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Abstract. Goodness-of-fit tests based on sums of squared com- 
ponents or the Cramir-von Mises statistic with a growing number d 
summands are studied in the case of a composite null hypothesis. The 
tests are seen to be related to nonparametric function estimation 
procedures and Neyman smooth tests. The large sample properties of 
the tests are examined under sequences of local alternatives and the 
proposed methodology is illustrated on real data sets. 

1. Introduction. Neyman 1121 proposed what he termed smooth tests for 
the classical goodness-of-fit hypothesis. These tests were found to provide 
useful diagnostic and inferential tools but, over the years, had seemingly fallen 
out of favor relative to omnibus tests of the Crarnkr-von Mises and 
Kolmogorov-Smirinov variety. Several recent investigations (e.g., [I31 and 
[14]) have now brought these important statistics back into the mainstream of 
statistical literature. In this note we examine Neyman smooth tests for 
composite hypotheses from the perspective of nonparametric density es- 
timation. 

To introduce the basic ideas, we begin by discussing the problem of testing 
a simple goodness-of-fit hypothesis. More specifically, assume that X,, . . . , X, 
are i.i.d. random variables with common distribution function (d.f.) F. Given 
some specified d.f. F,,  the classical goodness-of-fit problem is concerned with 
testing 

There are a number of alternate ways to state (1.1). Assume that F and F,  
are absolutely continuous with densities f and f, and. set 

F ,  ' (u) = inf (x : I;, (x) 2 u) . 
If we then define the comparison density function as 
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testing (1.1) becomes equivalent to 

In view of (1.3) we see that the problem of assessing the goodness-of-fit of 
F ,  can be formulated as a problem of comparing the comparison density (1.2) 
to the unit function. Now 

are ii.d, with density (1.21, and hence d can be estimated from the by using 
a'variety of nonparametric density estimators. If is such an estimator, then 
H,* can be tested by using some measure of the distance between d and the 
uniform density. In particular, one might base a test on a statistic such as 

1 

(1 5) T =  [(d(u)- 1)'du. 
0 

Statistics of this form have been studied, for example, by Bickel and Rosenblatt 
[411 Rosenblatt [15], and Ghorai [9]. 

For the purpose of this note we will be primarily interested in the case 
where d is a cosine series estimator. Define the sample (cosine) Fourier 
coefficients 

Then a cosine series estimator of d is provided by 

j =  1 

where m is some nonnegative integer that governs the smoothness or, 
equivalently, the bias to variance tradeoff for the estimator. If we choose 2 
in (1.5) to be dm in (1.7), we obtain 

m 

as our test statistic. 
It is well known that m must be allowed to grow with n if dm is to provide 

a consistent estimator of d. (A typical rate of growth for m would be rn cc n1I4 in 
this case if d is assumed to have a square integrable second derivative.) Thus, it 
is no surprise that rn must also grow with n for tests based on T, to be 
consistent against all alternatives. In [8] it was shown that if n, m + co in such 
a way that rn5/n2 + 0, then 
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has a limiting standard normal distribution under H,* and that tests obtained 
from Z ,  are consistent against any fixed alternative. 

The statistic T, is related in a fundamental way to Neyman smooth tests. 
Neyman El21 developed a test for (1.3) versus the alternative 

where c is a constant that ensures d (u) du = 1, the Bj are unknown constants 
and the pj  are Legendre polynomials. His statistic is xy=, bf with 

Thus, T, in (1.8) is essentially Neyman's statistic except we have used the cosine 
functions rather than the Legendre polynomials for our orthonormal basis. As 
such, this statistic is not new. Bases other than the Legendre functions have 
been used by a number of authors and, in particular, Rayner and Best [13], 
[14] discuss the use of cosine functions. 

What distinguishes our proposal from the standard Neyman smooth test- 
ing paradigm is that we do not treat m as fixed but instead let rn grow with n. 
This has an important advantage since, if rn is fixed, it is easy to see that 
a smooth test will have only trivial power against any alternative that is 
orthogonal to the first rn elements of the orthonormal basis used in construct- 
ing the test. If, instead, m grows with n and the basis is complete, this problem 
is no longer present. 

Another way to view (1.8) is from the perspective of the CramCr-von Mises 
(CVM) test for H,. Let 

Then, t he  CVM statistic is 

(cf. [6] or [19]). Thus, W2 uses all the sample Fourier coenicients but 
downweights them according to increasing frequency. In contrast, the statistic 
T, uses an increasing (with n) number of uniformly weighted Fourier 
coefficients in its construction. This has been shown (both analytically and 
empirically) to provide considerable gains in power for T, over W 2  for many 
types of alternatives. See, e.g., [8j and [ll]. 

The goal of the remainder of this paper is to extend the results in [8] 
to the case of a composite goodness-of-fit hypothesis. Thus, assume that 
the null model now involves a distribution function F ( - ;  8) depending 
on a parameter 0 belonging to some open subset O of the line and 
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we want to test 

(1.1 1) H,: F(.) = F ( - ;  61, 6 ~ 8 .  

For this purpose define sample Fourier coefficients 

Then, given an estimator 0 for 0, we propose to test H, in (1.11) using 
m 

(1: 13) Tm = C a: (@/.. 
j= 1 

In the next section we derive the asymptotic distribution theory for 
a standardized version of T,. This is followed by examples with real data in 
Section 3. Proofs of all results are collected in Section 4. 

2. Limiting distributian. In this section we investigate the large sample 
properties of the standardized statistic 

We wish to accomplish this using essentially generic estimators of 0 and local 
alternatives to the null which allow for asymptotic power calculations. Thus, 
we begin with a precise statement of the probability model to be employed and 
the specification of some requisite regularity conditions. 

We now assume that for each n we have i.i.d. random variables 
XI,, . . . , Xnn having common density 

(2.24 
with 

Here f(.; 8,) corresponds to the null model and 8, is the true value of 0 when 
H, in (1.11) holds. The function b ( n ) d ( . )  f (-; 8,) represents the departure 
from H,. If 6 = 0, then we are dealing with the null model while, for 6 Z 0 with 
b (n) -; 0, (2.2) converges to the null at rate n~'/~/&. Concerning the function 
6 in (2.2a) we require that 

(A) 6 is bounded with 
(i) lim,,,+ 6(F-'(u; 00)) = limu41- S(F-'(u; 6,)) = 0, 
(ii) (6' (F-I (.; B,))/f(F-' (.; 0,))) EL, [0, 11, and 

(iii) J:d(x)f(x; 0,)dx = Ji 6 ( F - I  (u; 8,))du = 0. 

Strictly speaking, we need f, 2 0 for all n in order for (2.2) to always 
be a valid probability density. However, the boundedness of 6 and b (n) + 0 
is enough to ensure this for large n, which suffices for our analysis. 
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For the estimator 8 of 0 we assume that 

(B) & ( 8 - 0 0 )  = 0,(1) under model (2.2). 

This condition is satisfied in a variety of settings. For example, iff (a; 8) is 
a normal distribution with mean 0, condition (B) holds under local alternatives 
of the form (2.2). 

Finally, we need several smoothness conditions on F( . ;  0) as a function 
of 8. Spe~~cal ly ,  we assume that 

(C) sup, IF(& 4 - ~ ( x ;  0,)I = 0, (11, 

1 

lim g (u) = lim g (u) = 0 and g4 (u)du < ca 
u-'o+ u + 1 -  0 

. ." . 

and 
(E) there exists an open neighborhood $fd containing 0, and a function 

H independent of 0 (but possibly depending on a and 8,) such that 

aF ( X  ; e)  
(D) g (4 = 80 

for all x and all O E ~ .  The function H must satisfy 

satisfies 
x = F -  I(=; Bo) ,B=Bo  

m 

j H4 (x)  f ( x ;  O0) dx < 00. 
- m  

We now state our main result. 

THEOREM 1. Assume conditions (AHE) hold true. Then, under the local 
alternatives (2.2), if rn, n + m in such n way that f i  (m3/rt + mi&) + 0, 

where 
1 

116 (F-' (.; Oo))))l12 = J 6' (F-' (u; O0))du. 
0 

This theorem has a number of implications. First by taking 6 = 0 in (2.2) 
we see that g,,, has a limiting standard normal distribution under the null 
hypothesis. A large sample test for H, with asymptotic level a can therefore be 
obtained by comparing 2, to Z,, the 100(1- u)th percentage point of the 
standard normal distribution. In practice, we have found that behaves 
very much like a chi-square random variable with m degrees of freedom for 
small to moderate sample sizes, and the normal approximation in Theorem 1 
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may not be satisfactory for such cases. A better approximation for the 
lM)(l -a)th percentile of 2. is often provided by (xi,-m)/&, where 
is the 100(1-a)th percentile for a chi-square distribution with rn degrees 
of freedom (cf. [S]). Another approach is to use Monte Carlo methods to 
obtain approximate percentiIes which is what we have done for the examples 
in Section 3. 

More generally, when 6 # 0, Theorem 1 states that a test for H, based on 
2. can detect alternatives converging to the null at rate ml/"/&. The 
asymptotic power against such alternatives is 

where @ is the standard normal d.f. Note that the power is uniform over 
departures from the nu11 of any given size or norm. One can use this property 
as in [a] to argue that 2, will be more effective against higher frequency 
departures from H, than Cramkr-von Mises type tests even though it cannot 
detect local alternatives converging at the parametric n-lI2 rate. 

Under the assumption that the comparison density for the data has 
a square integrable second derivative, a mean squared error "optimal" choice 
for m is 

This is of no great help for the present situation since the true comparison 
density is unknown and is uniform under the null model. The formula could be 
used in practice by selecting a target choice for d corresponding to an 
alternative model that one is particularly interested in detecting. Notice that 
this choice for m satisfies the conditions of Theorem 1. 

An alternative strategy for choosing m has been suggested by Azzalini et 
al. [2]. In our setting, their idea entails computing the P-values for 2, for 
consecutive values of m until they begin to stabilize or become effectively 
constant. One then chooses a value of m to be somewhere in the region of 
stability. We do not know the operating characteristics of this approach but 
have found it to be useful from a diagnostic standpoint. 

Yet another method for selecting rn is to use a data-driven order selector 
for the estimator 

,,, 

of d(u).  This approach has been found to be quite effective in some empirical 
studies (e.g., [a] and [ll]). However, work by Kim [ll] for the simple 
goodness-of-fit hypothesis makes it highly unlikely that Theorem 1 will apply 
when rn is chosen in this fashion. Further discussion of data driven methods for 
choosing m can be found in [lo]. 
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An interesting feature of 2, is that its limiting distribution is the same as 
for 2, in (1.9) under the null hypothesis. Thus, in this sense it is unaffected by 

. the estimation of 8,. This is not true for either the Cramkr-von Mises or 
standard Neyman smooth statistics in general (see [7], [16], [3], [20], [13], 
C14-J). The fact that rn grows with n and the division by f i  in (2.1) is what 
removes (asymptotically) the dependence of our statistic on estimation of 8,. 

To conclude this section we note that Theorem 1 can be extended in 
several directions. Perhaps of most interest is the case of more than one 
estimated parameter. The basic proof in Section 4 extends in a straightforward 
manner to include this situation under the natural extensions of conditions 

" *.. (BHE) to the multipararneter setting. 

3. Examples. Two data sets are now analyzed by using the methodology 
proposed in the previous section. One goal of these analyses is to illustrate the 
utility of the comparison density estimator, 

m 

dm (u) = I + n-Il2 aj(@ $ cos (ircrc), 

as a diagnostic tool for assessing the nature of departures from the null model 
when H: is rejected. 

For both examples 0 was a scale parameter that was estimated using 
maximum likelihood (or asymptotically equivalent) estimators. The scale equi- 
variance of the estimators has the consequence that for these particular cases 
the distributions of the aj(@s and the 2,'s depend only on F and not on 0 for 
each value of n. This made it quite simple to determine very precise critical values 
for the tests using Monte Carlo methods and, accordingly, that was the approach 
we employed to compute the P-values mentioned in the discussions below. 

EXAMPLE 1. We first consider the Angus [I] data set of n = 20 operational 
lifetimes. The null hypothesis of exponentiality for this data (i.e., F ( x ;  9) = 
= 1 - e-"Ie for x > 0 and 9 > 0) was tested by Rayner and Best 1131 by using 
a smooth type test. After some experimentation we chose m = 4 for our 
analysis and obtained 2, = 2.858 for which the approximate P-value is 0.01. 

Fig. 1 gives a plot of d,(u)-1. (Note that this function should be 
identically zero under the null hypothesis.) The graph reveals that, when 
compared to an exponential, the true distribution for the data may have lower 
probabiIity in both tails and higher probability in the interior region right of 
the median. This suggests that the data would be better fit by either a Weibull 
distribution with shape parameter c > 1 and very large scale parameter or 
a two-parameter exponential distribution. The comparison density estimators 
that are obtained from these two choices for F with m = 4 are also shown in 
Fig. 1. In both cases the fit appears to be much better with corresponding test 
statistic values of -0.171 and 0.385 for the WeibuU and two-parameter 
exponential, respectively. 
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Fig. 1. Comparison density estimators for the Angus data 

The dashed line is Tor the exponential model, the dotted line is for the Weibull model, and the 
dotted and dashed line is for the two-parameter exponential model 

EXAMPLE 2. This example illustrates the use of our procedure on a large 
data set. The data are the sizes of oil and gas fields (in log base 2 units) in the 
Frio strandplain exploration play located in the central coastal plain of Texas 
(see C181). 

It is generally believed that, at least in the early stages of exploration 
of a play, the lognormal distribution provides a reasonable model to 
fit the observed size distribution of oil and gas fields. Thus, we begin 
by analyzing the 318 discoveries made through 1959. The P-values cor- 
responding to the 2, for this data set are fairly erratic for small values of m, 
oscillating from 0.03 to 0.35. However, for m 2 54 they stabiIize at around 0.26 
suggesting, as expected, that the lognormal distribution provides an adequate 
model for the data. 

When the size distribution of oil and gas fields is viewed at a later stage of 
exploration, it is the contention of Schuenemeyer and Drew 1171 that this 
distribution is not lognormal. The discovery data available through 1985 
(n = 695) was tested against this assumption. The P-values associated with the 
2, are now extremely stable. In fact, for all m > 3 the P-values are less 
than 0.0001. Thus, we chose m = 10 and the resulting test statistic zlo = 19.122 
is clearly significant. The graph of d,,(u)- I is presented in Fig. 2. This figure 
shows that the number of small fields is overestimated by the lognormal model 
since the graph is near -1.0 for u small. We also see from this that the 
lognormal model slightly underestimates the probability in the right tail. 
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(9 
0 

Fig 2. Comparison density estimator for the Frio strandplain data 

4. Proof. In this section we prove Theorem 1. We first give an outline of 
the steps that are involved and then focus on the specific details. 

Since we are working with the local alternatives (2.2), this means the 
sample Fourier coefficients are 

Set Zm = (xjm=, af (~ , ) - rn ) /@.  Then we can write Zrn in (2.1) as 

The limiting distribution of 2, was shown in 181 to be normal with mean 
11 S (F-' (-; B0))))l l'/d and variance 1 under the conditions of our theorem. 
Thus, Theorem 1 is proved when we show that 2,- Zm 5 0. 

Now 

(4.2) 
1 " 2 " 

, ,h(Z,-2") = - Af + - x Ajnj(Oo) 
& j = i  J;;;j=i 

with 

(4.3) A j  = aj(@-uj(d0).  

To show that 2 , - Z ,  is asymptotically negligible we therefore concentrate on 
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the A j  and show, in Lemma 3, that they behave much like a sequence of square 
surnmable constants under the conditions of our theorem. This will then be 
seen to imply the desired result. 

To simplify the expressions that follow we introduce some additional 
notation. Let 

w e  will also require the following two lemmas. 

LEMMA. 1.  Let g1 be such that 

lim g , ( ~ ; l ( u ) )  = lim g , ( ~ ; l ( u ) )  = 0 
u+o+ u + 1 -  

a d  (9; (F,  (-))/f', (F;  (n))) E L, [O, 11. Set g, = g ,  - 6. Then 

ernfo~rnly in j, with 
1 ! 

cij = JZJ gi(F'l (U)) cos (inuldu, i = I ,  2, 
0 fo ( F ,  ( 4 )  

and C$ < m, i = 1 ,  2 .  

Proof.  Set bj = $ n - ' E , g l ( ~ i n ) s i n Q ~ ~ 0 ( ~ i n ) ) .  Then 

1 1 
= g1 (F,y (u)) sin Gnu) du + b (n) J g, (F,' ' (u)) sin Gnu) du 

0 0 

after integration by parts. The proof is completed by observing that, because of 
condition (A), 

2 2 
Var bj < -I g: (x ) fo  (x)  (1 + b (n) 6 (x)) dx < --Is: ( F ,  (u)) du (1 + 0 (Wn))). 

n 

LEMMA 2. Let g be a function on the Eine with ( g ' ( ~ ~ ' ( . ) ) / f o ( F , l ( . ) ) )  
E L2 10, 11. Then 

n 1 
n- l C g (Xin) cos ( j  ( i n ) )  = 7 (sj + 0 (b (n))) + 0, 

i=  1 JR 
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uniformly in j for 
1 I m 

S, = - (Fi ' (')) sin(inu) du and s: < m . 
j=  1 

Proof. The proof parallels that for Lemma 1 and is therefore omitted. H 

The next lemma gives the essential approximation we need for the A j  
in (4.3). 

LEMMA 3. Let 

~ D , F  
C, = $1 ( ' ("1 sin du. 

0 fo (FG (~11 
Then, if m3/n + 0, 

unformly in j < m. 

Proof. Since 

(y) ms (F), cosx-cosy =2sin - 

we have 

Now, for 1x1 < 1, Isinx-xl < lx13/6. Thus, for n sufficiently large 

. - f i  jn ( x * )  Fo (Xin)) [ (P (Xin) +Po (xi3)] 
2 cos jn & , = I  2 +rn 

with 

due to assumptions (AHE). 
Using similar arguments, the trigonometric identity cos (x + y) = 

cosx sin y + sinx cos y and the bound Jcosx - 1 j < x2/2 for 1x1 < 1, we obtain 
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with 

J? * A . - -jn: [F (xi.) - F, (Xi.)] sin LixF, (Xi,)] 
- i=, 

and 

. We wiII focus fist on approximating AZj. By a Taylor expansion, 

P W,) - Fo (Xi,) = (6- 0,) D, (X,) + fi. 
Thus, 

A Z j  = - 
1 "  

un)2 ~ ( 0 -  y2 - D, coa fi~F,, (Xi,,)l 8 n ,=  

Assumption (E) ensures that for n sufficiently large the last term in is 
bounded by a constant multiple of 

using condition (A). The Cauchy-Schwarz inequality, assumption (D) and 
a similar argument reveal that the cross-product term is bounded in magnitude 
by 

Finally, apply Lemma 2 to n-' x:=, Do (Xi,)' cos ( jrF0 (Xi")) with g (e) = Di (.) 
and use assumption (D) to see that the first term in dzj is of the form 

Since lsjl < E:=, for all j, we have 
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The approximation for d l j  is similar to that for A Z j .  One uses 
Lemma 1 with g ,  (-) = Do ( a )  and assumptions (D) and (E) to obtain 

The proof is finished by combining all our approximations. rm 

We can now complete the proof of Theorem 1. Referring again to (4.2) and 
the definition of C j  in (4.41, we see that 

and 

with r j  = dj -&(8-  6,) C j ,  j = 1, . . . , m. To handle this last expression we 
I need results from [a] that we state here in the form of a lemma. 

LEMMA 4 (Eubank and LaRiccia [8]). Under condition (A) and the local 
alternatives (2.2) we have 

with 

and, uni$ormly in j, k = 1, . .. , 
Cov (aj (80) a, (00)) = ajk + 0 (b (n)). 

If n, rn --, co in such a way that m5/n2 + 0, then 

where Y is o normal random variable with mean l ( b ( ~ ;  ' ( . ) ) l 1 2 / $  a d  umiance 1. 

As a result of (4.6H4.7) we have 

and 
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AIso from the Cauchy-Schwarz inequality we obtain 

because of Lemma 3 and (4.8). Thus, 

. . .  .Combining (4.5) and (4.9) gves 

The proof is completed by using (4.8) of Lemma 4 and Slutsky's Theorem. 
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