Relevance logics and intuitionistic negation

CONSTRUCTIVE NEGATION

Ternary relational semantics:

(1) $a \models \neg A \text{ iff } (Rabc \& c \in S) \Rightarrow b \not\models A$

(A formula of the form) $\neg A$ is true in point *a* iff *A* is false in all points *b* such that *Rabc* for all <u>consistent</u> points *c*.

(2) $a \models \neg A \text{ iff } Rabc \Rightarrow b \nvDash A$

(A formula of the form) $\neg A$ is true in point *a* iff *A* is false in all points *b* such that *Rabc* for all points *c*.

Binary relational semantics:

(3) $a \models \neg A$ iff $(Rab \& b \in S) \Rightarrow b \nvDash A$

(A formula of the form) $\neg A$ is true in point *a* iff *A* is false in all accessible <u>consistent</u> points. (Minimal intuitionistic clause).

(4) $a \models \neg A \text{ iff } Rab \Rightarrow b \nvDash A$

(A formula of the form) $\neg A$ is true in point *a* iff *A* is false in all accessible points. (Intuitionistic clause).

D¬. ¬ $A \leftrightarrow (A \rightarrow F)$ (*F* is a propositional falsity constant)

CONCEPTS OF CONSISTENCY

Let L be a logic and *a* an L-theory (a set of formulas closed under adjunction and provable entailment):

1. *a* is <u>w-inconsistent1</u> iff $\neg B \in a, B$ being a theorem of L.

2. *a* is <u>w-inconsistent2</u> iff $B \in a$, $\neg B$ being a theorem of L.

3. *a* is <u>negation-inconsistent</u> iff $A \land \neg A \in a$, for some wff A.

4. *a* is <u>absolutely inconsistent</u> iff *a* contains every wff.

*(*a* is <u>consistent</u> iff *a* is not inconsistent).

PARADOXES

PARADOXES OF RELEVANCE:

Characteristic exemplars:

(i) $A \to (B \to A)$ (K axiom)

(ii) If $\vdash A$, then $\vdash B \rightarrow A$ (K rule)

PARADOXES OF CONSISTENCY

Characteristic exemplars:

 $(iv) \neg A \rightarrow (A \rightarrow B)$ (EFQ axioms)

 $(\mathbf{v}) A \to (\neg A \to B)$

THE BORDERLINES OF RELEVANCE LOGICS

EXAMPLES:

- Paradoxical, non-relevance logic **R-mingle** (Anderson et al.).
- Logic **KR** (R₊ plus a De Morgan negation together with the ECQ axiom) (Meyer and Routley).
- **CR** (R plus a Boolean negation), **CE** (E plus a Boolean negation) (Routley, Meyer and others).

OUR RESEARCH:

- R₊ and some of its extensions plus a constructive intuitionistic-type negation.

MINIMAL INTUITIONISTIC NEGATION / INTUITIONISTIC NEGATION

MINIMAL INTUITIONISTIC LOGIC:

J₊ plus:

- (i) $(A \to B) \to (\neg B \to \neg A)$
- (ii) $A \rightarrow \neg \neg A$
- (iii) $(A \to \neg A) \to \neg A$
- (iv) $\neg A \rightarrow (A \rightarrow \neg B)$

INTUITIONISTIC LOGIC:

J₊ plus (i)-(iii) and:

(v) $\neg A \rightarrow (A \rightarrow B)$

MINIMAL INTUITIONISTIC NEGATION:

S₊ plus (i)-(iv) (S₊ is a positive logic)

INTUITIONISTIC NEGATION:

 S_+ plus (i)-(iii) and (v) (S_+ is a positive logic)

CHARACTERISTICS OF THE LOGICS INTRODUCED

- All of them are included in minimal or in full intuitionistic logic.
- None of them is included in Lewis' modal logic S5.
- None of them is included in R-mingle.
- They are not included in KR or CR.

[(iv) $\neg A \rightarrow (A \rightarrow \neg B)$ is a theorem of B_{jm} (Routley and Meyer's B_+ plus minimal intuitionistic negation)].

- They provide an unexplored perspective on the borderlines between relevance and non-relevance logics.
- The K rule :

If $\vdash A$, then $\vdash B \rightarrow A$

and so, the K axiom :

 $A \to (B \to A)$

are not provable in any of them.

- They have paradoxes of consistency but they do not have paradoxes of relevance, in general.
- They are an interesting class of subintuitionistic logics with intuitionistic negation but without the K axiom characteristic of intuitionistic logic or the K rule characteristic of some modal logics.

THE LOGIC B_{jm}

B₊ :

Axioms: A1. $A \rightarrow A$ A2. $(A \wedge B) \rightarrow A$ / $(A \wedge B) \rightarrow B$ A3. $[(A \rightarrow B) \wedge (A \rightarrow C)] \rightarrow [A \rightarrow (B \wedge C)]$ A4. $A \rightarrow (A \vee B)$ / $B \rightarrow (A \vee B)$ A5. $[(A \rightarrow C) \wedge (B \rightarrow C)] \rightarrow [(A \vee B) \rightarrow C)]$ A6. $[A \wedge (B \vee C)] \rightarrow [(A \wedge B) \vee (A \wedge C)]$

Rules of derivation:

Modus ponens: if $\vdash A$ and $\vdash A \rightarrow B$, then $\vdash B$ *Adjunction:* if $\vdash A$ and $\vdash B$, then $\vdash A \wedge B$ *Suffixing:* if $\vdash A \rightarrow B$, then $\vdash (B \rightarrow C) \rightarrow (A \rightarrow C)$ *Prefixing:* if $\vdash B \rightarrow C$, then $\vdash (A \rightarrow B) \rightarrow (A \rightarrow C)$

B_{jm}:

We add to the sentential language of B_+ the propositional falsity constant *F* together with the definition:

 $\neg A =_{\mathrm{df}} A \to F$

 B_{jm} is axiomatized by adding to B_+ the following axioms:

A7.
$$[A \to (B \to F)] \to [B \to (A \to F)]$$

A8. $(B \to F) \to [(A \to B) \to (A \to F)]$
A9. $[A \to [A \to (B \to F)]] \to [A \to (B \to F)]$
A10. $F \to (A \to F)$

```
T1. [(A \lor B) \to F] \leftrightarrow [(A \to F) \land (B \to F)]
       \neg (A \lor B) \leftrightarrow (\neg A \land \neg B)
T2. [(A \to F) \lor (B \to F)] \to [(A \land B) \to F]
       (\neg A \lor \neg B) \to \neg (A \land B)
T3. F \rightarrow F
       \neg F
T4. A \rightarrow [(A \rightarrow F) \rightarrow F]
       A \rightarrow \neg \neg A
T5. (A \rightarrow B) \rightarrow [(B \rightarrow F) \rightarrow (A \rightarrow F)]
        (A \to B) \to \neg B \to \neg A
T6. B \rightarrow [[A \rightarrow (B \rightarrow F)] \rightarrow (A \rightarrow F)]
        B \rightarrow [(A \rightarrow \neg B) \rightarrow \neg A]
T7. A \rightarrow [[A \rightarrow (B \rightarrow F)] \rightarrow (B \rightarrow F)]
       A \to [(A \to \neg B) \to \neg B]
T8. (A \to F) \to [A \to (B \to F)]
       \neg A \rightarrow (A \rightarrow \neg B)
T9. A \rightarrow [(A \rightarrow F) \rightarrow (B \rightarrow F)]
       A \rightarrow (\neg A \rightarrow \neg B)
T10. A \rightarrow (F \rightarrow F)
        A \rightarrow \neg F
T11. (B \rightarrow F) \rightarrow [A \rightarrow (B \rightarrow F)]
         \neg B \rightarrow (A \rightarrow \neg B)
T12. B \rightarrow [(A \rightarrow F) \rightarrow (A \rightarrow F)]
         B \rightarrow (\neg A \rightarrow \neg A)
T13. [A \rightarrow (A \rightarrow F)] \rightarrow (A \rightarrow F)
        (A \rightarrow \neg A) \rightarrow \neg A
T14. [A \rightarrow (B \rightarrow F)] \rightarrow [(A \rightarrow B) \rightarrow (A \rightarrow F)]
         (A \to \neg B) \to [(A \to B) \to \neg A]
T15. (A \rightarrow B) \rightarrow [[A \rightarrow (B \rightarrow F)] \rightarrow (A \rightarrow F)]
         (A \rightarrow B) \rightarrow [(A \rightarrow \neg B) \rightarrow \neg A]
T16. [A \land (A \rightarrow F)] \rightarrow F
        \neg (A \land \neg A)
T17. [A \land (A \rightarrow F)] \rightarrow (B \rightarrow F)
       (A \land \neg A) \rightarrow \neg B
T18. (A \lor B) \rightarrow [[(A \rightarrow F) \land (B \rightarrow F)] \rightarrow F]
         (A \lor B) \to \neg (\neg A \land \neg B)
T19. (A \land B) \rightarrow [[(A \rightarrow F) \lor (B \rightarrow F)] \rightarrow F]
        (A \land B) \to \neg (\neg A \lor \neg B)
T20. [A \lor (B \to F)] \to [(A \to F) \to (B \to F)]
        (A \lor \neg B) \to (\neg A \to \neg B)
T21. [(A \to F) \lor (B \to F)] \to [(A \to (B \to F))]
         (\neg A \lor \neg B) \to (A \to \neg B)
T22. (A \rightarrow B) \rightarrow [[(A \land (B \rightarrow F)] \rightarrow F]]
        (A \rightarrow B) \rightarrow \neg (A \land \neg B)
T23. (A \land B) \rightarrow [[(A \rightarrow (B \rightarrow F)] \rightarrow F]]
        (A \land B) \to \neg (A \to \neg B)
T24. [[(A \to F) \to F)] \to F] \to [(A \to F) \to F)]
         \neg \neg \neg A \rightarrow \neg \neg A
T25. [[A \lor (A \to F)] \to F] \to F
         \neg\neg (A \lor \neg A)
```

B_{jm} MODELS

A B_{jm} model is a quintuple $\langle K, O, S, R, \models \rangle$ where K is a set, **O** and **S** are subsets of K such that $O \cap S \neq \emptyset$ and R is a ternary relation on K subject to the following definitions and conditions for all $a, b, c, d \in K$:

d1.
$$a \le b =_{df} (\exists x \in O) Rxab$$

d2. $R^2 abcd =_{df} (\exists x \in K) [Rabx \& Rxcd]$
d3. $R^3 abcde =_{df} (\exists x \in K) (\exists y \in K) [Rabx \& Rxcy \& Ryde]$
P1. $a \le a$
P2. $(a \le b \& Rbcd) \Rightarrow Racd$
P3. $(R^2 abcd \& d \in S) \Rightarrow (\exists x \in S) R^2 acbx$
P4. $(R^2 abcd \& d \in S) \Rightarrow (\exists x \in S) R^2 bcax$
P5. $(a \in S) \Rightarrow (\exists x \in S) Raax$
P6. $(Rabc \& c \in S) \Rightarrow (a \in S \& b \in S)$

⊨ is a valuation relation from *K* to the sentences of B_{jm} satisfying the following conditions for all propositional variables *p*, wffs *A*, *B* and *a* ∈ *K*

(i)
$$(a \models p \& a \le b) \Rightarrow b \models p$$

(ii) $a \models A \lor B$ iff $a \models A$ or $a \models B$
(iii) $a \models A \land B$ iff $a \models A$ and $a \models B$
(iv) $a \models A \rightarrow B$ iff for all $b, c \in K$ (*Rabc* & $b \models A$) $\Rightarrow c \models B$
(v) $a \models F$ iff $a \notin S$

A formula is *valid* ($\models_{Bjm} A$) iff $a \models A$ for all $a \in O$ in all B_{jm} models.

B_{jm} CANONICAL MODEL:

The B_{im} canonical model is the structure

$$\langle K^C, O^C, S^C, R^C, \models^C \rangle$$

(Let K^T be the set of all theories) R^T = for all formulas A, B and a, $b, c \in K^T$, $R^T abc$ iff if $A \rightarrow B \in a$ and $A \in b$, then $B \in c$.

 K^{C} = the set of all prime **non-null** theories O^{C} = the set of all prime regular theories S^{C} = the set of all prime non-null consistent theories. R^{C} = the restriction of R^{T} to K^{C} \models^{C} = for any wff A and $a \in K^{C}$, $a \models^{C} A$ iff $A \in a$.

(A *theory* is a set of formulas closed under adjunction and provable entailment (that is, *a* is a theory if whenever $A, B \in a$, then $A \wedge B \in a$; and if whenever $A \to B$ is a theorem and $A \in a$, then $B \in a$); a theory *a* is *prime* if whenever $A \vee B \in a$, then $A \in a$ or $B \in a$; a theory *a* is *regular* iff all theorems of B_{jm} belong to *a*; *a* is *null* iff no wff belong to *a*. Finally, **a theory** *a* **is** *inconsistent* iff $F \in a$).

Proposition: Let $a \in K^T$, *a* is inconsistent ($F \in a$) iff $B \in a (\neg B)$ being a theorem) iff $\neg C \in a$ (*C* being a theorem) iff $B \land \neg B \in a$ (*B* is a wff).

THE LOGIC B_j

We add to the sentential language of B_+ the propositional falsity constant *F* together with the definition:

 $\neg A =_{\mathrm{df}} A \to F$

 B_j is axiomatized by adding to B_+ the following axioms:

A7.
$$[A \to (B \to F)] \to [B \to (A \to F)]$$

A8. $(B \to F) \to [(A \to B) \to (A \to F)]$
A9. $[A \to [A \to (B \to F)]] \to [A \to (B \to F)]$
A10. $F \to A$

THEOREMS OF B_j:

T26.
$$(A \to F) \to (A \to B)$$

 $\neg A \to (A \to B)$
T27. $A \to [(A \to F) \to B]$
 $A \to (\neg A \to B)$
T28. $[A \land (A \to F)] \to B$
 $(A \land \neg A) \to B$
T29. $A \to [B \to [(A \to F) \to F]]$
 $A \to (B \to \neg \neg A)$
T30. $(A \lor B) \to [(A \to F) \to [(B \to F) \to F]]$
 $(A \lor B) \to (\neg A \to \neg \neg B)$
T31. $[(A \to F) \lor B] \to [A \to [(B \to F) \to F]]$
 $(\neg A \lor B) \to (A \to \neg \neg B)$

B_i MODELS

A B_j model is a quadruple $\langle K, O, R, \models \rangle$ where K is a non-empty set, O is a subset of K and R and \models are defined (similarly) as in B_{jm} models, except that clause (v) is now substituted for:

(v'). $a \nvDash F$ for all $a \in K$

A is valid $(\models_{B_i} A)$ iff $a \models A$ for all $A \in O$ in all B_i models.

B_i CANONICAL MODEL

The canonical model is the quadruple $\langle K^C, O^C, R^C, \models^C \rangle$ where K^C is the set of all non-null consistent prime theories, and O^C , R^C and \models^C are defined as in the B_{jm} canonical model, its items now being referred to B_j theories.

Proposition: Let $a \in K^T$, *a* is inconsistent ($F \in a$) iff $B \in a$ ($\neg B$ being a theorem) iff $\neg C \in a$ (*C* being a theorem) iff $B \land \neg B \in a$ (*B* is a wff) iff *a* contains every well formed formula.

EXTENSIONS OF B_{jm} AND B_j

AXIOMS:

A12. $(B \to C) \to [(A \to B) \to (A \to C)]$ A13. $(A \to B) \to [(B \to C) \to (A \to C)]$ A14. $[A \to (A \to B)] \to (A \to B)$ A15. If $\vdash A$, then $\vdash (A \to B) \to B$ A16. $A \to [(A \to B) \to B]$ A17. $A \to (A \to A)$

- TW₊ ("Contractionless positive Ticket Entailment") = B₊ plus A12
 & A13
- T_+ ("Positive Ticket Entailment") = TW_+ plus A14.
- E_+ ("Positive Entailment Logic") = T_+ plus A15.
- $R_+ = E_+$ plus A16.
- $RMO_{+} = R_{+} plus A17.$

POSTULATES:

PA12. $R^2 abcd \Rightarrow (\exists x \in K) (Rbcx \& Raxd)$ PA13. $R^2 abcd \Rightarrow (\exists x \in K) (Racx \& Rbxd)$ PA14. $Rabc \Rightarrow R^2 abbc$ PA15. $(\exists x \in O) Raxa$ PA16. $Rabc \Rightarrow Rbac$ PA17. $Rabc \Rightarrow (a \le b \text{ or } b \le c)$

EXTENSIONS OF B_{jm} AND B_j

MATRICES:

The K rule (and therefore, the K axiom) is not derivable in B_j plus A12-A17:

\rightarrow	0 1 2 3	∧ 0 1 2 3	v 0 1 2 3
	3 3 3 3	0 0 0 0 0	0 0 1 2 3
	0 1 2 3	1 0 1 1 1	1 1 1 2 3
	0 0 2 3	2 0 0 2 2	2 2 2 2 3
3	0 0 0 3	3 0 0 0 3	3 3 3 3 3

- Designated values: 1, 2, 3
- *F* is assigned the value 0
- This set of matrices satisfies the axioms of B_j and A12-A17 and falsifies K when v(A) = 1 and v(B) = 2