Relevance logics and intuitionistic negation

CONSTRUCTIVE NEGATION

Ternary relational semantics:
(1) $a \models \neg A$ iff $(R a b c \& c \in S) \Rightarrow b \neq A$
(A formula of the form) $\neg A$ is true in point a iff A is false in all points b such that Rabc for all consistent points c.
(2) $a \models \neg A$ iff $R a b c \Rightarrow b \neq A$
(A formula of the form) $\neg A$ is true in point a iff A is false in all points b such that Rabc for all points c.
Binary relational semantics:
(3) $a \models \neg A$ iff $(R a b \& b \in S) \Rightarrow b \neq A$
(A formula of the form) $\neg A$ is true in point a iff A is false in all accessible consistent points. (Minimal intuitionistic clause).

(4) $a \vDash \neg A$ iff $R a b \Rightarrow b \neq A$

(A formula of the form) $\neg A$ is true in point a iff A is false in all accessible points. (Intuitionistic clause).

D $\neg . \neg A \leftrightarrow(A \rightarrow F)$
(F is a propositional falsity constant)

CONCEPTS OF CONSISTENCY

Let L be a logic and a an L-theory (a set of formulas closed under adjunction and provable entailment):

1. a is w-inconsistent1 iff $\neg B \in a, B$ being a theorem of L .
2. a is w-inconsistent2 iff $B \in a, \neg B$ being a theorem of L .
3. a is negation-inconsistent iff $A \wedge \neg A \in a$, for some wff A.
4. a is absolutely inconsistent iff a contains every wff. *(a is consistent iff a is not inconsistent).

PARADOXES

PARADOXES OF RELEVANCE:

Characteristic exemplars:
(i) $A \rightarrow(B \rightarrow A)$
(K axiom)
(ii) If $\vdash A$, then $\vdash B \rightarrow A$
(K rule)

PARADOXES OF CONSISTENCY
Characteristic exemplars:
(iii) $(A \wedge \neg A) \rightarrow B$
(ECQ axiom)
(iv) $\neg A \rightarrow(A \rightarrow B) \quad$ (EFQ axioms)
(v) $A \rightarrow(\neg A \rightarrow B)$

THE BORDERLINES OF RELEVANCE LOGICS

EXAMPLES:

- Paradoxical, non-relevance logic R-mingle (Anderson et al.).
- Logic KR (R+ plus a De Morgan negation together with the ECQ axiom) (Meyer and Routley).
- CR (R plus a Boolean negation), CE (E plus a Boolean negation) (Routley, Meyer and others).
OUR RESEARCH:
- R_{+}and some of its extensions plus a constructive intuitionistic-type negation.

MINIMAL INTUITIONISTIC NEGATION / INTUITIONISTIC NEGATION

MINIMAL INTUITIONISTIC LOGIC:
J_{+}plus:

$$
\begin{equation*}
(A \rightarrow B) \rightarrow(\neg B \rightarrow \neg A) \tag{i}
\end{equation*}
$$

(ii) $\quad A \rightarrow \neg \neg A$
(iii) $\quad(A \rightarrow \neg A) \rightarrow \neg A$
(iv) $\quad \neg A \rightarrow(A \rightarrow \neg B)$

INTUITIONISTIC LOGIC:
J_{+}plus (i)-(iii) and:
(v) $\quad \neg A \rightarrow(A \rightarrow B)$

MINIMAL INTUITIONISTIC NEGATION:
S_{+}plus (i)-(iv) (S_{+}is a positive logic)

INTUITIONISTIC NEGATION:
S_{+}plus (i)-(iii) and (v) (S_{+}is a positive logic)

CHARACTERISTICS OF THE LOGICS INTRODUCED

- All of them are included in minimal or in full intuitionistic logic.
- None of them is included in Lewis' modal logic S5.
- None of them is included in R-mingle.
- They are not included in KR or CR.
$\left[(i v) \neg A \rightarrow(A \rightarrow \neg B)\right.$ is a theorem of B_{jm} (Routley and Meyer's B_{+}plus minimal intuitionistic negation)].
- They provide an unexplored perspective on the borderlines between relevance and non-relevance logics.
- The K rule :

If $\vdash A$, then $\vdash B \rightarrow A$
and so, the K axiom :
$A \rightarrow(B \rightarrow A)$
are not provable in any of them.

- They have paradoxes of consistency but they do not have paradoxes of relevance, in general.
- They are an interesting class of subintuitionistic logics with intuitionistic negation but without the K axiom characteristic of intuitionistic logic or the K rule characteristic of some modal logics.

THE LOGIC B $\mathbf{B m}_{\mathbf{j m}}$

\mathbf{B}_{+}:
Axioms:
A1. $A \rightarrow A$
A2. $(A \wedge B) \rightarrow A \quad / \quad(A \wedge B) \rightarrow B$
A3. $[(A \rightarrow B) \wedge(A \rightarrow C)] \rightarrow[A \rightarrow(B \wedge C)]$
A4. $A \rightarrow(A \vee B) / \quad B \rightarrow(A \vee B)$
A5. $[(A \rightarrow C) \wedge(B \rightarrow C)] \rightarrow[(A \vee B) \rightarrow C)]$
A6. $[A \wedge(B \vee C)] \rightarrow[(A \wedge B) \vee(A \wedge C)]$

Rules of derivation:
Modus ponens: if $\vdash A$ and $\vdash A \rightarrow B$, then $\vdash B$
Adjunction: if $\vdash A$ and $\vdash B$, then $\vdash A \wedge B$
Suffixing: if $\vdash A \rightarrow B$, then $\vdash(B \rightarrow C) \rightarrow(A \rightarrow C)$
Prefixing: if $\vdash B \rightarrow C$, then $\vdash(A \rightarrow B) \rightarrow(A \rightarrow C)$

B_{jm} :

We add to the sentential language of B_{+}the propositional falsity constant F together with the definition:
$\neg A={ }_{\mathrm{df}} A \rightarrow F$
$B_{j \mathrm{~m}}$ is axiomatized by adding to B_{+}the following axioms:

A7. $[A \rightarrow(B \rightarrow F)] \rightarrow[B \rightarrow(A \rightarrow F)]$
A8. $(B \rightarrow F) \rightarrow[(A \rightarrow B) \rightarrow(A \rightarrow F)]$
A9. $[A \rightarrow[A \rightarrow(B \rightarrow F)]] \rightarrow[A \rightarrow(B \rightarrow F)]$
A10. $F \rightarrow(A \rightarrow F)$

THEOREMS OF \mathbf{B}_{jm} :

T1. $[(A \vee B) \rightarrow F] \leftrightarrow[(A \rightarrow F) \wedge(B \rightarrow F)]$ $\neg(A \vee B) \leftrightarrow(\neg A \wedge \neg B)$
T2. $[(A \rightarrow F) \vee(B \rightarrow F)] \rightarrow[(A \wedge B) \rightarrow F]$ $(\neg A \vee \neg B) \rightarrow \neg(A \wedge B)$
T3. $F \rightarrow F$ $\neg F$
T4. $\boldsymbol{A} \rightarrow[(\boldsymbol{A} \rightarrow \boldsymbol{F}) \rightarrow \boldsymbol{F}]$ $A \rightarrow \neg \neg A$
T5. $(A \rightarrow B) \rightarrow[(B \rightarrow F) \rightarrow(A \rightarrow F)]$ $(\boldsymbol{A} \rightarrow \boldsymbol{B}) \rightarrow \neg \boldsymbol{B} \rightarrow \neg \boldsymbol{A}$
T6. $B \rightarrow[[A \rightarrow(B \rightarrow F)] \rightarrow(A \rightarrow F)]$
$B \rightarrow[(A \rightarrow \neg B) \rightarrow \neg A]$
T7. $A \rightarrow[[A \rightarrow(B \rightarrow F)] \rightarrow(B \rightarrow F)]$ $A \rightarrow[(A \rightarrow \neg B) \rightarrow \neg B]$
T8. $(A \rightarrow F) \rightarrow[A \rightarrow(B \rightarrow F)]$ $\neg A \rightarrow(A \rightarrow \neg B)$
T9. $A \rightarrow[(A \rightarrow F) \rightarrow(B \rightarrow F)]$ $A \rightarrow(\neg A \rightarrow \neg B)$
T10. $A \rightarrow(F \rightarrow F)$
$A \rightarrow \neg F$
T11. $(B \rightarrow F) \rightarrow[A \rightarrow(B \rightarrow F)]$ $\neg B \rightarrow(A \rightarrow \neg B)$
T12. $B \rightarrow[(A \rightarrow F) \rightarrow(A \rightarrow F)]$ $B \rightarrow(\neg A \rightarrow \neg A)$
T13. $[A \rightarrow(A \rightarrow F)] \rightarrow(A \rightarrow F)$
$(A \rightarrow \neg A) \rightarrow \neg A$
T14. $[A \rightarrow(B \rightarrow F)] \rightarrow[(A \rightarrow B) \rightarrow(A \rightarrow F)]$
$(\boldsymbol{A} \rightarrow \neg B) \rightarrow[(A \rightarrow B) \rightarrow \neg A]$
T15. $(A \rightarrow B) \rightarrow[[A \rightarrow(B \rightarrow F)] \rightarrow(A \rightarrow F)]$ $(A \rightarrow B) \rightarrow[(A \rightarrow \neg B) \rightarrow \neg A]$
T16. $[A \wedge(A \rightarrow F)] \rightarrow F$ $\neg(A \wedge \neg A)$
T17. $[A \wedge(A \rightarrow F)] \rightarrow(B \rightarrow F)$ $(\boldsymbol{A} \wedge \neg \boldsymbol{A}) \rightarrow \neg B$
T18. $(A \vee B) \rightarrow[[(A \rightarrow F) \wedge(B \rightarrow F)] \rightarrow F]$ $(A \vee B) \rightarrow \neg(\neg A \wedge \neg B)$
T19. $(A \wedge B) \rightarrow[[(A \rightarrow F) \vee(B \rightarrow F)] \rightarrow F]$ $(A \wedge B) \rightarrow \neg(\neg A \vee \neg B)$
T20. $[A \vee(B \rightarrow F)] \rightarrow[(A \rightarrow F) \rightarrow(B \rightarrow F)]$ $(A \vee \neg B) \rightarrow(\neg A \rightarrow \neg B)$
T21. $[(A \rightarrow F) \vee(B \rightarrow F)] \rightarrow[(A \rightarrow(B \rightarrow F)]$ $(\neg A \vee \neg B) \rightarrow(A \rightarrow \neg B)$
T22. $(A \rightarrow B) \rightarrow[[(A \wedge(B \rightarrow F)] \rightarrow F]$ $(A \rightarrow B) \rightarrow \neg(A \wedge \neg B)$
T23. $(A \wedge B) \rightarrow[[(A \rightarrow(B \rightarrow F)] \rightarrow F]$ $(A \wedge B) \rightarrow \neg(A \rightarrow \neg B)$
T24. $[[(A \rightarrow F) \rightarrow F)] \rightarrow F] \rightarrow[(A \rightarrow F) \rightarrow F)]$ $\neg \neg \neg A \rightarrow \neg \neg A$
T25. $[[A \vee(A \rightarrow F)] \rightarrow F] \rightarrow F$ $\neg \neg(A \vee \neg A)$

B_{jm} MODELS

A B_{jm} model is a quintuple $<K, O, S, R, \models>$ where K is a set, \boldsymbol{O} and \boldsymbol{S} are subsets of \boldsymbol{K} such that $\boldsymbol{O} \cap \boldsymbol{S} \neq \varnothing$ and R is a ternary relation on K subject to the following definitions and conditions for all $a, b, c, d \in K$:
d1. $a \leq b={ }_{\text {df }}(\exists x \in O) R x a b$
d2. $R^{2} a b c d==_{\mathrm{df}}(\exists x \in K)[R a b x \& R x c d]$
d3. $R^{3} a b c d e=_{\mathrm{df}}(\exists x \in K)(\exists y \in K)[R a b x \& R x c y \& R y d e]$
P1. $a \leq a$
P2. $(a \leq b \& R b c d) \Rightarrow$ Racd
P3. $\left(R^{2} a b c d \& d \in S\right) \Rightarrow(\exists x \in S) R^{2} a c b x$
P4. $\left(R^{2} a b c d \& d \in S\right) \Rightarrow(\exists x \in S) R^{2} b c a x$
P5. $(a \in S) \Rightarrow(\exists x \in S)$ Raax
P6. $(R a b c \& c \in S) \Rightarrow(a \in S \& b \in S)$
\vDash is a valuation relation from K to the sentences of B_{jm} satisfying the following conditions for all propositional variables p, wffs A, B and $a \in K$
(i) $(a \models p \& a \leq b) \Rightarrow b \models p$
(ii) $a \models A \vee B$ iff $a \models A$ or $a \models B$
(iii) $a \models A \wedge B$ iff $a \models A$ and $a \models B$
(iv) $a \models A \rightarrow B$ iff for all $b, c \in K(\operatorname{Rabc} \& b \models A) \Rightarrow c \models B$
(v) $a \vDash F$ iff $a \notin S$

A formula is valid $\left(\models_{\mathrm{Bjm}} A\right)$ iff $a \vDash A$ for all $a \in O$ in all B_{jm} models.

B_{jm} CANONICAL MODEL:

The B_{jm} canonical model is the structure

$$
<K^{C}, O^{C}, S^{C}, R^{C}, \models^{C}>
$$

(Let K^{T} be the set of all theories) $R^{T}=$ for all formulas A, B and a, $b, c \in K^{T}, R^{T} a b c$ iff if $A \rightarrow B \in a$ and $A \in b$, then $B \in c$.
$K^{C}=$ the set of all prime non-null theories
$O^{\mathrm{C}}=$ the set of all prime regular theories
$\boldsymbol{S}^{\boldsymbol{C}}=$ the set of all prime non-null consistent theories.
$R^{C}=$ the restriction of R^{T} to K^{C}
$\vDash^{C}=$ for any wff A and $a \in K^{C}, a \models^{C} A$ iff $A \in a$.
(A theory is a set of formulas closed under adjunction and provable entailment (that is, a is a theory if whenever $A, B \in a$, then $A \wedge B \in a$; and if whenever $A \rightarrow B$ is a theorem and $A \in a$, then $B \in a$); a theory a is prime if whenever $A \vee B \in a$, then $A \in$ a or $B \in a$; a theory a is regular iff all theorems of B_{jm} belong to a; a is null iff no wff belong to a. Finally, a theory a is inconsistent iff $\boldsymbol{F} \in \boldsymbol{a}$).

Proposition: Let $a \in K^{T}, a$ is inconsistent $(F \in a)$ iff $B \in a(\neg B$ being a theorem) iff $\neg C \in a$ (C being a theorem) iff $B \wedge \neg B \in$ a (B is a wff).

THE LOGIC B \mathbf{B}_{j}

We add to the sentential language of B_{+}the propositional falsity constant F together with the definition:
$\neg A={ }_{\mathrm{df}} A \rightarrow F$
B_{j} is axiomatized by adding to B_{+}the following axioms:
A7. $[A \rightarrow(B \rightarrow F)] \rightarrow[B \rightarrow(A \rightarrow F)]$
A8. $(B \rightarrow F) \rightarrow[(A \rightarrow B) \rightarrow(A \rightarrow F)]$
A9. $[A \rightarrow[A \rightarrow(B \rightarrow F)]] \rightarrow[A \rightarrow(B \rightarrow F)]$
A10. $F \rightarrow \boldsymbol{A}$

THEOREMS OF B_{j} :

T26. $(A \rightarrow F) \rightarrow(A \rightarrow B)$

$$
\neg A \rightarrow(A \rightarrow B)
$$

T27. $A \rightarrow[(A \rightarrow F) \rightarrow B]$
$A \rightarrow(\neg A \rightarrow B)$
T28. $[A \wedge(A \rightarrow F)] \rightarrow B$
$(A \wedge \neg A) \rightarrow B$
T29. $A \rightarrow[B \rightarrow[(A \rightarrow F) \rightarrow F]]$
$A \rightarrow(B \rightarrow \neg \neg A)$
T30. $(A \vee B) \rightarrow[(A \rightarrow F) \rightarrow[(B \rightarrow F) \rightarrow F]]$
$(A \vee B) \rightarrow(\neg A \rightarrow \neg \neg B)$
T31. $[(A \rightarrow F) \vee B] \rightarrow[A \rightarrow[(B \rightarrow F) \rightarrow F]]$
$(\neg A \vee B) \rightarrow(A \rightarrow \neg \neg B)$

B_{j} MODELS

A B_{j} model is a quadruple $<\boldsymbol{K}, \boldsymbol{O}, \boldsymbol{R}, \models>$ where K is a non-empty set, O is a subset of K and R and \models are defined (similarly) as in B_{jm} models, except that clause (v) is now substituted for:
(v^{\prime}). $\boldsymbol{a} \neq \boldsymbol{F}$ for all $a \in K$
A is valid $\left(\models_{\mathrm{Bj}} A\right)$ iff $a \models A$ for all $A \in O$ in all B_{j} models.

B_{j} CANONICAL MODEL

The canonical model is the quadruple $<K^{C}, O^{C}, R^{C}, \models^{C}>$ where K^{C} is the set of all non-null consistent prime theories, and O^{C}, R^{C} and \models^{C} are defined as in the $\mathrm{B}_{\mathrm{j} \mathrm{m}}$ canonical model, its items now being referred to B_{j} theories.

Proposition: Let $a \in K^{T}, a$ is inconsistent $(F \in a)$ iff $B \in a(\neg B$ being a theorem) iff $\neg C \in a$ (C being a theorem) iff $B \wedge \neg B \in$ a (B is a wff) iff \boldsymbol{a} contains every well formed formula.

EXTENSIONS OF $B_{j m}$ AND B_{j}

AXIOMS:

A12. $(B \rightarrow C) \rightarrow[(A \rightarrow B) \rightarrow(A \rightarrow C)]$
A13. $(A \rightarrow B) \rightarrow[(B \rightarrow C) \rightarrow(A \rightarrow C)]$
A14. $[A \rightarrow(A \rightarrow B)] \rightarrow(A \rightarrow B)$
A15. If $\vdash A$, then $\vdash(A \rightarrow B) \rightarrow B$
A16. $A \rightarrow[(A \rightarrow B) \rightarrow B]$
A17. $A \rightarrow(A \rightarrow A)$

- $\quad \mathrm{TW}_{+}$("Contractionless positive Ticket Entailment") $=\mathrm{B}_{+}$plus A12 \& A13
- T_{+}("Positive Ticket Entailment") $=$TW + plus A14.
- E_{+}("Positive Entailment Logic") $=\mathrm{T}_{+}$plus A15.
- $\mathrm{R}_{+}=\mathrm{E}_{+}$plus A16.
- $\mathrm{RMO}_{+}=\mathrm{R}_{+}$plus A17.

POSTULATES:

PA12. $R^{2} a b c d \Rightarrow(\exists x \in K)(R b c x \& R a x d)$
PA13. $R^{2} a b c d \Rightarrow(\exists x \in K)(R a c x \& R b x d)$
PA14. $R a b c \Rightarrow R^{2} a b b c$
PA15. $(\exists x \in O)$ Raxa
PA16. $R a b c \Rightarrow$ Rbac
PA17. $R a b c \Rightarrow(a \leq b$ or $b \leq c)$

EXTENSIONS OF $B_{j m}$ AND B_{j}

MATRICES:

The K rule (and therefore, the K axiom) is not derivable in B_{j} plus A12-A17:

\rightarrow	0123	\wedge	0123	\checkmark	0123
0	3333	0	0000	0	0123
1	0123	1	0111	1	1123
2	0023	2	0022	2	2223
3	0003	3	0003	3	333

- Designated values: $1,2,3$
- F is assigned the value 0
- This set of matrices satisfies the axioms of B_{j} and A12-A17 and falsifies K when $v(A)=1$ and $v(B)=2$

