Thin Projective Equivalence Relations and Inner Models

Philipp Schlicht University of Münster, Germany

Logic Colloquium Wrocław, 14-19 July 2007

Definition. An equivalence relation $E \subseteq \omega^{\omega} \times \omega^{\omega}$ is called *thin* if there is no perfect set of pairwise inequivalent reals.

Question. How does an inner model look like, if for any thin projective equivalence relation, every equivalence class has a representative in the inner model?

Theorem. (Hjorth 1993) Assume $x^{\#}$ exists for every $x \in \omega^{\omega}$. Then the following statements are equivalent for an inner model M:

1. For all thin $\Pi_2^1(z)$ equivalence relations with $z \in M$, every equivalence class has a representative in M

2.
$$\omega_1^M = \omega_1^V \text{ and } M \prec_{\Sigma_3^1} V$$

Theorem. (Hjorth, Schindler, Schlicht 2006) Assume $Det(\Delta_{2n}^1)$ holds and $M_{2n-2}^{\dagger}(x)$ exists for every $x \in \omega^{\omega}$. Then the following statements are equivalent for an inner model M:

1. For all thin $\Pi_{2n}^1(z)$ equivalence relations with $z \in M$, every equivalence class has a representative in M

2.
$$T_{2n-1}^M = T_{2n-1}^V$$
 and $M \prec_{\Sigma_{2n+1}^1} V$

where T_{2n-1} is the tree from a Π^1_{2n-1} scale.

Thin Projective Equivalence Relations

We prove that (2) implies (1). Assume that n = 2 and E is a thin Π_4^1 equivalence relation.

Suppose $x \in \omega^{\omega}$. We have to find $x' \in \omega^{\omega} \cap M$ with $(x, x') \in E$.

Since E is Π_4^1 , its complement is δ_3^1 -Suslin via a tree computed from T_3 . A theorem of Harrington and Shelah proves that there is a formula $\varphi \in \mathcal{L}_{\infty,0} \cap L_{\alpha}[T_3]$ with

- $\varphi(x)$
- $\forall y \ (\varphi(y) \Rightarrow (x, y) \in E)$

where α is least such that $L_{\alpha}[T_3] \vDash KP$. The language $\mathcal{L}_{\infty,0}$ is built from atomic formulas $n \in x$ and $n \notin x$ by infinitary conjunctions and disjunctions, so that $\mathcal{L}_{\infty,0}$ formulas describe a real.

Since $\varphi \in L_{\alpha}[T_3]$, there is $y \in \omega^{\omega} \cap M$ such that φ is definable from T_3, y by a term t_{φ} in any transitive model of KP containing T_3 and y.

Idea of proof:

Try to write $\exists x \varphi(x)$ as a Σ_5^1 statement. For this purpose, reconstruct T_3 in an iterate of $M_2^{\dagger}(x, y)$, so that you can compute $\varphi = t_{\varphi}(y, T_3)$ in the iterate. Then you can express $\varphi(x)$ in $M_2^{\dagger}(x, y)$.

Here $M_2^{\dagger}(x, y)$ is the smallest $(\omega_1 + 1)$ -iterable premouse built over (x, y) with 2 Woodin cardinals and a measurable cardinal above. Let $\gamma < \delta < \kappa$ such that $M_2^{\dagger}(x, y) \vDash \gamma, \delta$ are Woodin cardinals and κ is measurable. Let \overline{V} be countable with $x, y \in \overline{V}$ and $\pi : \overline{V} \to_{\Sigma_{100}} V$ elementary. Let $\overline{M} = \pi^{-1} M, \overline{T_3} = \pi^{-1}(T_3)$, etc.

By forming Skolem hulls, in \overline{M} we can construct substructures $X_0 \prec X_1 \prec \ldots \prec M_2^{\dagger}(x, y)$ and ordinals $\gamma_0 < \gamma_1 < \ldots < \gamma, \ \delta_0 \leq \delta_1 \leq \ldots \leq \delta, \ \kappa_0 \leq \kappa_1 \leq \ldots \leq \kappa,$ with

1.
$$V_{\gamma_i}^{X_i} = V_{\gamma_i}^{M_2^{\dagger}(x,y)}$$
 for all $i \in \omega$

2. $X_i \vDash \gamma_i < \delta_i$ are both Woodin cardinals and $\kappa_i > \delta_i$ is measurable

3.
$$\sup_{i \in \omega} \gamma_i = \gamma$$

Then each X_i is ω_1 -iterable.

Let $\omega^{\omega} \cap \overline{V} = \{y_i : i \in \omega\}$. We can now iterate $M_2^{\dagger}(x, y) \to N_0 \to N_1 \to \dots \to N_i \to \dots$ so that y_i is $Col(\omega, \pi_{0i}(\gamma_i))$ -generic over $\pi_{0i}(X_i)$, by Woodin's genericity iteration. Let $\pi_{ij} : N_i \to N_j$ denote the iteration maps. Let $N_{\omega} = dirlim_{i \to \omega} N_i$.

Then y_i is still $Col(\omega, \pi_{0i}(\gamma_i))$ -generic over $\pi_{0j}(X_i)$ for all j with $i \leq j \leq \omega$.

Note that $\sup_{i \in \omega} \pi_{0i}(\gamma_i) = \omega_1^{\overline{V}}$. Let G be a $Col(\omega, < \omega_1^{\overline{V}})$ -generic filter over N_{ω} in V such that $\omega^{\omega} \cap N_{\omega}[G] \subseteq \omega^{\omega} \cap \overline{V}$.

Claim.
$$T_3^{\overline{V}} = T_3^{N_{\omega}[G]}$$

Proof. It is sufficient to prove that for any Π_3^1 rank and every $y_i \in \omega^{\omega} \cap \overline{V}$, there is $z \in \omega^{\omega} \cap N_{\omega}[G]$ of the same rank. Note that $N_{\omega}[G] \prec_{\Sigma_3^1} V$ since $N_{\omega}[G]$ has a Woodin cardinal and a measurable above it, and is iterable.

To prove this, fix y_i . Suppose G_i is $Col(\omega, \pi_{0i}(\gamma_i))$ -generic over $\pi_{0\omega}(X_i)$ with $y_i \in \pi_{0\omega}(X_i)[G_i]$. Let \dot{x} be a name with $\dot{x}^{G_i} = y_i$. Let \dot{x}_0, \dot{x}_1 be the corresponding names for left and right generic. We can now find a condition $p \in G_i$ such that $(p, p) \Vdash \dot{x}_0$ and \dot{x}_1 have the same rank". Let $H \in N_{\omega}[G]$ generic below p over $\pi_{0\omega}(X_i)$ and $z = \dot{x}^H$. Find H' generic below p over both $\pi_{0\omega}(X_i)[G_i]$ and $\pi_{0\omega}(X_i)[H]$. Since $\pi_{0\omega}(X_i)[G_i, H']$ and $\pi_{0\omega}(X_i)[H, H']$ are iterable and have a Woodin cardinal and a measurable above it, we get $N_{\omega}[G_i, H'] \prec_{\Sigma_3^1} V$ and $\pi_{0\omega}(X_i)[G_i, H'] \prec_{\Sigma_3^1} V$. So these models compute the rank correctly. Hence $y_i, z, \dot{x}^{H'}$ all have the same rank. Since $Col(\omega, < \sup \gamma_i)$ is homogeneous, we now have in \overline{V} :

• there is $x \in \omega^{\omega}$ such that $\Vdash_{Col(\omega, <\sup \gamma_i)}^{M_2^{\dagger}(x,y)} t_{\varphi}(y,T_3)(x)$

Since $M_2^{\dagger}(x, y)$ is coded by a $\Pi_4^1(x, y)$ real, this is a Σ_5^1 statement. Hence this is true in \overline{M} , let $x' \in \omega^{\omega} \cap \overline{M} \subseteq M$ witness this. Since we can again iterate $M_2^{\dagger}(x, y)$ to some N_{ω}' to make the reals of \overline{M} generic, we have

$$T_3^{N'_{\omega}^{Col(\omega,<\omega_1^{\overline{M}})}} = T_3^{\overline{M}} = T_3^{\overline{V}}$$

Since $\varphi = t_{\varphi}(y, T_3^{\overline{V}})$, then $\varphi(x')$ holds. Hence $(x, x') \in E$.

Thin Projective Equivalence Relations

Leo Harrington, Saharon Shelah: Counting equivalence classes of $co-\kappa$ -Souslin equivalence relations, Logic Colloquium 1982, North-Holland 1982

Greg Hjorth: Thin equivalence relations and effectivedecompositions, Journal of Symbolic Logic, Vol. 58, No.4, Dec. 1993

Greg Hjorth: Some applications of coarse inner model theory, Journal of Symbolic Logic, Vol. 62, No. 2, June 1997

John R. Steel: Projectively well-ordered inner models, Annals of Pure and Applied Logic 74, 1995