Interpretations in Philosophical Logic

Albert Visser

Theoretical Philosophy, Department of Philosophy, Faculty of Humanities Utrecht University

Logic Colloquium 07, Wrocław, Monday, July 16, 2007 Comparing Theories

The Predicative Frege Hierarchy

Comparing Theories

The Predicative Frege Hierarchy

Comparin Theories

> The Predicative Frege Hierarchy

Comparing Theories

The Predicative Frege Hierarchy

Universiteit Utrecht

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 = のへで

Comparing Theories

Comparing Theories

The Predicative Frege Hierarchy

Universiteit Utrecht

Comparing Theories

Why Compare Theories?

Why compare theories in a systematic way?

- To explicate intuitions of sameness.
- To transfer information from one theory to another: consistency, essential undecidability.
- Comparison of strength.

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 = ∽へ⊙

To provide a philosophical reduction of ontologies.

Comparing Theories

The Predicative Frege Hierarchy

Universiteit Utrecht

4

What is a Relative Translation?

A relative translation $\tau : \Sigma \to \Theta$ is a pair $\langle \delta, F \rangle$.

- δ is Θ -formula
- ► *F* associates to *R* of Σ of arity *n* a Θ -formula *F*(*R*) with variables among v_0, \ldots, v_{n-1} .

Induced extension mapping:

•
$$(R(y_0,\cdots,y_{n-1}))^{\tau} := F(R)(y_0,\cdots,y_{n-1});$$

• $(\cdot)^{\tau}$ commutes with propositional connectives;

$$(\forall y A)^{\tau} := \forall y (\delta(y) \to A^{\tau})$$

• $(\exists y A)^{\tau} := \exists y (\delta(y) \wedge A^{\tau}).$

Variants: sorted, parameters, multidimensional, piecewise.

What is a Relative Interpretation?

An interpretation *K* is of the form $\langle U, \tau, V \rangle$, where, for all *U*-sentences *A*, we have: $U \vdash A \Rightarrow V \vdash A^{\tau}$.

We write: $K: U \rightarrow V$, or $U \xrightarrow{K} V$, or $K: V \triangleright U$, or $K: U \lhd V$.

Here are various notions of sameness for $K, K' : U \rightarrow V$:

same(1) V proves that they are the same.

- same(2) *V* proves that they are isomorphic via a definable isomorphism.
- same(3) In every model of V, the internal model defined by K is isomorphic to the internal model defined by K'.

same(4) For all sentences A of U, we have: $V \vdash A^{K} \leftrightarrow A^{K'}$. same(5) Always.

Examples

Interpretations are everywhere dense in Mathematics.

Arithmetic in Set theory

▲□▶▲□▶▲□▶▲□▶ ▲□ ◆ ��

- Hyperbolic Geometry in Eucidean Geometry
- Elementary Syntax in Arithmetic
- True Arithmetic in a non-abelian Group

Comparing Theories

The Predicative Frege Hierarchy

Categories

Each of the possibilities of identification of interpretations n, gives rise to a category INT_{n-1} .

- ► *U* and *V* are *synonymous* or *definitionally equivalent* iff they are isomorphic in INT₀.
- ► U and V are *bi-interpretable* iff they are isomorphic in INT₁.

We have the contravariant mod functor from INT_0 to CLASS that sends $K : U \to V$ to the map that associates to each model \mathcal{M} of V the the internal model $MOD(K)(\mathcal{M})$ defined by K.

Synonymy

Synonymy is the strictest extensional relation of sameness known apart from identity.

- Point-and-Line versions of Elementary Geometry are synonymous with Point-Only versions.
- S₂¹ is synonymous with an appropriate theory of strings: Ferreira Arithmetic.
- ► PA is synonymous with ZF⁻ + ¬INF + TC. (Kay and Wong, 2006)
- ZF is a synonymous with an appropriate version of ZF enriched with a countable set of urelements. (Löwe, 2006)
- I∆₀ is not synonymous with Q. (Visser 2007, Friedman 2007) Friedman: these theories are not weakly bi-interpretable.

Are Euclidean plane geometry and hyperbolic plane geometry synonymous? If not, are they bi-interpretable?

Comparing Theories

Ontological Reduction

In general, interpretations do not provide an ontological reduction.

Interpretations need not map standard models to standard models modulo isomorphism. Positive examples:

- PA in ZF via the von Neumann interpretation.
- \blacktriangleright ZF⁻ + ¬INF + TC in PA via the Ackermann interpretation.
- Hyperbolic into Euclidean Geometry via the Beltrami-Poincaré interpretation.

Negative examples:

- PA + incon(PA) in PA, via any interpretation.
- PA in PA via any restricted interpretation.

Is there a real life example of theories U and V with conventional standard models, where U is interpretable in V, but where no interpretation maps the standard model of V to the standard model of U?

Universiteit Utrecht

Comparing Theories

Comparing Strength

- $(Q + con(U)) \triangleright U$
- ► $U \not \succ (\mathsf{Q} + \operatorname{con}(Q)).$

▲□▶▲□▶▲□▶▲□▶▲□▶▲□▶▲□

- Q + con(Q) is mut. interpretable with $I\Delta_0 + EXP$.
- ► $\mathsf{ZF} \triangleright \mathsf{PA}.$

Universiteit Utrecht

11

Comparing Theories

Conservativity

U is Γ -conservative over V, or $V \triangleright_{cons,\Gamma} U$.

Conservativity is not coordinate-free!

 $\mathcal{K}^{-1}[\mathcal{U}] \cap \Gamma \subseteq \mathcal{M}^{-1}[\mathcal{V}]$

Universiteit Utrecht

Comparing Theories

Examples

◆□ > ◆母 > ◆臣 > ◆臣 > ─臣 = ∽へ⊙

- GB is conservative over ZF, for the language of ZF, with respect to EMB and ID.
- ZF is conservative over Q, for the language of arithmetic, w.r.t. a faithful interpretation of Q in ZF and ID.

The Predicative Frege Hierarchy

13

Comparing Theories

The Predicative Frege Hierarchy

Comparing Theories

The Predicative Frege Hierarchy

The Hierarchy Defined

 $\mathsf{PV} := \mathsf{P}^1 \mathsf{V}$

P¹1) ⊢ ∃
$$X^0$$
 ∀ x ($X^0x \leftrightarrow A(x, \vec{y}, \vec{Y}^0)$),
where A does not contain X and does not contain bound
concept variables of degree 0.

$$\mathsf{P}^{\mathsf{1}}\mathsf{2}) \vdash \ddagger^{\mathsf{0}} X^{\mathsf{0}} = \ddagger^{\mathsf{0}} Y^{\mathsf{0}} \leftrightarrow \forall z \; (X^{\mathsf{0}} z \leftrightarrow Y^{\mathsf{0}} z).$$

$$P^{n+2}V$$

P^{*n*+2}1) ⊢ ∃*X*^{*n*+1} ∀*x* (*X*^{*n*+1}*x* ↔ *A*(*x*, *y*, *Y*^{*n*}, ..., *Y*^{*n*+1})),
where *A* does not contain *X* and does not contain bound
concept variables of degree *n* + 1.
P^{*n*+2}2) ⊢
$$\ddagger^{n+1} X^{n+1} = \ddagger^n Y^n \leftrightarrow \forall z$$
 (*X*^{*n*+1}*z* ↔ *Y*^{*n*}*z*).

$$\mathsf{P}^{n+2}\mathbf{3}) \vdash \ddagger^{n+1}X^{n+1} = \ddagger^{n+1}Y^{n+1} \leftrightarrow \forall z \ (X^{n+1}z \leftrightarrow Y^{n+1}z).$$

Universiteit Utrecht

From Consistency to Comprehension

We can construct an interpretation $\mathcal{H} : (Q + con(U)) \triangleright U$, using the Henkin-Feferman construction.

We can extend this interpretation to an interpretation of U plus predicative comprehension over U by letting one-place formulas play the role of concepts.

We can enrich this last interpretation to an interpretation that also provides a Frege function in case *U* proves the infinity of its domain in a sufficiently convenient way.

Comparing Theories

From Comprehension to Consistency

Suppose U provides sufficient coding machinery. Then, U plus predicative comprehension over U proves the consistency of U.

We do this by building a truth predicate for the language of U.

So, under reasonable conditions we have: Consistency \approx Predicative comprehension plus Frege function.

Comparing Theories

The Result

Let:

- $\mathsf{EA} := I\Delta_0 + \mathsf{EXP},$
- $EA^+ := I\Delta_0 + SUPEXP$,
- $U_n := U + \operatorname{con}^n(U)$,
- $U_{\omega} := \bigcup_n U_n$.

We find:

- ► $P^{n+1}V \equiv Q_n$.
- $\blacktriangleright \mathsf{P}^{\omega}\mathsf{V} \equiv_{\mathsf{loc}} \mathsf{Q}_{\omega}.$
- $P^{2n+1}V \equiv EA_n$.
- $\blacktriangleright \mathsf{P}^{\omega}\mathsf{V} \equiv_{\mathsf{loc}} \mathsf{Q}_{\omega} \equiv \mathsf{E}\mathsf{A}_{\omega}.$
- EA^+ proves the equiconsistency of $P^{\omega}V$ and EA^+ .

Universiteit Utrecht

Comparing Theories