ar,...,An - B

The natural rules for the conditional in this context are incomplete for
classical logic.

X,AFB XA Y,BF C
— [DR] [DL]
XFADB X,YA>BFC
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Sequents and proof structure

These proofs match sequents with premises and a conclusion
Ar,...,An F By,..., B

The natural rules for the conditional in this context are incomplete for
classical logic.

X,AFB,Y XFAW  Y,BFZ
— [DR] [DL]
XFADB,Y X,Y,ADBFZ W

But if we allow conclusions, the rules become complete for classical logic.
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Sequents and proof structure

These proofs match sequents with premises and a conclusion
Ar,...,An F By,..., B

The natural rules for the conditional in this context are incomplete for
classical logic.

X,AFB,Y XFAW  Y,BFZ
— [DR] [DL]
XFADB,Y X,Y,ADBFZ W

But if we allow conclusions, the rules become complete for classical logic.

Are there any proofs that look like that?

Propositional Logic 16 of 49



Well, yes

A
Proofs with restart do. —— [restart]
B

pl T [VR]
. -
T)[VI] pEPV(pDa) K]
)
Tu[r@st‘art] pFpPVI(pDad)dg
[>R]
[oI'] FpV({(PDd),pDdq
PDOq [VR]
—\/( )[VI] FpV((pDaq),pV(pDa) W]
pVipDq
FpVipDaq)

Propositional Logic 17 of 49



Well, yes

And so do circuits.

AFA AFA
A —A + B,—B
ﬁ(A/\B)m AAB AV B FA—~AV-B +B,—AV-B

FAAB,—~AV—B,~AV—B

~(AAB)F—-AV-B,~AV B

~(AAB)F—-AV-B

Propositional Logic 17 of 49



How do we Choose?

Different contexts of deducibility motivate different logics.

» No weakening? Relevant logic.

Propositional Logic 18 of 49



How do we Choose?

Different contexts of deducibility motivate different logics.
» No weakening? Relevant logic.

» Two uses differs from one? linear or other contraction-free logics.

Propositional Logic 18 of 49



How do we Choose?

Different contexts of deducibility motivate different logics.
» No weakening? Relevant logic.
» Two uses differs from one? linear or other contraction-free logics.

» Single conclusions? Intuitionistic logic.

Propositional Logic 18 of 49



How do we Choose?

Different contexts of deducibility motivate different logics.

» No weakening? Relevant logic.

» Two uses differs from one? linear or other contraction-free logics.
» Single conclusions? Intuitionistic logic.
>

Multiple conclusions? Classical logic.

Propositional Logic 18 of 49



How do we Choose?

Different contexts of deducibility motivate different logics.

» No weakening? Relevant logic.

» Two uses differs from one? linear or other contraction-free logics.
» Single conclusions? Intuitionistic logic.
>

Multiple conclusions? Classical logic.

So how do we pick?

Propositional Logic 18 of 49



How do we Choose?

Different contexts of deducibility motivate different logics.

» No weakening? Relevant logic.

» Two uses differs from one? linear or other contraction-free logics.
» Single conclusions? Intuitionistic logic.
>

Multiple conclusions? Classical logic.

So how do we pick?

It depends, of course, on what a proof is for.

Propositional Logic 18 of 49



I've been through this before

Multiple Conclusions
Greg Restall*

Philosophy Department, The University of Melbourne
restallGunimelb. edu.au

Abstract. T argue for the following four theses. (1) Denial is not to be analysed as
the assertion of a negation. (2) Given the concepts of assertion and denial, we have the
resources to analyse logical co Jating arguments with multiple premiscs and
paltiple conclusions. Gentzen, Gerhard's multiple coneluson caleulus can be understood
3) If a broadly anti-realist
or inferentiolist justiication of & logical system works, it works just, os well for classical
logic as it does for infuitionistic logic. The special case for an anti-realist justification of
intuitionistic logic over and above a justification of classical logic relies on an unjustified
assumption about the shape of proofs. Finally, (4) this picture of logical consequence pro-
vides a relatively neutral shared vocabulary which can help us und erstand and adjudicate
debates between proponents of classical and non-classical logics,

cquence as rel

ina st motivated, non-q wa

mps, Oviedo, 2003
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I've been through this before

Multiple Conclusions
Greg Restall*

Philosophy Department, The University of Melbourne
restall@unimelb.cdu.au

Abstract. T argue for the following four theses. (1) Denial is not to be analysed as

the assertion of a negation. (2) Given the concepts of assertion and denial, we have the
resources to analyse logical conscquence as relating arguments with mulfiple pr nd
multiple conclusions. Gentzen, Gerhard’s multiple conclusion caleulus can be understood
in a st motivated, b way. (3) If a broadly anti-realist

or inferentialist justification of a logical system works, it works just as well for classical
logic as it does for infuitionistic logic. The special case for an anti-realist justification of
intuitionistic logic over and above a justification of classical logic relies on an unjustified
assumption about the shape of proofs. Finally, (4) this picture of logical consequence pro-
vides a relatively neutral shared vocabulary which can help us und erstand and adjudicate
debate proponents of classical and non-classical logics.

betw

mps, Oviedo, 2003

> A proof from X to A rules out the (assertion of the Xs and denial of A).
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I've been through this before . ..

Multiple Conclusions

Greg Restall*

Philosophy Department, The University of Melbourne
restall@unimelb. edu. au

Abstract. T argue for the following four theses. (1) Denial i not t0 be analysed as
pts of assertion and denial,

© as rela
multiple conclusions, G hard’s multiple conclusion calculus can be ur od
in a st motivated, b way. (3) If a broadly anti-realist
or inferentialist Justification of & logical system works, i works just as well for classical
logic as it does for infuitionistic logic. The
intuitionistic logic over and above a justifica
assumption about the shape of proofs. Finally,
vides a relatively neutral shared vocabulary which
debates between proponents of classical and non-classical logics,

ealist justification of
lies on an unjustified
ical consequence pro-
p us und erstand and adjudicate

mps, Oviedo, 2003

> A proof from X to A rules out the (assertion of the Xs and denial of A).

» This works just as well with multiple conclusions: a proof from X to Y rules
out the (assertion of the Xs and denial of the Ys).
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I've been through this before . ..

Multiple Conclusions
Greg Restall*

Philosophy Department, The University of Melbourne
restall@unimelb.cdu.au

Abstract. T argue for the following four theses. (1) Denial i ot t0 be analys
pts of assertion and denial,

& arguments with mulfiple p
multiple conclusions, Gent ard’s multple conelusion caleulus can be ur
in a st motivated, b way. (3) If a broadly et
or inferentialist Justification of & logical system works, i works just as well for classical
logic as it does for infuitionistic logic. The ealist justification of
intuitionistic logic over and above a justifica lies on an unjustified
assumption about the shape of proofs. Finally, ical consequence pro-
vides a relatively neutral shared vocabulary which can help us und erstand and adjudicate
debates between proponents of classical and non-classical logics,

mps, Oviedo, 2003

> A proof from X to A rules out the (assertion of the Xs and denial of A).

» This works just as well with multiple conclusions: a proof from X to Y rules
out the (assertion of the Xs and denial of the Ys).

> Proofs provide normative statuses of combinations of assertions and denials.

Propositional Logic 19 of 49



Of course, there are others

Logical
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Of course, there are others

—

» Proofs as functions converting warrants for
premises into warrant for a conclusion?
Intuitionistic logic.

P | Proofs keeping track of use? Relevant logic.

» Different contexts of deducibility track
different normative statuses. There is no need

I ——— o to choose one as the WHOLE STORY.

Logical
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Belnap provides us with two criteria to evaluate our rules:
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— This can be supplied by a cut-elimination or normalisation theorem.
— We have this for classical propositional logic (and circuits or proofs with restart,
and many other systems).

» UNIQUENESS: do they define, or merely describe?
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Once you have a context of deducibility ...

Belnap provides us with two criteria to evaluate our rules:

» CONSERVATIVENESS: don’t add new inferences to the old vocabulary.

— This can be supplied by a cut-elimination or normalisation theorem.
— We have this for classical propositional logic (and circuits or proofs with restart,
and many other systems).

» UNIQUENESS: do they define, or merely describe?

— This is supplied by a simple argument for each rule:

Propositional Logic 21 of 49



Once you have a context of deducibility ...

Suppose we have two conjunctions A and &, both satisfying the usual rules.
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Once you have a context of deducibility ...

Suppose we have two conjunctions A and &, both satisfying the usual rules.

We have the following proofs

A& B A&B ANB ANB
[&E] [&E] [AE]

[AE]

— [N —_— &I
ANB - A&B .

So A is interchangeable with & as a premise or a conclusion in any
argument. They are equivalent.
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Classical Logic

&—IS:F—'@’%{ F—)Q’SB,
r-0,A&B
B, -6
a0 2=,
AN&B, - 6O N&B, T >0
AT -6 B, I - O
-IA: s
v AvB, T > 06
F—+@,91 F_’@a%
v-IS: ,
r-0,Avs r-0,Avy

Gentzen'’s rules for classical propositional connectives satisfy existence and
uniqueness in this context of deducibility.
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Quantifier Rules

(Vx)A(x) A(c)
[VE]
Alt) (¥x)A(x)

These rules seem straightforward,
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These rules seem straightforward, but things are subtle.

They depend on an analysis of formulas, identifying constituents as terms,
and defining the appropriate notion of substitution.
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Quantifier Rules

(Vx)A(x) Alc)
E— [VE] (for any term t) E— [VI] (for any constant ¢ not in the premises)

Alt) (Vx)A(x)
These rules seem straightforward, but things are subtle.

They depend on an analysis of formulas, identifying constituents as terms,
and defining the appropriate notion of substitution.

Remember: multi-sorted predicate logic.
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Existence (conservative extension)

The usual cut-elimination or normalisation process an show that proofs
with the universal quantifier conservatively extend proofs without it.
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Existence (conservative extension)

The usual cut-elimination or normalisation process an show that proofs
with the universal quantifier conservatively extend proofs without it.

X
. X
Ale) v =Tt
(Vx)A(x) Alt)
—— [VE
A(t)

The result 7§ is a proof from the same premises since
» The constant ¢ does not appear in X, premises of 7.

» Any rule is closed under the substitution of terms for constants.
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Unique Definition (equivalence)?

We need to do more to prove uniqueness of the universal quantifier.
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Unique Definition (equivalence)?

We need to do more to prove uniqueness of the universal quantifier.

But uniqueness can fail.

We can have two disjoint categories of terms, two sets of quantifiers —
two-sorted first-order logic.
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Uniqueness, relative to an analysis

However, if the two quantifiers are defined using the same class of terms,
and the same notion of substitution, then uniqueness follows:
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be substituted using the other.
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Uniqueness, relative to an analysis

However, if the two quantifiers are defined using the same class of terms,
and the same notion of substitution, then uniqueness follows:

(Ux)A(x) (Vx)A(x)
— [UE] — [VE]
A(c) Alc)
— [V]] — [U]]
(¥x)A(x) (Ux)A(x)

These proofs work only when a term substituted using one quantifier may
be substituted using the other.

This analysis of the vocabulary is part of the context of deducibility.

Quantification 27 of 49



As for names, so for predicates?

Normalisation for the universal quantifier appealed to a closure property
concerning the constant c.
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As for names, so for predicates?

Normalisation for the universal quantifier appealed to a closure property
concerning the constant c.

X
o X
Alc) I e
(Wx)A(x) Alt)
[VE]
A(t)

In any inference ¢ be everywhere replaced by t.
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As for names, so for predicates?

Normalisation for the universal quantifier appealed to a closure property
concerning the constant c.

X
o X
Alc) I e
(Wx)A(x) Alt)
[VE]
A(t)

In any inference ¢ be everywhere replaced by t.

Do predicates satisfy this condition?
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Predicate ‘variables’?

In the rules for first-order logic, no predicates (except for identity) are
singled out for special treatment.
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» Rules to be closed under substitution of predicates.
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Predicate ‘variables’?

In the rules for first-order logic, no predicates (except for identity) are
singled out for special treatment.

In the general case we want either:
» Rules to be closed under substitution of predicates.

» A special class of predicates (predicate ‘variables’) that satisfy this
closure condition.

Quantification 29 of 49



Defining Identity

Identity and harmony

STEPHEN READ

1. Harmony
The inferentialist account of logic says that the meaning of a logical oper-
ator is given by the rules for its application. Prior (1960-61) showed that
mple and straightforward interpretation of this account of logicality

a
reduces to absurdity. For if ‘tonk’ has the meaning given by the rules
Prior proposed for it, contradiction follows. Accordingly, a more subtle
interpretation of inferentialism is needed. Such a proposal was put forward
initially by Gentzen (1934) and elaborated by, e.., Prawitz (1977),

for drawing inferences from such assertions; these are its climination
rules
The introductions represent, as it wer
concerned, and the eliminations are no more, in the final analysis, than

. the ‘definitions’ of the symbols

the consequence of these definitions. (Gentzen 1934: 80)
For example, if the only ground for assertion of p tonk g is given by Prior’s
rule

»

———tonkl

tonkq
then Prior mis-stated the climination-rule. It should read

»

pronkd v
thati, given p tonk q', and a derivation of  from p (the ground for asscrt-
ing; 9 tonk ), we can infer 1, discharging the assumption p. We can statc
the rule more simply as follows:

qronkg
»

For if we may infer whatever, r, we can infer from p, we can infer p and

then proceed to infer r, that is, what we can infer from p. Prior’s mistake

was to give a rule

Asatvsis 6.2, Al 2004, 113-19, © Ssphen Resd

Stephen Read: “Identity and Harmony” Analysis 2004
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Defining Identity

[Fal
a=b C(a) T
——  [=E] : (F not in the other premises of 7)
C(b) Fb
[=I]
a=>
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Defining Identity

[Fa]
a=b C(a) L
——— [=E : F not in the oth ises of
Clb) [=E] b (F not in the other premises of )
(=11
a=b
To normalise:
[Fa]
ST
Fb
[=I]
a=b Cl(a)
[=E]
C(b)
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Defining Identity

[Fal
a=b C(a) L
————[=E : F not in the oth i f
Clb) [=E] b (F not in the other premises of )
[=1]
a=>
To normalise:
[Fal
T C(a)
o [=]] = " T Fx—Cx]
a=b Cla) C(b)
[=E]
C(b)

Quantification 30 of 49



Defining Identity

[Fal
a=b C(a) L
————[=E : F not in the oth i f
Clb) [=E] b (F not in the other premises of )
[=1]
a=>
To normalise:
[Fal
T C(a)
o [=]] = " T Fx—Cx]
a=b Cla) C(b)
[=E]
C(b)

(Replacing the F with C in 7t yields a proof from the same premises.)
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We have variables — why not quantify?

(VX)A(X) A(F)
[V2E] ——— [V?I] (Fnot in the premises of the proof of A)
(VX)A(X)

X is a bound predicate variable of the same arity as the variable F and context C.
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(VX)(Xb D Xa) [Fb]'
— [V?E] [=I']
b=b>a=b b=">b

[DE]

a=Db [Fa]?
[=E]
Fb
[>F7]
Fa O Fb
[v2I]

(VX)(Xa D Xb)

(In the [V2E] step, Xy is instantiated toy = b.)
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(VX)(Xb D Xa) [Fb]'
— [V?E] [=I']
b=b>a=b b=">b

[DE]

a=>b [Fa]?
[=E]
Fb
[>F7]
Fa O Fb
[v2I]

(VX)(Xa D Xb)

(In the [V2E] step, Xy is instantiated toy = b.)

This is second order logic. In multiple conclusion consequence, it’s classical
second order logic.
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Existence and Uniqueness

We have existence and uniqueness in the usual way.
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» For existence, we appeal to the usual cut-elimination or normalisation
proof. (In the case of second-order logic, these results are more

difficult, but they still hold.)
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» TFor uniqueness (relative to a single analysis of statements, again), we
reason as follows:
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difficult, but they still hold.)

» TFor uniqueness (relative to a single analysis of statements, again), we
reason as follows:
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Existence and Uniqueness

We have existence and uniqueness in the usual way.

» For existence, we appeal to the usual cut-elimination or normalisation
proof. (In the case of second-order logic, these results are more

difficult, but they still hold.)

» TFor uniqueness (relative to a single analysis of statements, again), we
reason as follows:

(UX)A(X) (VX)A(X)
— [WF  ———— V]
A(F) A(F)
— 7] —ug
(VX)A(X) (UX)A(X)

By Belnap’s criteria (in this context of deducibility) second order
quantification is properly logical.

Quantification 33 of 49



Ontological Innocence

None of this requires appealing to sets
as semantic values for predicate variables.
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Incompleteness

If the axiom of choice is true, then in every (standard) model of
second-order logic, it holds:

(WVX)((¥x)(Fy)Xxy D (3f) (¥x)Xxf(x))

(We can define function quantification in terms of predicate quantification
or give separate rules, if you prefer.)
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Incompleteness

If the axiom of choice is true, then in every (standard) model of
second-order logic, it holds:

(WVX)((¥x)(Fy)Xxy D (3f) (¥x)Xxf(x))

(We can define function quantification in terms of predicate quantification
or give separate rules, if you prefer.)

However, it has no proof, so far, at least.

Take a model of zr without choice, and define a model for second order quantification

“internally” in that model. This is closed under each of our inference rules, but choice fails.
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Proving Choice
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Proving Choice

» OPTION 1: € (a choice quantifier — indefinite description.)

» OPTION 2: Assume the existence of a well ordering.

Both are problematic.
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With e, we can derive choice:

(VX)((Vx) (Fy)Xxy O (vx)Xx((ey)Xxy))
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(YX) (") (Fy)Xxy D (¥x)Xx((ey)Xxy))

But how do we define €?
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With e, we can derive choice:
(VX)((vx)(Fy)Xxy D (Vx)Xx((ey)Xxy))
But how do we define €? We want rules like these:

[Fc]
F(a) ; T
FexFx) [el] F(exFx) C

(c occurs in no other premise in 7t.)

[eE]
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With e, we can derive choice:
(VX)((vx)(Fy)Xxy D (Vx)Xx((ey)Xxy))
But how do we define €? We want rules like these:

[Fc]

F(a) ; T
FexFx) [el] F(exFx)

C (c occurs in no other premise in 7t.)

[eE]

These rules don’t define € uniquely.

Given a model with two different choice functions f and f’ for every nonempty extension,

the indefinite descriptions € and €’ would both satisfy these rules, yet be inequivalent.
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One could define exFx as the first object satisfying F.

Provided, of course, that you had a well-ordering lying around to help get
things in line.
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of deducibility, you can define € uniquely (relative to <), and prove choice.
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One could define exFx as the first object satisfying F.

Provided, of course, that you had a well-ordering lying around to help get
things in line.

If you were prepared to treat such an ordering (<) as a part of the context
of deducibility, you can define € uniquely (relative to <), and prove choice.

But who has an ordering lying around?

Why not treat choice as a statement in logical vocabulary which, if true, is
true on non-logical grounds?

Like (3x)(3y)x #v.

Mathematics 39 of 49
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Modal Operators

O and ¢ seem semi-logical.
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Modal Operators

O and ¢ seem semi-logical.

In a Kripke model, O and ¢, depend on an accessibility relation, and a
model can have more than one.

You might think that we would have severe troubles with uniqueness.
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How not to do it

NAEFA '-AA
[OL] —— [OR] (T and A are modalised)

NOAFA r'-0A,A
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How not to do it

NAEFA '-AA
[OL] —— [OR] (T and A are modalised)

NOAFA r'-0A,A

These describe, but do not define.

We don’t have uniqueness.
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How to do it

We need more structure.
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Water is Hy0 .

Now suppose we're actually in a twin-earth situation. Then, water is not H0 .
It's xvz.
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Now suppose we're actually in a twin-earth situation. Then, water is not H0 .
It's xvz.

We're not contradicting ourselves here.
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How to do it

We need more structure.

In terms of assertion and denial, can see that an assertion of A doesn’t
always clash with a denial of A.

Water is Hy0 .

Now suppose we're actually in a twin-earth situation. Then, water is not H0 .
It's xvz.

We're not contradicting ourselves here.

I've used this stratification to give a proof theory for the modal logic s5.
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Sequent Rules

X,ARY | A FAA
[OL] — [OR]
OAF| XEFY | A FOA | A
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To each modal proofnet we may

>
le——

associate a sequent derivation. @

AFA s
TAE” @

A, A F
‘— Ld O-A
AF | O-AF

ATIEAT ©

AF | F-O-A —O-A

RO

AF | FO-O-A
merge
A+ O-0-A 0-0-A
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Existence and Uniqueness

> EXISTENCE: a straightforward cut-elimination.
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Existence and Uniqueness

> EXISTENCE: a straightforward cut-elimination.

» UNIQUENESS: if both 0 and O’ track the one zone shift, we have
uniqueness.
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Existence and Uniqueness

> EXISTENCE: a straightforward cut-elimination.

» UNIQUENESS: if both 0 and O’ track the one zone shift, we have

uniqueness.
AFA AFA
— o1 — o]
OAF | FA OAF | FA
—— [OR] —— [O'R]
OAr | FOA OAF | FOA
————— [merge] —————— [merge]
OAFDOA OA - DOA’
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» Actuality: @A is asserting A in the actual zone.
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» Actuality: @A is asserting A in the actual zone.

» 2D Modal logic: Two kinds of zone shift.
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Why this works

We have paid attention to the context of deducibility.
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We have paid attention to the context of deducibility.
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Why this works

We have paid attention to the context of deducibility.
(In this case, how assertion/denial is stratified.)

We have explained the use of necessity talk without appealing to
possible worlds.
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THAT'S ALL, FOLKS!
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