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A mysterious property of S
∞

Oscillation stability for Banach spaces

Definition
Let X be an infinite dimensional Banach space.
X is oscillation stable when for every f : SX −→ [0, 1] uniformly
continuous, every ε > 0, every Y ⊂ X closed infinite dimensional, there
Z ⊂ Y closed infinite dimensional such that:

osc(f , Z ) := sup
x ,y∈SX∩Z

|f (y) − f (x)| < ε.
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Theorem (Gowers, 91)
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A mysterious property of S
∞

Which separable Banach spaces are oscillation stable?

Theorem
Let X be a Banach space.
Then X is oscillation stable iff X is c0-saturated.

Crucial results:

Theorem (Gowers, 91)

The space c0 is oscillation stable.

Theorem (Odell-Schlumprecht, 94)

The Hilbert space ℓ2 is not oscillation stable.
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A mysterious property of S
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Reformulation of the problem for ℓ2

Definition
Let X be a metric space.
X is metrically oscillation stable if for every f : X −→ [0, 1] uniformly
continuous, ε > 0, there is X̃ isometric to X such that:

∀x , y ∈ X̃ , |f (y) − f (x)| < ε.
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Definition
Let X be a metric space.
X is metrically oscillation stable if for every f : X −→ [0, 1] uniformly
continuous, ε > 0, there is X̃ isometric to X such that:

∀x , y ∈ X̃ , |f (y) − f (x)| < ε.

Equivalently:
Let X = A1 ∪ . . . ∪ Ak , ε > 0. There is X̃ isometric to X and i 6 k such
that

X̃ ⊂ (Ai )ε
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A mysterious property of S
∞

Reformulation of the problem for ℓ2

Definition
Let X be a metric space.
X is metrically oscillation stable if for every f : X −→ [0, 1] uniformly
continuous, ε > 0, there is X̃ isometric to X such that:

∀x , y ∈ X̃ , |f (y) − f (x)| < ε.

Equivalently:
Let X = A1 ∪ . . . ∪ Ak , ε > 0. There is X̃ isometric to X and i 6 k such
that

X̃ ⊂ (Ai )ε

Theorem (Odell-Schlumprecht)

The unit sphere S
∞ of ℓ2 is not metrically oscillation stable.
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A mysterious property of S
∞

Open question

Question
Is there a proof based on the intrinsic metric structure of S∞?
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The Urysohn sphere

A good candidate for a better understanding

Definition
Up to isometry, there is a unique metric space S with distances in [0, 1]
which is:

1. Complete, separable.

2. Ultrahomogeneous (every isometry between finite subsets of S

extends to an isometry of S onto itself).

3. Universal for the separable metric spaces with distances in [0, 1].
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The Urysohn sphere

Common features between S∞ and S

◮ Completeness, separability, ultrahomogeneity.

◮ Compact version of metric oscillation stability:
Let X = S∞ or S, f : X −→ [0, 1] uniformly continuous, ε > 0,
K ⊂ X compact.
Then f ε-stabilizes on an isometric copy of K .

◮ Higher dimensional Ramsey properties.

◮ Behaviour of iso(S∞) and iso(S) as topological groups.

L. Nguyen Van Thé (University of Calgary) The Urysohn sphere is oscillation stable July 2007 7 / 17



The Urysohn sphere

Main question
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The Urysohn sphere

Main question

Is S metrically oscillation stable?
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The Urysohn sphere

First attempt: Indivisibility of ultrahomogeneous dense
subspaces
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The Urysohn sphere

First attempt: Indivisibility of ultrahomogeneous dense
subspaces

Proposition

The space S admits countable ultrahomogeneous dense subsets.

Question
Let X ⊂ S be countable dense ultrahomogeneous.
Is X indivisible?
ie: Let X = A1 ∪ . . . ∪ Ak . Is there X̃ isometric to X and i 6 k such that

X̃ ⊂ Ai?
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The Urysohn sphere

First attempt: Indivisibility of ultrahomogeneous dense
subspaces

Proposition

The space S admits countable ultrahomogeneous dense subsets.

Question
Let X ⊂ S be countable dense ultrahomogeneous.
Is X indivisible?
ie: Let X = A1 ∪ . . . ∪ Ak . Is there X̃ isometric to X and i 6 k such that

X̃ ⊂ Ai?

Theorem (Delhommé-Laflamme-Pouzet-Sauer)

No.

Remark
Crucial point: The distance set of X is too rich.
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The Urysohn sphere

Second attempt: Discretization

Definition
Up to isometry, there is a unique metric space Um with distances in
{1, . . . ,m} which is:

1. Countable.

2. Ultrahomogeneous.

3. Universal for the countable metric spaces with distances in
{1, . . . ,m}.
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The Urysohn sphere

Main results

Theorem (López Abad - NVT)

TFAE

1. S is metrically oscillation stable.

2. Um is indivisible for every m ∈ N.
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The Urysohn sphere

Main results

Theorem (López Abad - NVT)

TFAE

1. S is metrically oscillation stable.

2. Um is indivisible for every m ∈ N.

Theorem (NVT - Sauer)

Um is indivisible for every m ∈ N.
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Proof of the main theorem

Katĕtov maps and orbits

Definition
Let X ⊂ Um, f : X −→ {1, . . . ,m}.
f is Katĕtov over X when it defines a 1-point metric extension of X :

∀x , y ∈ X , |f (x) − f (y)| 6 d(x , y) 6 f (x) + f (y).
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f is Katĕtov over X when it defines a 1-point metric extension of X :

∀x , y ∈ X , |f (x) − f (y)| 6 d(x , y) 6 f (x) + f (y).

The orbit of f in Um is then:

O(f , Um) = {y ∈ Um : ∀x ∈ X d(y , x) = f (x)}.
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Proof of the main theorem

Katĕtov maps and orbits

Definition
Let X ⊂ Um, f : X −→ {1, . . . ,m}.
f is Katĕtov over X when it defines a 1-point metric extension of X :

∀x , y ∈ X , |f (x) − f (y)| 6 d(x , y) 6 f (x) + f (y).

The orbit of f in Um is then:

O(f , Um) = {y ∈ Um : ∀x ∈ X d(y , x) = f (x)}.

Remark
If min f = p, then O(f , Um) is isometric to Umin(2p,m).
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Proof of the main theorem

The partial order P

Definition

◮ Elements of P:
Pairs s = (fs , Cs) where

1. fs : domfs −→ {1, . . . ,m} finite.
2. Cs ⊂ Um isometric to Um.
3. domfs ⊂ Cs .
4. fs is Katĕtov over domfs .
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Proof of the main theorem

The partial order P

Definition

◮ Elements of P:
Pairs s = (fs , Cs) where

1. fs : domfs −→ {1, . . . ,m} finite.
2. Cs ⊂ Um isometric to Um.
3. domfs ⊂ Cs .
4. fs is Katĕtov over domfs .

◮ Relations 6 and 6k :

t 6 s ↔ (domfs ⊂ domft ⊂ Ct ⊂ Cs and ft ↾ domfs = fs) .

t 6k s ↔ (t 6 s and min ft = min fs − k) .
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Proof of the main theorem

A notion of largeness

Definition
Let Γ ⊂ Um, s ∈ P.
Then Γ is large relative to s when:

◮ If min fs = 1:

∀t 60 s (O(ft ,Ct) ∩ Γ is infinite) .

◮ If min fs > 1:

∀t 60 s ∃u 61 t (Γ is large relative to u) .
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Crucial properties

Lemma
Let (fs , Cs) ∈ P. Assume that Γ is large relative to (fs , Cs).
Then there is C isometric to Um such that:

1. (fs , C ) 60 (fs , Cs).

2. O(fs , C ) ⊂ Γ.
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Proof of the main theorem

Crucial properties

Lemma
Let (fs , Cs) ∈ P. Assume that Γ is large relative to (fs , Cs).
Then there is C isometric to Um such that:

1. (fs , C ) 60 (fs , Cs).

2. O(fs , C ) ⊂ Γ.

Lemma
Let s ∈ P. Assume Γ is not large relative to s.
Then there is t 60 s such that Um r Γ is large relative to t.
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L. Nguyen Van Thé (University of Calgary) The Urysohn sphere is oscillation stable July 2007 17 / 17



Consequences

Consequences

Question
Which Banach spaces have a metrically oscillation stable sphere?

Theorem (Gowers)

The unit sphere of c0 is metrically oscillation stable.
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Consequences

Consequences

Question
Which Banach spaces have a metrically oscillation stable sphere?

Theorem (Gowers)

The unit sphere of c0 is metrically oscillation stable.

Theorem
The unit sphere of C[0, 1] is metrically oscillation stable.

Definition (Holmes)

There is a unique Banach space H into which the Urysohn space U

embeds isometrically with dense linear span.

Theorem
The unit sphere of H is metrically oscillation stable.
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