Thin Projective Equivalence Relations and Inner Models

Philipp Schlicht
University of Münster, Germany
Logic Colloquium Wrocław, 14-19 July 2007

Definition. An equivalence relation $E \subseteq \omega^{\omega} \times \omega^{\omega}$ is called thin if there is no perfect set of pairwise inequivalent reals.
Question. How does an inner model look like, if for any thin projective equivalence relation, every equivalence class has a representative in the inner model?

Theorem. (Hjorth 1993) Assume $x^{\#}$ exists for every $x \in \omega^{\omega}$. Then the following statements are equivalent for an inner model M:

1. For all thin $\Pi_{2}^{1}(z)$ equivalence relations with $z \in M$, every equivalence class has a representative in M
2. $\omega_{1}^{M}=\omega_{1}^{V}$ and $M \prec_{\Sigma_{3}^{1}} V$

Theorem. (Hjorth, Schindler, Schlicht 2006) Assume $\operatorname{Det}\left(\Delta_{2 n}^{1}\right)$ holds and $M_{2 n-2}^{\dagger}(x)$ exists for every $x \in \omega^{\omega}$. Then the following statements are equivalent for an inner model M:

1. For all thin $\Pi_{2 n}^{1}(z)$ equivalence relations with $z \in M$, every equivalence class has a representative in M
2. $T_{2 n-1}^{M}=T_{2 n-1}^{V}$ and $M \prec_{\Sigma_{2 n+1}^{1}} V$
where $T_{2 n-1}$ is the tree from $a \Pi_{2 n-1}^{1}$ scale.

We prove that (2) implies (1). Assume that $n=2$ and E is a thin Π_{4}^{1} equivalence relation.

Suppose $x \in \omega^{\omega}$. We have to find $x^{\prime} \in \omega^{\omega} \cap M$ with $\left(x, x^{\prime}\right) \in E$.

Since E is Π_{4}^{1}, its complement is ${\underset{\sim}{3}}_{1}^{1}$-Suslin via a tree computed from T_{3}. A theorem of Harrington and Shelah proves that there is a formula $\varphi \in \mathcal{L}_{\infty, 0} \cap L_{\alpha}\left[T_{3}\right]$ with

- $\varphi(x)$
- $\forall y(\varphi(y) \Rightarrow(x, y) \in E)$
where α is least such that $L_{\alpha}\left[T_{3}\right] \vDash K P$. The language $\mathcal{L}_{\infty, 0}$ is built from atomic formulas $n \in x$ and $n \notin x$ by infinitary conjunctions and disjunctions, so that $\mathcal{L}_{\infty, 0}$ formulas describe a real.

Since $\varphi \in L_{\alpha}\left[T_{3}\right]$, there is $y \in \omega^{\omega} \cap M$ such that φ is definable from T_{3}, y by a term t_{φ} in any transitive model of $K P$ containing T_{3} and y.

Idea of proof:
Try to write $\exists x \varphi(x)$ as a Σ_{5}^{1} statement. For this purpose, reconstruct T_{3} in an iterate of $M_{2}^{\dagger}(x, y)$, so that you can compute $\varphi=t_{\varphi}\left(y, T_{3}\right)$ in the iterate. Then you can express $\varphi(x)$ in $M_{2}^{\dagger}(x, y)$.
Here $M_{2}^{\dagger}(x, y)$ is the smallest $\left(\omega_{1}+1\right)$-iterable premouse built over (x, y) with 2 Woodin cardinals and a measurable cardinal above. Let $\gamma<\delta<\kappa$ such that $M_{2}^{\dagger}(x, y) \vDash \gamma, \delta$ are Woodin cardinals and κ is measurable.

Let \bar{V} be countable with $x, y \in \bar{V}$ and $\pi: \bar{V} \rightarrow_{\Sigma_{100}} V$ elementary. Let $\bar{M}=\pi^{-1}{ }^{\prime} M, \overline{T_{3}}=\pi^{-1}\left(T_{3}\right)$, etc.
By forming Skolem hulls, in \bar{M} we can construct substructures $X_{0} \prec X_{1} \prec \ldots \prec M_{2}^{\dagger}(x, y)$ and ordinals $\gamma_{0}<\gamma_{1}<\ldots<\gamma, \delta_{0} \leq \delta_{1} \leq \ldots \leq \delta, \kappa_{0} \leq \kappa_{1} \leq \ldots \leq \kappa$, with

1. $V_{\gamma_{i}}^{X_{i}}=V_{\gamma_{i}}^{M_{2}^{\dagger}(x, y)}$ for all $i \in \omega$
2. $X_{i} \vDash \gamma_{i}<\delta_{i}$ are both Woodin cardinals and $\kappa_{i}>\delta_{i}$ is measurable
3. $\sup _{i \in \omega} \gamma_{i}=\gamma$

Then each X_{i} is ω_{1}-iterable.

Let $\omega^{\omega} \cap \bar{V}=\left\{y_{i}: i \in \omega\right\}$. We can now iterate $M_{2}^{\dagger}(x, y) \rightarrow N_{0} \rightarrow N_{1} \rightarrow \ldots \rightarrow N_{i} \rightarrow \ldots$ so that y_{i} is $\operatorname{Col}\left(\omega, \pi_{0 i}\left(\gamma_{i}\right)\right)$-generic over $\pi_{0 i}\left(X_{i}\right)$, by Woodin's genericity iteration. Let $\pi_{i j}: N_{i} \rightarrow N_{j}$ denote the iteration maps. Let $N_{\omega}=\operatorname{dirlim} i_{i \rightarrow \omega} N_{i}$.

Then y_{i} is still $\operatorname{Col}\left(\omega, \pi_{0 i}\left(\gamma_{i}\right)\right)$-generic over $\pi_{0 j}\left(X_{i}\right)$ for all j with $i \leq j \leq \omega$.
Note that $\sup _{i \in \omega} \pi_{0 i}\left(\gamma_{i}\right)=\omega_{1}^{\bar{V}}$. Let G be a $\operatorname{Col}\left(\omega,<\omega_{1}^{\bar{V}}\right)$-generic filter over N_{ω} in V such that $\omega^{\omega} \cap N_{\omega}[G] \subseteq \omega^{\omega} \cap \bar{V}$.

Claim. $T_{3}^{\bar{V}}=T_{3}^{N_{\omega}[G]}$
Proof. It is sufficient to prove that for any Π_{3}^{1} rank and every $y_{i} \in \omega^{\omega} \cap \bar{V}$, there is $z \in \omega^{\omega} \cap N_{\omega}[G]$ of the same rank. Note that $N_{\omega}[G] \prec_{\Sigma_{3}^{1}} V$ since $N_{\omega}[G]$ has a Woodin cardinal and a measurable above it, and is iterable.

To prove this, fix y_{i}. Suppose G_{i} is $\operatorname{Col}\left(\omega, \pi_{0 i}\left(\gamma_{i}\right)\right)$-generic over $\pi_{0 \omega}\left(X_{i}\right)$ with $y_{i} \in \pi_{0 \omega}\left(X_{i}\right)\left[G_{i}\right]$. Let \dot{x} be a name with $\dot{x}^{G_{i}}=y_{i}$. Let \dot{x}_{0}, \dot{x}_{1} be the corresponding names for left and right generic. We can now find a condition $p \in G_{i}$ such that $(p, p) \Vdash " \dot{x}_{0}$ and \dot{x}_{1} have the same rank".

Let $H \in N_{\omega}[G]$ generic below p over $\pi_{0 \omega}\left(X_{i}\right)$ and $z=\dot{x}^{H}$. Find H^{\prime} generic below p over both $\pi_{0 \omega}\left(X_{i}\right)\left[G_{i}\right]$ and $\pi_{0 \omega}\left(X_{i}\right)[H]$. Since $\pi_{0 \omega}\left(X_{i}\right)\left[G_{i}, H^{\prime}\right]$ and $\pi_{0 \omega}\left(X_{i}\right)\left[H, H^{\prime}\right]$ are iterable and have a Woodin cardinal and a measurable above it, we get $N_{\omega}\left[G_{i}, H^{\prime}\right] \prec_{\Sigma_{3}^{1}} V$ and $\pi_{0 \omega}\left(X_{i}\right)\left[G_{i}, H^{\prime}\right] \prec_{\Sigma_{3}^{1}} V$. So these models compute the rank correctly. Hence $y_{i}, z, \dot{x}^{H^{\prime}}$ all have the same rank.

Since $\operatorname{Col}\left(\omega,<\sup \gamma_{i}\right)$ is homogeneous, we now have in \bar{V} :

- there is $x \in \omega^{\omega}$ such that $\Vdash_{C o l\left(\omega,<\sup \gamma_{i}\right)}^{M_{2}^{\dagger}(x, y)} t_{\varphi}\left(y, T_{3}\right)(x)$

Since $M_{2}^{\dagger}(x, y)$ is coded by a $\Pi_{4}^{1}(x, y)$ real, this is a Σ_{5}^{1} statement. Hence this is true in \bar{M}, let $x^{\prime} \in \omega^{\omega} \cap \bar{M} \subseteq M$ witness this. Since we can again iterate $M_{2}^{\dagger}(x, y)$ to some N_{ω}^{\prime} to make the reals of \bar{M} generic, we have

$$
T_{3}^{N^{\prime}{ }_{\omega}^{\operatorname{Col}\left(\omega,<\omega_{1}^{\bar{M}}\right)}}=T_{3}^{\bar{M}}=T_{3}^{\bar{V}}
$$

Since $\varphi=t_{\varphi}\left(y, T_{3}^{\bar{V}}\right)$, then $\varphi\left(x^{\prime}\right)$ holds. Hence $\left(x, x^{\prime}\right) \in E$.

Leo Harrington, Saharon Shelah: Counting equivalence classes of co- κ-Souslin equivalence relations, Logic Colloquium 1982, North-Holland 1982

Greg Hjorth: Thin equivalence relations and effective decompositions, Journal of Symbolic Logic, Vol. 58, No. 4, Dec. 1993

Greg Hjorth: Some applications of coarse inner model theory, Journal of Symbolic Logic, Vol. 62, No. 2, June 1997

John R. Steel: Projectively well-ordered inner models, Annals of Pure and Applied Logic 74, 1995

