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IN THE PRECISE LARGE DEVIATION THEOREM
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Abstract. Let X, X5, ... be ii.d. random variables with a com-
mondf F. LetS,=X,+...+X,,n> 1, and M, = max; ¢, X, n > L.
In this paper for a large class of subexponential distributions we es-
timate the rate of convergence

An(t) = P(Sn > t)_P(Mn > t)v
where n> 1 and ¢ > 0. We close this paper with some examples.

2000 AMS Subject Classification: Primary 60F10; Secondary
60E0S.

Key words and phrases: Limit theorems, large deviations, subex-
ponential distributions.

1. INTRODUCTION

Let X, X,, ... be iid. real random variables with a common distribution
function (d.f) F(?), teR, which has the mean EX, = 0.

DEerFmNITION. We say that the d.f. F belongs to the class S of subexponential
distributions if its tail F:= 1—F satisfies

(L.1) ' lim F(x+y)/F(x)=1, yeR,
and |
(1.2) lim FxF (t)/F (t) = 2,

where, as usual, * denotes the Stieltjes convolution of F with itself.

The class S of subexponential distributions was introduced by Chistyakov
[3] (in the case F(0)=0).

It is well known (see [3], Theorem 2) that if F (0) = 0, then (1.2) implies (1.1).
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We denote by £ a class of heavy tailed distributions for which the relation
(1.1) is satisfied.

Let S,=),_, X, and M, = max,<, Xy, neN.

By definition it follows that if FeS, then

PS,>)~PM,>t) ast—co.

Thus, we infer that if d.f. F is subexponential, then there exists a positive
sequence t,, neN, such that

(1.3) P(S,>t)~P(M,>1f) asn— o

uniformly in te(t,, o). ]

This means that in the investigation of precise large deviations for subex-
ponential distributions the main problem becomes finding the intervals (¢,, o).

Many papers are devoted (see [12] and the references contained therein)
to search conditions for which the relation (1.3) holds as n — co uniformly for
te(t,, o). There are but a few papers that consider the rate of convergence in
the relation (1.3). Perhaps the most important paper among them is [2] in
which Borovkov has established the rate of convergence in a theorem of large
deviations for a class of subexponential distributions, the so-called semiexpo-
nential distributions. In the present paper we shall investigate the rate of con-
vergence in (1.3) for one rather wide subclass of subexponential distributions.

2. PRELIMINARIES

Let us define the hazard function Ry of F by
Rp(t) = —logF(t), teR.

Assume that there exists a non-negative function gr: R¥ — R such that

t
Rr(t) = Re(0)+[gr(wdu, teR".
0

The function gr is called the hazard rate of Fy = F-U,, where U, is the
d.f. concentrated at 0.

It is well known (see [7]) that if for some F,e the hazard rate gg
or lim, ., gr(f) does not exist, one can always construct a d.f. H, such that
Hy(t) ~ Fo(t) as t = o0, and qg(£) = 0 as t — oo, where gg is the hazard rate
of Hy.

Let us define

a =sup{k: E(X%, X; > 0) < 0}, _
B =sup{k: E(X,[5, X; <0) < o0}, y=min(x, f).
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Moreover, let us define the hazard ratio index
r := lim sup tqp (t)/ Rz (2).
t— oo

LEMMA 2.1. Assume that y > 2 and EX, = 0. Then for z > 0 we have

1/z

| ) e"‘dF(u)—1| < Cyz2.

Proof. We note that

T e dF (u)—1 = T (e*—1—zu)dF(u)—F(1/2)+z T udF (u).

— o

—
Since EX; = 0, we have
1/z

| udF()= — T udF ().

— oo 1/z
Hence
1/z 1/z © _
| § edF(w)—1|<z* | w*dF W)+z | udF (W)+F(1/2) < 522EX}.
— o - 1)z

The proof is complete.

3. MAIN RESULTS

In this section we study the rate of convergence in (1.3). For further use, let
us define

4,0 =P(S,>t)—-P(M, > 1),

where neN and ¢t = 0.
Put s:=s(t) = Rp(t)/t, t > 0.
We have

G1) 4,0 =PS,>1t, My>1)—-P(M,>)+P(S,>t, M, <t):=L;+L,.
Our first preliminary result is used to estimate the term L, in (3.1).

LemMa 3.1. If z > 0 is small enough, then
t+1/z

32 0>L,>—-PM,>t)( | grw)du+P(S,>1/2)+P(X, > 1).

t
Proof. Let us put 45 = {1, ..., nj\{k} and Sk =), . X, neN. From
(3.1) it follows that "

PM,>t)= Y P(S,>t, M,>t, M,=X))

k=1

10 — PAMS 222
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n

]9 P(X, > max(t—u, t))dP (S} < u)

>
k=1-1/z

> i P(X,>t+1/2P(Sk> —1/2)
k=1

=>PM,>t+1/z2)—-P(M, > t)P(S,| = 1/z2)—-P M, > )P (X, >1).
Since z > 0 is small enough, we have
PM,>0—PM,>t+1/2) -
t+1/z t+1/z
<PM,>t)(1l—exp(— | qr@du)) <P(M,>1) | qr(wdu.
t t
The proof is complete.

Let X, < X5, <...< X,— 1. < X,., = M, denote the order statistics of
the sample.
Define

2 if r=0,
br) = {4/(1—r) if 7 0.

Our main result is the following
THEOREM 3.2. Assume that

(i) EX, =0;
(ii) liminf,., , tqr () > 2;
(iii) r < 1;

@iv) $>2, a>b(r).
Then for n and t large enough

- (33) —=P(M,>1)(con' "2 +c,/nlogns) < A,(1)

< P(M, > t)(exp(c* ns?)/t* + Cy/nlogns+ C,ns*>+ Cyn' 72,
where ¢4 >0, ¢; >0, ¢*>0, C; >0, C, >0, C3>0 are some constants.
Remarks. 1. Let ¢, neN, be a sequence such that

lim ,/nlogns(t,) = 0.
From (3.3) it follows that under the conditions of Theorem 3.2 we have
4,)=o0()PM,>1t) as n— o

uniformly with respect to te(t,, o).

2. Moreover, we can see that in this large deviation result the assumption
of the concavity of a hazard function Ry can be removed.
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For the proof of Theorem 3.2 we first need the next lemma.
LemmA 3.3. Assume that
r:=limsuptqr (t)/Re(t) < 1.
t—> 00
Then

(34 _t[ exp(su)dF (u) < C < 0.
1/s

Proof. Using the partial integration, we have

;' exp(su)df'(u) <s i exp (su) F (u)du+eF (1/s) := I+1L.
1/s 1/s

Let us put r, = r+&, where ¢ is small enough and r, < 1. From the relation
lirg sup tqr ®)/Rp(t) <1
it follows that for u large enough
(Rr(w)/u) = (ugr () — Re @))/u* < —(1—r) Rp(w)/u* <O,

so that Ry (t)/t is non-increasing. Then for u such that 1/s < u <t we obtain

(3.5)  su—Rp@)=FO¥

—Rp(u)

< —(l—re)ujf(RF(v)/vz)dv < —(l—re)R:—z(t)u(t—u).

Consequently, from (3.5) it follows that
t
I=-s | exp(su—RpW)du < 4s/(1—r,)s.
1/s
Moreover, we have
II<e.
The proof is complete.
Proof of Theorem 3.2. Let us define y as follows:

2logu
Ry (u)

y=max{u>0: <(1-—r8)t;tu—}.

It is known that if r = 0, then y > ét for some é > 0. In the case r # 0 we
can see that y > (1/2+d,)t for some do > 0.
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Let ¢ be the number of summands X, k=1,...,n, in S, such that
X, > y. Since the random variable ¢ has the Bernoulli distribution with pa-
rameters n and F(y), we may write

L,=PS,>t, M,<t)=P(S,>t,(=0)+P(S,>t,{=1,M, <)
+P(S,>t,E22, M, <t):=1+II+1IL
We have
M <SPX,_1m>y, M,<t)=01)P*(M, > y)
= O0(1)P (M, > t)nexp(—2Rr(y)+ R (1).
Under our assumptioné we obtain
Rp()—Rp(y) < 1:5()(—Y),

where r, is the same as in Lemma 3.3. Hence

Re(t)—2Rr(5) < —Re () +7,50)(t—) = _RF(J’)(I'“Tat—Ty)

Since ¢ is an arbitrarily small positive quantity, in the case r = 0 we obtain
Rr(t)—2Rr(y) < —Re (1) +1.5(0)(—Y)
< —Rp(60)(1—g) < —2logt+0(1).

In the case r # 0 we have
Rr(t)—2Rr(») < —Rp () +r.s((t—y) = —Rp(y)(l—rs—yi)

< —Rp(t/2)(1—r) < —2logt+0(1).
Consequently, we obtain
o 11T = 0 (1) P(M, > t)n/t* = o ()P (M, > t)ns>.
Next we consider I. Let us define

V,¢={X" for X, <y,

U, = .
0 for X, =2y, 1;1 Ve

Let 8, 85, ... be a sequence of iid. random variables with common d.f.
F, which equals ' :

Fo(u) =min {1, ( | exp(sv)dF (v))( _y[ exp(sv)dF(v))_l}.

— o0 — 00
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So, to estimate the term I, we use the Cramer equality (see e.g. [9]): for any
u>0 we have

P(S, > u, & =0)=(E(exp(s1)))’ ojo e“"dP(i 8; <v).

i=1

Hence

3.6)  P(S,>u, &=0)<exp(—su)(E(exp (sVl)))"P(i 8; > u).

We have
1/s y
Eexp(sVy) =( [ + | )exp(su)dF (u)
— 1/s

y
< Ji+s | exp(su—Rp(w)du:=J,+sJ,.

1/s

Using the condition y > 2, from Lemma 2.1 we get
Ji=1+0(1)s%.
Now we consider J,. We have

2 < zju exp (su— RF(u))

1/s

Let us define the function Q, as follows:
Q:(t)=Rp(t)—2ogt, t=t,>1.
Since liminf, , , tqr (¢) > 2, we infer that Q, is a hazard function. Let us put

d
4. (t) =5Q1(t), t=2t; = 1.
We can show that under our assumptions

. ql() tq(t)—2
hmsu llmsu _—
PO @ S pRF(t)—Zlogt

r.(Re(t)—2logt)+2(r.logt — 1)

<ii
lim sup = Ry (0)—2logt
We have
Rp(t) _ Rp(y)—2logy 2logy Re() Rr())
t y y t y
2lo R
<500+ 28— F(y)(t 3 < 5100,
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where s, := 5, (y) = @, (y)/y. Therefore, from Lemma 3.3 it follows that

¥y ¥y
(3.7) s § utexp(su—RpW))du < s, | exp(s;u—Qy u))du < .
1/s 1/s

From (3.6) it follows that under our assumptions

] =

(3.8) P (S, = u, £ =0) <exp(c*ns?yexp(—su)P(

J

We have -

E5? < (E(exp(s7)~ (1_‘{3 u?e™dF (u)+ j u? e dF (u)).

1/s

;= u).

1

Since y > 2, we obtain

1/s
| w?e™dF (u) < .

Note that

¥y y hd
fu?edF () <es 2F(1/s)+s | u?e™ F(wdu+2 | ue™F(u)du

1/s 1/s /s

¥y y
es"2F(1/s)+s | u*e™ F(w)du+2s | u?e™F (u)du.
1/s 1/s

Using (3.7), we obtain

¥y
f u*e™dF (u) < 0.
1/s

Hence Eé? < co. From this it follows that
(39) (Z 5, > t) < nE 81> = 0 () /12,

Aﬁplication of (3.9) now shows that
I=0(1)P(M, > t)exp(c* ns?)/t>.
To complete the proof, it remains to estimate II. For \/n—logins < 1 we have
I=P@S,>t,t=2M,>y, X;,—1.<Y))
=P, >t, t=1/s>M,>y, X, 1., <)
+P(S,>t, t—/nlogn> M, > t—1/s, Xo_ 1. < ¥)
+PS,>t, t=2M,>t—/nlogn, X1, <y):=A+B+C.
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Using (3.4), (3.8) and (3.9) we obtain

A= 0(1)nt II/SP(S,, L =t—u, maxle<y)dF(u)
_oWn | P(3 &> t—u)exp (—s(t—u)) dF (1)
¥ i=1
t—1/s

=0(1) nP(éj1 6; = 1/s)exp(—st) [ exp(su)dF (u)

=0()P(M, >t)P(}. 6;> 1/s) = O()) P(M, > t)ns>.
i=1 ' :
Now, we use the next result of [5]: let Y;, Y, ... be a sequence of ii.d.
random variables such that EY; =0, E|Y;|® < oo, where B > 2. Let us put
B,=Y, E¥2, My,=>"_ E|Y/’. Then

P(Y %>x)<(1+2/BP My, x"*+exp(—cox? B, Y).

k=1

Moreover, we have

\

t—+/nlogn
B<n | P(S,-y=t—u, maxXk<y)dF(u)

=1s
= O()nF(QP(S,— > /nlogn)
= 0(1)P(M, > t)P(S,—, = /nlogn) = O ()P (M, > )n' "2,
For C, we have
C=P(S,>t,t>M,>t—/nlogn, X,—y., <)) = O()P(t > M, > t—,/nlogn)
= 0(1)(P(M, > t—/nlogn)—P (M, > 1))

t

=0)PM, > t(exp( [ qr(u)du)—1)

t—+/nlogn
=0()P(M, > 1)( i qr (1) du) = O ()P (M, > t)/nlogns.
t—nlogn i

If /nlogns > 1, then
M=P(S,>tt>M, >y, Xo-12 <))

—O(I)an(S,, L =t—u, max X, < y)dF ()
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= 0(1)nj'P(i ;> t—u)exp(s— (t—u))dF (u) -

i t

= O(1)nexp(—st) [exp(su)dF (u) = O(1)P (M, > 1).

Hence
II=001)PM,>t)(/nlogns+ns?+n'~72),

The lower bound of 4,(t) follows from Lemma 3.1 with z = 1/,/nlogn.
Thus Theorem 3.2 is proved.

4. EXAMPLE

. We say that d.f. F belongs to the class D of dominated-variation distribu-
tions if its tail F satisfies .

lim sup F (t)/F (2t) < 0.
| v ]

It follows from this definition that the class of distributions with regularly
varying right tails is contained in DN L.

It is well known (see e.g. [6]) that if FeDn g, then FeS.

It is also known ([7], Theorem 3.3) that if limsup,. . tq(¢) < oo, then
Fe®Dn L. On the other hand, if the hazard rate q is non-increasing, then the
statements Fe DN L and limsup,., ., 1q(f) < co are equivalent (see [7], Corol-
lary 3.4). ‘

The next result is true.

COROLLARY 4.1. Assume that

(i) EX, =0;
((11; A :=21im SUP;- o tgF () < 00;
iii) y > 2.

Then for some ¢, >0, c*>0, C; >0, C, >0
—P(M, > t)(con* "2+ A /nlogn/t) < 4,(t)

< P(M, > t)(exp(c* ns?)/t*+ Cyn' T2+ C,  /nlognjt).
Proof. We restrict ourselves only to indicating the changes which are

necessary to make in the proof of Theorem 3.2. The basic change is in the
estimates of the term II.

For t > ./nlogn we have

§ =P, >t,t=>2M, >y, X,—1.,. <)

= P(Sn >, t_\/ nIOgn =2 Mn > Xn—l:n < y)
+PS. >t t =M, >t— nlogn, X,_,.,,<y):=A+B.
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For t large enough we have y > dt, where 6 > 0. We obtain

t —/nlogn

A<n [ P(S,-1>t—u, max X, <y)dF ()
y k<n—1

= 0()nF()P(S,_; > /nlogn)
= O()P(M, > ) P(S,-, > /nlogn) = O()P(M, > )n' "2,
For t > \/rTgn and n large enough we have
PGS, >t t>M,>t—/nlogn, X,_1n<y)=O0PEt>M,> :‘—\/@)
= O(1)(P(M, > t—,/nlogn)—P (M, > 1))

t

=0MPWM,>t(exp( [ qrwdu)—1)
t—/nlogn

=0(1)P(M, > t)((1—+/nlogn/t)"*—1) = O(1)P(M, > 1)\ /nlogn/t.
The proof is complete.
- Remark. Let t,, neN, be a sequence such that

lim sup /nRp(t)/t, < e(dc*)™1? < o0,

where c* is the same as in Corollary 4.1 and oo > d > «. Then we have
exp(c*ns?)/t>2 <t/t> =0(1) as n— oo

uniformly with respect to te(t,, o). Hence under the conditions of Corolla-
ry 4.1 we obtain

4,@)=o0()PM,>t) asn-w

uniformly with respect to te(t,, o).
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