General reducibilities for sets of reals

Luca Motto Ros

Department of Mathematics Polythecnic of Turin luca.mottoros@polito.it

Logic Colloquium 2007 Wrocław, July 14–19

• 3 >

Intuitively, a set A is simpler than — or as complex as — a set B if the problem of verifying membership in A can be reduced to the problem of verifying membership in B.

Intuitively, a set A is simpler than — or as complex as — a set B if the problem of verifying membership in A can be reduced to the problem of verifying membership in B.

Thus to establish if a set of reals A is more or less complex than another set of reals B is enough to define a suitable notion of reduction between sets of reals.

Intuitively, a set A is simpler than — or as complex as — a set B if the problem of verifying membership in A can be reduced to the problem of verifying membership in B.

Thus to establish if a set of reals A is more or less complex than another set of reals B is enough to define a suitable notion of reduction between sets of reals.

Definition (W.W.Wadge, 1972)

A is (continuously) reducible to B just in case there is a continuous function f such that

$$x \in A \iff f(x) \in B$$

for every real x.

$$A \leq_{\mathcal{F}} B \iff A = f^{-1}(B)$$
 for some $f \in \mathcal{F}$,

- ★ 臣 ▶ - - 臣

Reducibilities for sets of reals

Given a "reasonable" set of functions ${\cal F}$ we can define the preorder $\leq_{\cal F}$ by letting

$$A \leq_{\mathcal{F}} B \iff A = f^{-1}(B)$$
 for some $f \in \mathcal{F}$,

and consequently the induced equivalence relation $\equiv_{\mathcal{F}}$ and the notion of \mathcal{F} -degree $[A]_{\mathcal{F}} = \{B \subseteq \mathbb{R} \mid B \equiv_{\mathcal{F}} A\}.$

向下 イヨト イヨト

$$A \leq_{\mathcal{F}} B \iff A = f^{-1}(B)$$
 for some $f \in \mathcal{F}$,

and consequently the induced equivalence relation $\equiv_{\mathcal{F}}$ and the notion of \mathcal{F} -degree $[A]_{\mathcal{F}} = \{B \subseteq \mathbb{R} \mid B \equiv_{\mathcal{F}} A\}.$

The aim is to study the structure of the \mathcal{F} -degrees endowed with the preorder \leq induced by $\leq_{\mathcal{F}}$, where

$$[A]_{\mathcal{F}} \leq [B]_{\mathcal{F}} \iff A \leq_{\mathcal{F}} B.$$

伺下 イヨト イヨト

$$A \leq_{\mathcal{F}} B \iff A = f^{-1}(B)$$
 for some $f \in \mathcal{F}$,

and consequently the induced equivalence relation $\equiv_{\mathcal{F}}$ and the notion of \mathcal{F} -degree $[A]_{\mathcal{F}} = \{B \subseteq \mathbb{R} \mid B \equiv_{\mathcal{F}} A\}.$

The aim is to study the structure of the \mathcal{F} -degrees endowed with the preorder \leq induced by $\leq_{\mathcal{F}}$, where

$$[A]_{\mathcal{F}} \leq [B]_{\mathcal{F}} \iff A \leq_{\mathcal{F}} B.$$

Some terminology:

▶ Selfdual degrees: $[A]_{\mathcal{F}}$ such that $A \leq_{\mathcal{F}} \neg A$

向下 イヨト イヨト

$$A \leq_{\mathcal{F}} B \iff A = f^{-1}(B)$$
 for some $f \in \mathcal{F}$,

and consequently the induced equivalence relation $\equiv_{\mathcal{F}}$ and the notion of \mathcal{F} -degree $[A]_{\mathcal{F}} = \{B \subseteq \mathbb{R} \mid B \equiv_{\mathcal{F}} A\}.$

The aim is to study the structure of the $\mathcal F\text{-degrees}$ endowed with the preorder \leq induced by $\leq_{\mathcal F}$, where

$$[A]_{\mathcal{F}} \leq [B]_{\mathcal{F}} \iff A \leq_{\mathcal{F}} B.$$

Some terminology:

- ▶ Selfdual degrees: $[A]_{\mathcal{F}}$ such that $A \leq_{\mathcal{F}} \neg A$
- ▶ Nonselfdual pairs: $\{[A]_{\mathcal{F}}, [\neg A]_{\mathcal{F}}\}$ such that $A \not\leq_{\mathcal{F}} \neg A$

向下 イヨト イヨト

Let $\mathcal{F} = \text{Lip}(1) = L$.

▲御★ ▲注★ ▲注★

æ

Let $\mathcal{F} = \text{Lip}(1) = L$. Reformulating these functions in terms of games on ω Wadge proved

白 と く ヨ と く ヨ と …

æ

Let $\mathcal{F} = \text{Lip}(1) = L$. Reformulating these functions in terms of games on ω Wadge proved

Lemma (W.W.Wadge, 1972)

Assume AD. Then

 $(\mathsf{SLO}^{\mathsf{L}}) \qquad \forall A, B \subseteq \mathbb{R}(A \leq_{\mathsf{L}} B \lor \neg B \leq_{\mathsf{L}} A).$

白 と く ヨ と く ヨ と

2

Let $\mathcal{F} = \text{Lip}(1) = L$. Reformulating these functions in terms of games on ω Wadge proved

Lemma (W.W.Wadge, 1972)

Assume AD. Then (SLO^L) $\forall A, B \subseteq \mathbb{R}(A \leq_L B \lor \neg B \leq_L A).$

Theorem (D.A.Martin, 1972) Assume $AD + DC(\mathbb{R})$. The preorder \leq_L is well-founded.

向下 イヨト イヨト

Let $\mathcal{F} = \text{Lip}(1) = L$. Reformulating these functions in terms of games on ω Wadge proved

Lemma (W.W.Wadge, 1972)

Assume AD. Then (SLO^L) $\forall A, B \subseteq \mathbb{R}(A \leq_{\mathsf{L}} B \lor \neg B \leq_{\mathsf{L}} A).$

Theorem (D.A.Martin, 1972) Assume $AD + DC(\mathbb{R})$. The preorder \leq_L is well-founded.

Under $AD + DC(\mathbb{R})$ the Lipschitz degree-structure is

□→ ★ 国 → ★ 国 → □ 国

Let $\mathcal{F} = \text{Lip}(1) = L$. Reformulating these functions in terms of games on ω Wadge proved

Lemma (W.W.Wadge, 1972)

Assume AD. Then (SLO^L) $\forall A, B \subseteq \mathbb{R}(A \leq_{\mathsf{L}} B \lor \neg B \leq_{\mathsf{L}} A).$

Theorem (D.A.Martin, 1972) Assume $AD + DC(\mathbb{R})$. The preorder \leq_L is well-founded.

Under $AD + DC(\mathbb{R})$ the Lipschitz degree-structure is

٠

•

同 と く き と く き と … き

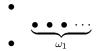
Let $\mathcal{F} = \text{Lip}(1) = \text{L}$. Reformulating these functions in terms of games on ω Wadge proved

Lemma (W.W.Wadge, 1972)

Assume AD. Then (SLO^L) $\forall A, B \subseteq \mathbb{R}(A \leq_{\mathsf{L}} B \lor \neg B \leq_{\mathsf{L}} A).$

Theorem (D.A.Martin, 1972) Assume $AD + DC(\mathbb{R})$. The preorder \leq_L is well-founded.

Under $AD + DC(\mathbb{R})$ the Lipschitz degree-structure is



向下 イヨト イヨト

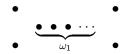
Let $\mathcal{F} = \text{Lip}(1) = L$. Reformulating these functions in terms of games on ω Wadge proved

Lemma (W.W.Wadge, 1972)

Assume AD. Then (SLO^L) $\forall A, B \subseteq \mathbb{R}(A \leq_{\mathsf{L}} B \lor \neg B \leq_{\mathsf{L}} A).$

Theorem (D.A.Martin, 1972) Assume $AD + DC(\mathbb{R})$. The preorder \leq_L is well-founded.

Under $AD + DC(\mathbb{R})$ the Lipschitz degree-structure is



通 とう ほう とう マート

Let $\mathcal{F} = \text{Lip}(1) = L$. Reformulating these functions in terms of games on ω Wadge proved

Lemma (W.W.Wadge, 1972)

Assume AD. Then (SLO^L) $\forall A, B \subseteq \mathbb{R}(A \leq_{\mathsf{L}} B \lor \neg B \leq_{\mathsf{L}} A).$

Theorem (D.A.Martin, 1972) Assume $AD + DC(\mathbb{R})$. The preorder \leq_L is well-founded.

Under $AD + DC(\mathbb{R})$ the Lipschitz degree-structure is

A B K A B K

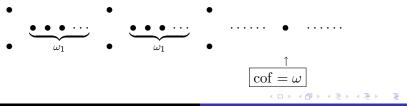
Let $\mathcal{F} = \text{Lip}(1) = L$. Reformulating these functions in terms of games on ω Wadge proved

Lemma (W.W.Wadge, 1972)

Assume AD. Then (SLO^L) $\forall A, B \subseteq \mathbb{R}(A \leq_{\mathsf{L}} B \lor \neg B \leq_{\mathsf{L}} A).$

Theorem (D.A.Martin, 1972) Assume $AD + DC(\mathbb{R})$. The preorder \leq_L is well-founded.

Under $AD + DC(\mathbb{R})$ the Lipschitz degree-structure is



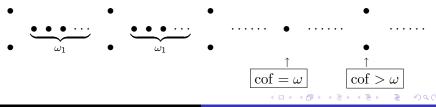
Let $\mathcal{F} = \text{Lip}(1) = L$. Reformulating these functions in terms of games on ω Wadge proved

Lemma (W.W.Wadge, 1972)

Assume AD. Then (SLO^L) $\forall A, B \subseteq \mathbb{R}(A \leq_{\mathsf{L}} B \lor \neg B \leq_{\mathsf{L}} A).$

Theorem (D.A.Martin, 1972) Assume $AD + DC(\mathbb{R})$. The preorder \leq_L is well-founded.

Under $AD + DC(\mathbb{R})$ the Lipschitz degree-structure is



Let $\mathcal{F} = W$ be the collection of the continuous functions.

個 と く き と く き と … き

Let $\mathcal{F} = W$ be the collection of the continuous functions. Theorem (Steel-Van Wesep) Assume AD. Then $A \leq_W \neg A \Rightarrow A \leq_L \neg A$ for every $A \subseteq \mathbb{R}$.

- ◆ 注 ▶ - ◆ 注 ▶ - -

2

Let $\mathcal{F} = W$ be the collection of the continuous functions. Theorem (Steel-Van Wesep) Assume AD. Then $A \leq_W \neg A \Rightarrow A \leq_L \neg A$ for every $A \subseteq \mathbb{R}$.

Thus every selfdual Wadge-degree is the union of an ω_1 -block of consecutive selfdual Lipschitz-degrees.

• 3 > 1

Let $\mathcal{F} = W$ be the collection of the continuous functions. Theorem (Steel-Van Wesep) Assume AD. Then $A \leq_W \neg A \Rightarrow A \leq_L \neg A$ for every $A \subseteq \mathbb{R}$.

Thus every selfdual Wadge-degree is the union of an ω_1 -block of consecutive selfdual Lipschitz-degrees.

Assume $AD + DC(\mathbb{R})$. The Wadge degree-structure is

(4) (2) (4) (2) (4)

Let $\mathcal{F} = W$ be the collection of the continuous functions. Theorem (Steel-Van Wesep) Assume AD. Then $A \leq_W \neg A \Rightarrow A \leq_L \neg A$ for every $A \subseteq \mathbb{R}$.

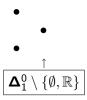
Thus every selfdual Wadge-degree is the union of an ω_1 -block of consecutive selfdual Lipschitz-degrees.

Assume $AD + DC(\mathbb{R})$. The Wadge degree-structure is

• 3 > 1

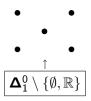
Let $\mathcal{F} = W$ be the collection of the continuous functions. Theorem (Steel-Van Wesep) Assume AD. Then $A \leq_W \neg A \Rightarrow A \leq_L \neg A$ for every $A \subseteq \mathbb{R}$.

Thus every selfdual Wadge-degree is the union of an ω_1 -block of consecutive selfdual Lipschitz-degrees.



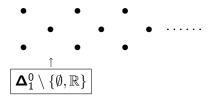
Let $\mathcal{F} = W$ be the collection of the continuous functions. Theorem (Steel-Van Wesep) Assume AD. Then $A \leq_W \neg A \Rightarrow A \leq_L \neg A$ for every $A \subseteq \mathbb{R}$.

Thus every selfdual Wadge-degree is the union of an ω_1 -block of consecutive selfdual Lipschitz-degrees.



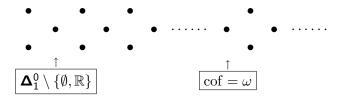
Let $\mathcal{F} = W$ be the collection of the continuous functions. Theorem (Steel-Van Wesep) Assume AD. Then $A \leq_W \neg A \Rightarrow A \leq_L \neg A$ for every $A \subseteq \mathbb{R}$.

Thus every selfdual Wadge-degree is the union of an ω_1 -block of consecutive selfdual Lipschitz-degrees.



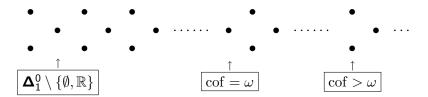
Let $\mathcal{F} = W$ be the collection of the continuous functions. Theorem (Steel-Van Wesep) Assume AD. Then $A \leq_W \neg A \Rightarrow A \leq_L \neg A$ for every $A \subseteq \mathbb{R}$.

Thus every selfdual Wadge-degree is the union of an ω_1 -block of consecutive selfdual Lipschitz-degrees.



Let $\mathcal{F} = W$ be the collection of the continuous functions. Theorem (Steel-Van Wesep) Assume AD. Then $A \leq_W \neg A \Rightarrow A \leq_L \neg A$ for every $A \subseteq \mathbb{R}$.

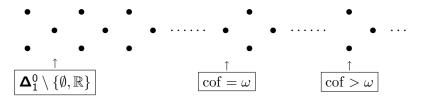
Thus every selfdual Wadge-degree is the union of an ω_1 -block of consecutive selfdual Lipschitz-degrees.



Let $\mathcal{F} = W$ be the collection of the continuous functions. Theorem (Steel-Van Wesep) Assume AD. Then $A \leq_W \neg A \Rightarrow A \leq_L \neg A$ for every $A \subseteq \mathbb{R}$.

Thus every selfdual Wadge-degree is the union of an ω_1 -block of consecutive selfdual Lipschitz-degrees.

Assume $AD + DC(\mathbb{R})$. The Wadge degree-structure is



The length of the Wadge hierarchy (and of the Lipschitz one) is exactly $\Theta = \sup \{ \alpha \mid \exists f(f : \mathbb{R} \rightarrow \alpha) \}.$

Other reducibilities

Andretta and Martin (2003) gave a first definition of what should be meant by "reasonable":

白 と く ヨ と く ヨ と …

æ

Other reducibilities

Andretta and Martin (2003) gave a first definition of what should be meant by "reasonable": such definition comprises, among others, the set of the continuous functions, Andretta and Martin (2003) gave a first definition of what should be meant by "reasonable": such definition comprises, among others, the set of the continuous functions, the set of the Borel functions,

Other reducibilities

Andretta and Martin (2003) gave a first definition of what should be meant by "reasonable": such definition comprises, among others, the set of the continuous functions, the set of the Borel functions, the set D_{α} of the Δ_{α}^{0} -functions (i.e. of those functions such that $f^{-1}(D) \in \Delta_{\alpha}^{0}$ for every $D \in \Delta_{\alpha}^{0}$) and so on.

Other reducibilities

Andretta and Martin (2003) gave a first definition of what should be meant by "reasonable": such definition comprises, among others, the set of the continuous functions, the set of the Borel functions, the set D_{α} of the $\mathbf{\Delta}^{0}_{\alpha}$ -functions (i.e. of those functions such that $f^{-1}(D) \in \mathbf{\Delta}^{0}_{\alpha}$ for every $D \in \mathbf{\Delta}^{0}_{\alpha}$) and so on.

Let $\mathcal{F} = Bor$ be the set of the Borel functions, and assume $AD + DC(\mathbb{R})$.

Other reducibilities

Andretta and Martin (2003) gave a first definition of what should be meant by "reasonable": such definition comprises, among others, the set of the continuous functions, the set of the Borel functions, the set D_{α} of the $\mathbf{\Delta}^{0}_{\alpha}$ -functions (i.e. of those functions such that $f^{-1}(D) \in \mathbf{\Delta}^{0}_{\alpha}$ for every $D \in \mathbf{\Delta}^{0}_{\alpha}$) and so on.

Let $\mathcal{F} = Bor$ be the set of the Borel functions, and assume $AD + DC(\mathbb{R})$. Then \leq_{Bor} is well-founded and the structure of the Bor-degrees is like the Wadge one.

Andretta and Martin (2003) gave a first definition of what should be meant by "reasonable": such definition comprises, among others, the set of the continuous functions, the set of the Borel functions, the set D_{α} of the $\mathbf{\Delta}^{0}_{\alpha}$ -functions (i.e. of those functions such that $f^{-1}(D) \in \mathbf{\Delta}^{0}_{\alpha}$ for every $D \in \mathbf{\Delta}^{0}_{\alpha}$) and so on.

Let $\mathcal{F} = Bor$ be the set of the Borel functions, and assume $AD + DC(\mathbb{R})$. Then \leq_{Bor} is well-founded and the structure of the Bor-degrees is like the Wadge one.

Remark: There are no games for the Borel functions, all the arguments used are topological (changes of topologies).

伺 とう ヨン うちょう

Andretta and Martin (2003) gave a first definition of what should be meant by "reasonable": such definition comprises, among others, the set of the continuous functions, the set of the Borel functions, the set D_{α} of the $\mathbf{\Delta}^{0}_{\alpha}$ -functions (i.e. of those functions such that $f^{-1}(D) \in \mathbf{\Delta}^{0}_{\alpha}$ for every $D \in \mathbf{\Delta}^{0}_{\alpha}$) and so on.

Let $\mathcal{F} = Bor$ be the set of the Borel functions, and assume $AD + DC(\mathbb{R})$. Then \leq_{Bor} is well-founded and the structure of the Bor-degrees is like the Wadge one.

Remark: There are no games for the Borel functions, all the arguments used are topological (changes of topologies).

The same is true if we consider the collection of the Δ_2^0 -functions.

同下 イヨト イヨト

Andretta and Martin (2003) gave a first definition of what should be meant by "reasonable": such definition comprises, among others, the set of the continuous functions, the set of the Borel functions, the set D_{α} of the $\mathbf{\Delta}_{\alpha}^{0}$ -functions (i.e. of those functions such that $f^{-1}(D) \in \mathbf{\Delta}_{\alpha}^{0}$ for every $D \in \mathbf{\Delta}_{\alpha}^{0}$) and so on.

Let $\mathcal{F} = Bor$ be the set of the Borel functions, and assume $AD + DC(\mathbb{R})$. Then \leq_{Bor} is well-founded and the structure of the Bor-degrees is like the Wadge one.

Remark: There are no games for the Borel functions, all the arguments used are topological (changes of topologies).

The same is true if we consider the collection of the Δ_2^0 -functions.

Problem 1: Can we determine the degree-structure of any "reasonable" \mathcal{F} ?

A set of functions \mathcal{F} is said *set of reductions* if it is closed under composition, contains Lip(1) and there is a surjection $\mathbb{R} \twoheadrightarrow \mathcal{F}$.

A 3 1 A 3 1 A

A set of functions \mathcal{F} is said *set of reductions* if it is closed under composition, contains Lip(1) and there is a surjection $\mathbb{R} \twoheadrightarrow \mathcal{F}$.

Assuming $AD + DC(\mathbb{R})$ we have that:

A set of functions \mathcal{F} is said *set of reductions* if it is closed under composition, contains Lip(1) and there is a surjection $\mathbb{R} \twoheadrightarrow \mathcal{F}$.

Assuming $AD + DC(\mathbb{R})$ we have that:

• $\leq_{\mathcal{F}}$ is well-founded and has length Θ ,

A B M A B M

A set of functions \mathcal{F} is said *set of reductions* if it is closed under composition, contains Lip(1) and there is a surjection $\mathbb{R} \twoheadrightarrow \mathcal{F}$.

Assuming $AD + DC(\mathbb{R})$ we have that:

- $\leq_{\mathcal{F}}$ is well-founded and has length Θ ,
- after a nonselfdual pair there is a single selfdual degree,

A set of functions \mathcal{F} is said *set of reductions* if it is closed under composition, contains Lip(1) and there is a surjection $\mathbb{R} \twoheadrightarrow \mathcal{F}$.

Assuming $AD + DC(\mathbb{R})$ we have that:

- $\leq_{\mathcal{F}}$ is well-founded and has length Θ ,
- after a nonselfdual pair there is a single selfdual degree,
- at limit levels of countable cofinality there is a single selfdual degree.

A 3 1 A 3 1 A

A set of functions \mathcal{F} is said *set of reductions* if it is closed under composition, contains Lip(1) and there is a surjection $\mathbb{R} \twoheadrightarrow \mathcal{F}$.

Assuming $AD + DC(\mathbb{R})$ we have that:

- $\leq_{\mathcal{F}}$ is well-founded and has length Θ ,
- after a nonselfdual pair there is a single selfdual degree,
- at limit levels of countable cofinality there is a single selfdual degree.

Problem 2: What happens after a selfdual degree and at limit levels of uncountable cofinality?

A set of functions \mathcal{F} is said *set of reductions* if it is closed under composition, contains Lip(1) and there is a surjection $\mathbb{R} \twoheadrightarrow \mathcal{F}$.

Assuming $AD + DC(\mathbb{R})$ we have that:

- $\leq_{\mathcal{F}}$ is well-founded and has length Θ ,
- after a nonselfdual pair there is a single selfdual degree,
- at limit levels of countable cofinality there is a single selfdual degree.

Problem 2: What happens after a selfdual degree and at limit levels of uncountable cofinality?

Given any set of reductions \mathcal{F} , we can define its *characteristic set*

$$\boldsymbol{\Delta}_{\mathcal{F}} = \left\{ A \subseteq \mathbb{R} \mid A \leq_{\mathcal{F}} \mathbf{N}_{\langle 0 \rangle} \right\}.$$

伺い イヨト イヨト

A set of reductions $Lip \subseteq \mathcal{F} \subseteq Bor$ is *Borel-amenable* if

$$f=\bigcup_n(f_n\restriction D_n)\in\mathcal{F}$$

for every countable $\Delta_{\mathcal{F}}$ -partition $\langle D_n \mid n \in \omega \rangle$ of \mathbb{R} and every family $\{f_n \mid n \in \omega\} \subseteq \mathcal{F}$.

伺 とう ヨン うちょう

A set of reductions $Lip \subseteq \mathcal{F} \subseteq Bor$ is *Borel-amenable* if

$$f=\bigcup_n(f_n\restriction D_n)\in\mathcal{F}$$

for every countable $\Delta_{\mathcal{F}}$ -partition $\langle D_n \mid n \in \omega \rangle$ of \mathbb{R} and every family $\{f_n \mid n \in \omega\} \subseteq \mathcal{F}$.

Examples: Continuous functions,

伺 と く き と く き と

A set of reductions $Lip \subseteq \mathcal{F} \subseteq Bor$ is *Borel-amenable* if

$$f=\bigcup_n(f_n\restriction D_n)\in\mathcal{F}$$

for every countable $\Delta_{\mathcal{F}}$ -partition $\langle D_n \mid n \in \omega \rangle$ of \mathbb{R} and every family $\{f_n \mid n \in \omega\} \subseteq \mathcal{F}$.

Examples: Continuous functions, D_{α} ,

伺 とう ヨン うちょう

A set of reductions $Lip \subseteq \mathcal{F} \subseteq Bor$ is *Borel-amenable* if

$$f=\bigcup_n(f_n\restriction D_n)\in\mathcal{F}$$

for every countable $\Delta_{\mathcal{F}}$ -partition $\langle D_n \mid n \in \omega \rangle$ of \mathbb{R} and every family $\{f_n \mid n \in \omega\} \subseteq \mathcal{F}$.

Examples: Continuous functions, D_{α} , **Bor**,

伺 とう ヨン うちょう

A set of reductions $Lip \subseteq \mathcal{F} \subseteq Bor$ is *Borel-amenable* if

$$f=\bigcup_n(f_n\restriction D_n)\in\mathcal{F}$$

for every countable $\Delta_{\mathcal{F}}$ -partition $\langle D_n \mid n \in \omega \rangle$ of \mathbb{R} and every family $\{f_n \mid n \in \omega\} \subseteq \mathcal{F}$.

Examples: Continuous functions, D_{α} , Bor, functions continuous on a Δ_{α}^{0} -partition (denoted by D_{α}^{W}) and so on.

通 と く ヨ と く ヨ と

A set of reductions $\mathsf{Lip} \subseteq \mathcal{F} \subseteq \mathsf{Bor}$ is <code>Borel-amenable</code> if

$$f=\bigcup_n(f_n\restriction D_n)\in\mathcal{F}$$

for every countable $\Delta_{\mathcal{F}}$ -partition $\langle D_n \mid n \in \omega \rangle$ of \mathbb{R} and every family $\{f_n \mid n \in \omega\} \subseteq \mathcal{F}$.

Examples: Continuous functions, D_{α} , Bor, functions continuous on a $\mathbf{\Delta}_{\alpha}^{0}$ -partition (denoted by D_{α}^{W}) and so on.

Definition

A set of reductions \mathcal{F} has the *decomposition property* (**DP**) if for every $A \leq_{\mathcal{F}} \neg A \notin \Delta_{\mathcal{F}}$ there is a countable $\Delta_{\mathcal{F}}$ -partition $\langle D_n \mid n \in \omega \rangle$ of \mathbb{R} such that $A \cap D_n <_{\mathcal{F}} A$ for every *n*.

• E •

Assume AD. If \mathcal{F} is Borel-amenable and has the **DP** then both after a selfdual degree and at limit levels of uncountable cofinality there is a nonselfdual pair.

Assume AD. If \mathcal{F} is Borel-amenable and has the **DP** then both after a selfdual degree and at limit levels of uncountable cofinality there is a nonselfdual pair.

Theorem (M.)

Assume AD. Every Borel-amenable set of reductions has the **DP**.

Assume AD. If \mathcal{F} is Borel-amenable and has the **DP** then both after a selfdual degree and at limit levels of uncountable cofinality there is a nonselfdual pair.

Theorem (M.)

Assume AD. Every Borel-amenable set of reductions has the **DP**.

Assume AD. If \mathcal{F} is Borel-amenable and has the **DP** then both after a selfdual degree and at limit levels of uncountable cofinality there is a nonselfdual pair.

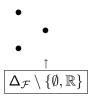
Theorem (M.)

Assume AD. Every Borel-amenable set of reductions has the **DP**.

Assume AD. If \mathcal{F} is Borel-amenable and has the **DP** then both after a selfdual degree and at limit levels of uncountable cofinality there is a nonselfdual pair.

Theorem (M.)

Assume AD. Every Borel-amenable set of reductions has the **DP**.



Assume AD. If \mathcal{F} is Borel-amenable and has the **DP** then both after a selfdual degree and at limit levels of uncountable cofinality there is a nonselfdual pair.

Theorem (M.)

Assume AD. Every Borel-amenable set of reductions has the **DP**.

Assume AD. If \mathcal{F} is Borel-amenable and has the **DP** then both after a selfdual degree and at limit levels of uncountable cofinality there is a nonselfdual pair.

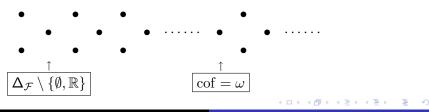
Theorem (M.)

Assume AD. Every Borel-amenable set of reductions has the **DP**.

Assume AD. If \mathcal{F} is Borel-amenable and has the **DP** then both after a selfdual degree and at limit levels of uncountable cofinality there is a nonselfdual pair.

Theorem (M.)

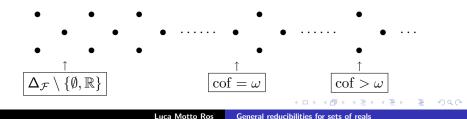
Assume AD. Every Borel-amenable set of reductions has the **DP**.



Assume AD. If \mathcal{F} is Borel-amenable and has the **DP** then both after a selfdual degree and at limit levels of uncountable cofinality there is a nonselfdual pair.

Theorem (M.)

Assume AD. Every Borel-amenable set of reductions has the **DP**.



Two sets of reductions \mathcal{F} and \mathcal{G} are said to be *equivalent* $(\mathcal{F} \simeq \mathcal{G})$ just in case they induce the same preorder, i.e. if

$$\forall A, B \subseteq \mathbb{R} (A \leq_{\mathcal{F}} B \iff A \leq_{\mathcal{G}} B).$$

Two sets of reductions \mathcal{F} and \mathcal{G} are said to be *equivalent* ($\mathcal{F} \simeq \mathcal{G}$) just in case they induce the same preorder, i.e. if

$$\forall A, B \subseteq \mathbb{R} (A \leq_{\mathcal{F}} B \iff A \leq_{\mathcal{G}} B).$$

Theorem (M.)

Assume AD. If \mathcal{F} and \mathcal{G} are Borel-amenable then

$$\mathcal{F}\simeq \mathcal{G}\iff \Delta_{\mathcal{F}}=\Delta_{\mathcal{G}}.$$

Two sets of reductions \mathcal{F} and \mathcal{G} are said to be *equivalent* ($\mathcal{F} \simeq \mathcal{G}$) just in case they induce the same preorder, i.e. if

$$\forall A, B \subseteq \mathbb{R} (A \leq_{\mathcal{F}} B \iff A \leq_{\mathcal{G}} B).$$

Theorem (M.)

Assume AD. If \mathcal{F} and \mathcal{G} are Borel-amenable then

$$\mathcal{F}\simeq \mathcal{G}\iff \Delta_{\mathcal{F}}=\Delta_{\mathcal{G}}.$$

Remark 1: There are "natural" examples of distinct sets of functions which induce the same hierarchy, e.g. D_{α} and D_{α}^{W} .

Two sets of reductions \mathcal{F} and \mathcal{G} are said to be *equivalent* ($\mathcal{F} \simeq \mathcal{G}$) just in case they induce the same preorder, i.e. if

$$\forall A, B \subseteq \mathbb{R} (A \leq_{\mathcal{F}} B \iff A \leq_{\mathcal{G}} B).$$

Theorem (M.)

Assume AD. If \mathcal{F} and \mathcal{G} are Borel-amenable then

$$\mathcal{F}\simeq \mathcal{G}\iff \Delta_{\mathcal{F}}=\Delta_{\mathcal{G}}.$$

Remark 1: There are "natural" examples of distinct sets of functions which induce the same hierarchy, e.g. D_{α} and D_{α}^{W} .

Remark 2: The determinacy axioms are used in a *local* way:

Two sets of reductions \mathcal{F} and \mathcal{G} are said to be *equivalent* ($\mathcal{F} \simeq \mathcal{G}$) just in case they induce the same preorder, i.e. if

$$\forall A, B \subseteq \mathbb{R} (A \leq_{\mathcal{F}} B \iff A \leq_{\mathcal{G}} B).$$

Theorem (M.)

Assume AD. If \mathcal{F} and \mathcal{G} are Borel-amenable then

$$\mathcal{F}\simeq \mathcal{G}\iff \Delta_{\mathcal{F}}=\Delta_{\mathcal{G}}.$$

Remark 1: There are "natural" examples of distinct sets of functions which induce the same hierarchy, e.g. D_{α} and D_{α}^{W} .

Remark 2: The determinacy axioms are used in a *local* way: to compare Borel sets it is enough to assume Borel-determinacy (which follows from ZFC).

 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition } (\text{for } 1 \le \xi < \omega_1)!$

白 と く ヨ と く ヨ と …

2

 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition (for } 1 \le \xi < \omega_1)!$

Lemma (M.)

The closure under composition of \mathcal{F}_{ξ} is $\mathscr{F}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$, where $\alpha = \xi \cdot \omega$ is the smallest additively closed ordinal > ξ .

向下 イヨト イヨト

 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition (for } 1 \le \xi < \omega_1)!$

Lemma (M.)

The closure under composition of \mathcal{F}_{ξ} is $\mathscr{F}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$, where $\alpha = \xi \cdot \omega$ is the smallest additively closed ordinal $> \xi$.

 \mathscr{F}_{α} is a set of reductions,

伺下 イヨト イヨト

 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition (for } 1 \le \xi < \omega_1)!$

Lemma (M.)

The closure under composition of \mathcal{F}_{ξ} is $\mathscr{F}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$, where $\alpha = \xi \cdot \omega$ is the smallest additively closed ordinal $> \xi$.

 \mathscr{F}_{α} is a set of reductions, but *is not Borel-amenable*.

向下 イヨト イヨト

 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition (for } 1 \le \xi < \omega_1)!$

Lemma (M.)

The closure under composition of \mathcal{F}_{ξ} is $\mathscr{F}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$, where $\alpha = \xi \cdot \omega$ is the smallest additively closed ordinal $> \xi$.

 \mathscr{F}_{α} is a set of reductions, but *is not Borel-amenable*. Theorem (M.) $\mathscr{F}_{\alpha} \simeq \{f \mid f \text{ is a } \Delta^{0}_{\beta}\text{-function for some } \beta < \alpha\}.$

伺下 イヨト イヨト

 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition (for } 1 \leq \xi < \omega_1)!$

Lemma (M.)

The closure under composition of \mathcal{F}_{ξ} is $\mathscr{F}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$, where $\alpha = \xi \cdot \omega$ is the smallest additively closed ordinal $> \xi$.

 \mathscr{F}_{α} is a set of reductions, but *is not Borel-amenable*. Theorem (M.) $\mathscr{F}_{\alpha} \simeq \{f \mid f \text{ is a } \Delta^{0}_{\beta}\text{-function for some } \beta < \alpha\}.$ In particular, the degree-structure induced by \mathscr{F}_{α} is:

伺下 イヨト イヨト

 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition (for } 1 \le \xi < \omega_1)!$

Lemma (M.)

The closure under composition of \mathcal{F}_{ξ} is $\mathscr{F}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$, where $\alpha = \xi \cdot \omega$ is the smallest additively closed ordinal $> \xi$.

 \mathscr{F}_{α} is a set of reductions, but *is not Borel-amenable*. Theorem (M.) $\mathscr{F}_{\alpha} \simeq \{f \mid f \text{ is a } \Delta^{0}_{\beta}\text{-function for some } \beta < \alpha\}.$ In particular, the degree-structure induced by \mathscr{F}_{α} is:

伺下 イヨト イヨト

 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition (for } 1 \le \xi < \omega_1)!$

Lemma (M.)

The closure under composition of \mathcal{F}_{ξ} is $\mathscr{F}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$, where $\alpha = \xi \cdot \omega$ is the smallest additively closed ordinal $> \xi$.

 \mathscr{F}_{α} is a set of reductions, but *is not Borel-amenable*. Theorem (M.) $\mathscr{F}_{\alpha} \simeq \{f \mid f \text{ is a } \Delta^{0}_{\beta}\text{-function for some } \beta < \alpha\}.$ In particular, the degree-structure induced by \mathscr{F}_{α} is:

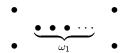
伺下 イヨト イヨト

 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition (for } 1 \le \xi < \omega_1)!$

Lemma (M.)

The closure under composition of \mathcal{F}_{ξ} is $\mathscr{F}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$, where $\alpha = \xi \cdot \omega$ is the smallest additively closed ordinal $> \xi$.

 \mathscr{F}_{α} is a set of reductions, but *is not Borel-amenable*. Theorem (M.) $\mathscr{F}_{\alpha} \simeq \{f \mid f \text{ is a } \Delta^{0}_{\beta}\text{-function for some } \beta < \alpha\}.$ In particular, the degree-structure induced by \mathscr{F}_{α} is:



通 とう ほう とう マート

 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition (for } 1 \leq \xi < \omega_1)!$

Lemma (M.)

The closure under composition of \mathcal{F}_{ξ} is $\mathscr{F}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$, where $\alpha = \xi \cdot \omega$ is the smallest additively closed ordinal $> \xi$.

 \mathscr{F}_{α} is a set of reductions, but *is not Borel-amenable*. Theorem (M.) $\mathscr{F}_{\alpha} \simeq \{f \mid f \text{ is a } \Delta^{0}_{\beta}\text{-function for some } \beta < \alpha\}.$ In particular, the degree-structure induced by \mathscr{F}_{α} is:

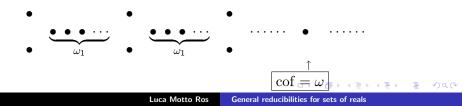
向下 イヨト イヨト

 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition (for } 1 \le \xi < \omega_1)!$

Lemma (M.)

The closure under composition of \mathcal{F}_{ξ} is $\mathscr{F}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$, where $\alpha = \xi \cdot \omega$ is the smallest additively closed ordinal $> \xi$.

 \mathscr{F}_{α} is a set of reductions, but *is not Borel-amenable*. Theorem (M.) $\mathscr{F}_{\alpha} \simeq \{f \mid f \text{ is a } \Delta^{0}_{\beta}\text{-function for some } \beta < \alpha\}.$ In particular, the degree-structure induced by \mathscr{F}_{α} is:

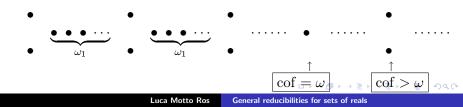


 $\mathcal{F}_{\xi} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ is of Baire class } \xi \} \text{ is } not \text{ closed under composition (for } 1 \le \xi < \omega_1)!$

Lemma (M.)

The closure under composition of \mathcal{F}_{ξ} is $\mathscr{F}_{\alpha} = \bigcup_{\beta < \alpha} \mathcal{F}_{\beta}$, where $\alpha = \xi \cdot \omega$ is the smallest additively closed ordinal $> \xi$.

 \mathscr{F}_{α} is a set of reductions, but *is not Borel-amenable*. Theorem (M.) $\mathscr{F}_{\alpha} \simeq \{f \mid f \text{ is a } \Delta^{0}_{\beta}\text{-function for some } \beta < \alpha\}.$ In particular, the degree-structure induced by \mathscr{F}_{α} is:



One can also define a notion of superamenability which extends the notion of Borel-amenability.

E + 4 E +

One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

Examples (AD): Σ_{2n}^{1} ,

One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

Examples (AD): Σ_{2n}^1 , σ -projective sets,

One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

Examples (AD): Σ_{2n}^1 , σ -projective sets, inductive sets.

One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

Examples (AD): Σ_{2n}^1 , σ -projective sets, inductive sets. Under AD_R there are tractable pointclasses of arbitrarily high complexity.

One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

Examples (AD): Σ_{2n}^1 , σ -projective sets, inductive sets. Under AD_R there are tractable pointclasses of arbitrarily high complexity.

Theorem (M.)

One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

Examples (AD**)**: Σ_{2n}^1 , σ -projective sets, inductive sets. Under AD_R there are tractable pointclasses of arbitrarily high complexity.

Theorem (M.) Assume AD + DC. Then the degree-structure induced by \mathcal{F}_{Γ} is determined:

 $\stackrel{\uparrow}{[\emptyset,\mathbb{R}]}$

One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

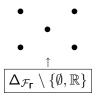
Examples (AD**)**: Σ_{2n}^1 , σ -projective sets, inductive sets. Under AD_R there are tractable pointclasses of arbitrarily high complexity.

Theorem (M.) Assume AD + DC. Then the degree-structure induced by \mathcal{F}_{Γ} is determined:

• • $\Delta_{\mathcal{F}_{\Gamma}} \setminus \{\emptyset, \mathbb{R}\}$

One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

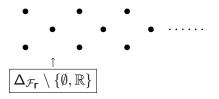
Examples (AD**)**: Σ_{2n}^1 , σ -projective sets, inductive sets. Under AD_R there are tractable pointclasses of arbitrarily high complexity.



One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

Examples (AD**)**: Σ_{2n}^1 , σ -projective sets, inductive sets. Under AD_R there are tractable pointclasses of arbitrarily high complexity.

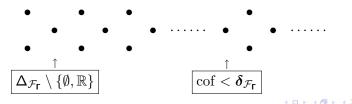
Theorem (M.)



One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

Examples (AD): Σ_{2n}^1 , σ -projective sets, inductive sets. Under AD_R there are tractable pointclasses of arbitrarily high complexity.

Theorem (M.)



One can also define a notion of superamenability which extends the notion of Borel-amenability. In particular, if Γ is a *tractable* pointclass, the collection \mathcal{F}_{Γ} of the Γ -functions is a superamenable set of reductions.

Examples (AD): Σ_{2n}^1 , σ -projective sets, inductive sets. Under AD_R there are tractable pointclasses of arbitrarily high complexity.

Theorem (M.)

