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Complexity and reductions

Intuitively, a set A is simpler than — or as complex as — a set B if
the problem of verifying membership in A can be reduced to the
problem of verifying membership in B.

Thus to establish if a set of reals A is more or less complex than
another set of reals B is enough to define a suitable notion of
reduction between sets of reals.

Definition (W.W.Wadge, 1972)

A is (continuously) reducible to B just in case there is a
continuous function f such that

x ∈ A ⇐⇒ f (x) ∈ B

for every real x .
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Reducibilities for sets of reals

Given a “reasonable” set of functions F we can define the preorder
≤F by letting

A ≤F B ⇐⇒ A = f −1(B) for some f ∈ F ,

and consequently the induced equivalence relation ≡F and the
notion of F-degree [A]F = {B ⊆ R | B ≡F A}.

The aim is to study the structure of the F-degrees endowed with
the preorder ≤ induced by ≤F , where

[A]F ≤ [B]F ⇐⇒ A ≤F B.

Some terminology:

I Selfdual degrees: [A]F such that A ≤F ¬A

I Nonselfdual pairs: {[A]F , [¬A]F} such that A �F ¬A
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Lipschitz functions

Let F = Lip(1) = L.

Reformulating these functions in terms of
games on ω Wadge proved

Lemma (W.W.Wadge, 1972)

Assume AD. Then
(SLOL) ∀A,B ⊆ R(A ≤L B ∨ ¬B ≤L A).

Theorem (D.A.Martin, 1972)

Assume AD + DC(R). The preorder ≤L is well-founded.

Under AD + DC(R) the Lipschitz degree-structure is

• • • •
• • • · · ·︸ ︷︷ ︸

ω1

• • • · · ·︸ ︷︷ ︸
ω1

· · · · · · • · · · · · · · · · · · ·
• • • •

↑

cof = ω

↑

cof > ω
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Continuous functions

Let F = W be the collection of the continuous functions.

Theorem (Steel-Van Wesep)

Assume AD. Then A ≤W ¬A ⇒ A ≤L ¬A for every A ⊆ R.

Thus every selfdual Wadge-degree is the union of an ω1-block of
consecutive selfdual Lipschitz-degrees.

Assume AD + DC(R). The Wadge degree-structure is

• • • • •
• • • · · · · · · • • · · · · · · • · · ·

• • • • •
↑

∆0
1 \ {∅, R}

↑

cof = ω

↑

cof > ω

The length of the Wadge hierarchy (and of the Lipschitz one) is
exactly Θ = sup{α | ∃f (f : R � α)}.
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Other reducibilities

Andretta and Martin (2003) gave a first definition of what should
be meant by “reasonable”:

such definition comprises, among
others, the set of the continuous functions, the set of the Borel
functions, the set Dα of the ∆0

α-functions (i.e. of those functions
such that f −1(D) ∈ ∆0

α for every D ∈ ∆0
α) and so on.

Let F = Bor be the set of the Borel functions, and assume
AD + DC(R). Then ≤Bor is well-founded and the structure of the
Bor-degrees is like the Wadge one.

Remark: There are no games for the Borel functions, all the
arguments used are topological (changes of topologies).

The same is true if we consider the collection of the ∆0
2-functions.

Problem 1: Can we determine the degree-structure of any
“reasonable” F?
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Sets of reductions

A set of functions F is said set of reductions if it is closed under
composition, contains Lip(1) and there is a surjection R � F .

Assuming AD + DC(R) we have that:

I ≤F is well-founded and has length Θ,

I after a nonselfdual pair there is a single selfdual degree,

I at limit levels of countable cofinality there is a single selfdual
degree.

Problem 2: What happens after a selfdual degree and at limit
levels of uncountable cofinality?

Given any set of reductions F , we can define its characteristic set

∆F =
{
A ⊆ R | A ≤F N〈0〉

}
.
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Borel-amenability

Definition
A set of reductions Lip ⊆ F ⊆ Bor is Borel-amenable if

f =
⋃
n

(fn � Dn) ∈ F

for every countable ∆F -partition 〈Dn | n ∈ ω〉 of R and every
family {fn | n ∈ ω} ⊆ F .

Examples: Continuous functions, Dα, Bor, functions continuous
on a ∆0

α-partition (denoted by DW
α ) and so on.

Definition
A set of reductions F has the decomposition property (DP) if for
every A ≤F ¬A /∈ ∆F there is a countable ∆F -partition
〈Dn | n ∈ ω〉 of R such that A ∩ Dn <F A for every n.
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Borel-amenable hierarchies

Theorem (M.)

Assume AD. If F is Borel-amenable and has the DP then both
after a selfdual degree and at limit levels of uncountable cofinality
there is a nonselfdual pair.

Theorem (M.)

Assume AD. Every Borel-amenable set of reductions has the DP.

Therefore, if F is Borel-amenable then the preorder ≤F induces a
degree-structure which is like the Wadge one:

• • • • •
• • • · · · · · · • • · · · · · · • · · ·

• • • • •
↑

∆F \ {∅, R}
↑

cof = ω

↑

cof > ω
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Equivalent reductions

Two sets of reductions F and G are said to be equivalent (F ' G)
just in case they induce the same preorder, i.e. if

∀A,B ⊆ R (A ≤F B ⇐⇒ A ≤G B).

Theorem (M.)

Assume AD. If F and G are Borel-amenable then

F ' G ⇐⇒ ∆F = ∆G .

Remark 1: There are “natural” examples of distinct sets of
functions which induce the same hierarchy, e.g. Dα and DW

α .

Remark 2: The determinacy axioms are used in a local way: to
compare Borel sets it is enough to assume Borel-determinacy
(which follows from ZFC).
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Baire reductions

Fξ = {f : R → R | f is of Baire class ξ} is not closed under
composition (for 1 ≤ ξ < ω1)!

Lemma (M.)

The closure under composition of Fξ is Fα =
⋃

β<αFβ, where
α = ξ · ω is the smallest additively closed ordinal > ξ.

Fα is a set of reductions, but is not Borel-amenable.

Theorem (M.)

Fα ' {f | f is a ∆0
β-function for some β < α}.

In particular, the degree-structure induced by Fα is:

• • • •
• • • · · ·︸ ︷︷ ︸

ω1

• • • · · ·︸ ︷︷ ︸
ω1

· · · · · · • · · · · · · · · · · · ·
• • • •

↑

cof = ω

↑

cof > ω
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Beyond the Borel context: superamenability

One can also define a notion of superamenability which extends
the notion of Borel-amenability.

In particular, if Γ is a tractable
pointclass, the collection FΓ of the Γ-functions is a superamenable
set of reductions.

Examples (AD): Σ1
2n, σ-projective sets, inductive sets. Under

ADR there are tractable pointclasses of arbitrarily high complexity.

Theorem (M.)

Assume AD + DC. Then the degree-structure induced by FΓ is
determined:

• • • • •
• • • · · · · · · • • · · · · · · • · · ·

• • • • •
↑

∆FΓ
\ {∅, R}

↑

cof < δFΓ

↑

cof ≥ δFΓ
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