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Why Compare Theories?

Why compare theories in a systematic way?

I To explicate intuitions of sameness.
I To transfer information from one theory to another:

consistency, essential undecidability.
I Comparison of strength.
I To provide a philosophical reduction of ontologies.
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What is a Relative Translation?

A relative translation τ : Σ → Θ is a pair 〈δ, F 〉.
I δ is Θ-formula
I F associates to R of Σ of arity n a Θ-formula F (R) with

variables among v0, . . . , vn−1.

Induced extension mapping:
I (R(y0, · · · , yn−1))

τ := F (R)(y0, · · · , yn−1);
I (·)τ commutes with propositional connectives;
I (∀y A)τ := ∀y (δ(y) → Aτ );
I (∃y A)τ := ∃y (δ(y) ∧ Aτ ).

Variants: sorted, parameters, multidimensional, piecewise.



Comparing
Theories

The Predicative
Frege Hierarchy

6

What is a Relative Interpretation?

An interpretation K is of the form 〈U, τ, V 〉, where, for all
U-sentences A, we have: U ` A ⇒ V ` Aτ .

We write:
K : U → V , or U K−→ V , or K : V � U, or K : U � V .

Here are various notions of sameness for K , K ′ : U → V :

same(1) V proves that they are the same.
same(2) V proves that they are isomorphic via a definable

isomorphism.
same(3) In every model of V , the internal model defined by K is

isomorphic to the internal model defined by K ′.
same(4) For all sentences A of U, we have: V ` AK ↔ AK ′

.
same(5) Always.
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Examples

Interpretations are everywhere dense in Mathematics.

I Arithmetic in Set theory
I Hyperbolic Geometry in Eucidean Geometry
I Elementary Syntax in Arithmetic
I True Arithmetic in a non-abelian Group
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Categories

Each of the possibilities of identification of interpretations n, gives
rise to a category INTn−1.

I U and V are synonymous or definitionally equivalent iff they
are isomorphic in INT0.

I U and V are bi-interpretable iff they are isomorphic in INT1.

We have the contravariant mod functor from INT0 to CLASS that
sends K : U → V to the map that associates to each model M of
V the the internal model MOD(K )(M) defined by K .
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Synonymy

Synonymy is the strictest extensional relation of sameness known
apart from identity.

I Point-and-Line versions of Elementary Geometry are
synonymous with Point-Only versions.

I S1
2 is synonymous with an appropriate theory of strings:

Ferreira Arithmetic.
I PA is synonymous with ZF− + ¬INF + TC.

(Kay and Wong, 2006)
I ZF is a synonymous with an appropriate version of ZF

enriched with a countable set of urelements. (Löwe, 2006)
I I∆0 is not synonymous with Q. (Visser 2007, Friedman 2007)

Friedman: these theories are not weakly bi-interpretable.

Are Euclidean plane geometry and hyperbolic plane geometry
synonymous? If not, are they bi-interpretable?
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Ontological Reduction

In general, interpretations do not provide an ontological reduction.

Interpretations need not map standard models to standard models
modulo isomorphism. Positive examples:

I PA in ZF via the von Neumann interpretation.
I ZF− + ¬INF + TC in PA via the Ackermann interpretation.
I Hyperbolic into Euclidean Geometry via the Beltrami-Poincaré

interpretation.
Negative examples:

I PA + incon(PA) in PA, via any interpretation.
I PA in PA via any restricted interpretation.

Is there a real life example of theories U and V with conventional
standard models, where U is interpretable in V , but where no
interpretation maps the standard model of V to the standard
model of U?
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Comparing Strength

I (Q + con(U)) � U
I U 6 �(Q + con(Q)).
I Q + con(Q) is mut. interpretable with I∆0 + EXP.
I ZF � PA.
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Conservativity

U is Γ-conservative over V , or V �cons,Γ U.

Conservativity is not coordinate-free!

basic

U
�

K

V

M

-

K−1[U] ∩ Γ ⊆ M−1[V ]
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Examples

I GB is conservative over ZF, for the language of ZF, with
respect to EMB and ID.

I ZF is conservative over Q , for the language of arithmetic,
w.r.t. a faithful interpretation of Q in ZF and ID.
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The Hierarchy Defined

PV := P1V

P11) ` ∃X 0 ∀x (X 0x ↔ A(x , ~y , ~Y 0)),
where A does not contain X and does not contain bound
concept variables of degree 0.

P12) ` ‡0X 0 = ‡0Y 0 ↔ ∀z (X 0z ↔ Y 0z).

Pn+2V

Pn+21) ` ∃X n+1 ∀x (X n+1x ↔ A(x , ~y , ~Y 0, . . . , ~Y n+1)),
where A does not contain X and does not contain bound
concept variables of degree n + 1.

Pn+22) ` ‡n+1X n+1 = ‡nY n ↔ ∀z (X n+1z ↔ Y nz).
Pn+23) ` ‡n+1X n+1 = ‡n+1Y n+1 ↔ ∀z (X n+1z ↔ Y n+1z).
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From Consistency to Comprehension

We can construct an interpretation H : (Q + con(U)) � U, using
the Henkin-Feferman construction.

We can extend this interpretation to an interpretation of U plus
predicative comprehension over U by letting one-place formulas
play the role of concepts.

We can enrich this last interpretation to an interpretation that also
provides a Frege function in case U proves the infinity of its
domain in a sufficiently convenient way.
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From Comprehension to Consistency

Suppose U provides sufficient coding machinery. Then, U plus
predicative comprehension over U proves the consistency of U.

We do this by building a truth predicate for the language of U.

So, under reasonable conditions we have:
Consistency ≈ Predicative comprehension plus Frege function.
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The Result

Let:
I EA := I∆0 + EXP,
I EA+ := I∆0 + SUPEXP,
I Un := U + conn(U),
I Uω :=

⋃
n Un.

We find:

I Pn+1V ≡ Qn.
I PωV ≡loc Qω.
I P2n+1V ≡ EAn.
I PωV ≡loc Qω ≡ EAω.
I EA+ proves the equiconsistency of PωV and EA+.
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