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on a domain in Rd, we prove a representation of excessive functions in 
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1. INTRODUCTION 

Consider a bounded superharmonic function u on the open disk S. Such 
a function admits a limit u (y) in almost all boundary points y E 8s with respect 
to the fine topology, and we have 

u (4 2 j ly) Px VY), ,*,,- 

where px denotes the harmonic measure on the boundary. The right-hand side 
defines a harmonic function h on S, and the difference u- h can be represented 
as the potential of a measure on S. This is the classical Riesz representation of 
the superharmonic function u. 

In probabilistic terms, j ix may be viewed as the exit distribution of Brow- 
nian motion on S starting in x, u is an excessive function of the process, the fine 
limit can be described as a limit along Brownian paths to the boundary, and 
the Riesz representation takes the form 
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where denotes the first exit time from S and (A,),>, is the additive functional 
generating the potential u-h; cf., e.g., Blumenthal and Getoor [4]. 

In this paper we consider an alternative probabilistic representation of the 
excessive function u in terms of expected suprema. We construct a function 
f on the closure of S which coincides with the boundary values of u on 8S and 
yields the representation 

(2) u (x) = Ex [ SUP f (X,)  v lim u (X,)] . 
O < t < F  :TF 

Instead of Brownian motion on the unit disk, we consider a general Mar- 
kov process with state space S and life time c. Under some regularity con- 
ditions we prove in Section 3 that an excessive function u admits a represen- 
tation of the form (2) in terms of some function f on 8. Under additional 
conditions, the limit in (2) can be identified as a boundary value f (Xr) for some 
function f on the Martin boundary of the process, and in this case (2) can also 
be written in the condensed form (1). 

The representing function f is in general not unique. In Section 4 we 
characterize the class of representing functions in terms of a maximal and 
a minimal representing function. These bounds are described in potential 
theoretic terms. They coincide at points where the excessive function u is not 
harmonic, the lower bound is equal to zero on the set H of harmonic points, 
and the upper bound is constant on the connected components of H. 

Our representation (2) of an excessive function is motivated by recent 
work of El Karoui and Meziou [8] and El Karoui [5] on problems of portfolio 
insurance. Their results involve a representation of a given supermartingale as 
the process of conditional expected suprema of another process. This may be 
viewed as a singular analogue to a general representation for semimartingales 
in Bank and El Karoui [I], which provides a unitied solution to various re- 
presentation problems arising in connection with optimal consumption choice, 
optimal stopping, and multi-armed bandit problems. We refer to Bank and 
FoUmer [2] for a survey and to the references given there, in particular to El 
Karoui and Karatzas [7] and Bank and Riedel [3]; see also Kaspi and Man- 
delbaum [I 11. 

In the context of probabilistic potential theory such representation prob- 
lems take the following form: 

For a given function u and a given additive functional (Br)tbO of the 
underlying Markov process we want to find a function f such that 

5 

U (4 = E x  [J sup f (Xt) 
O O < t < [  

In El Karoui and Follmer [6]  this potential theoretic problem is discussed 
for the smooth additive functional 3, = t A l: and for the case when u has 



Excessive functions as expected suprema 381 

boundary behavior zero. The results are easily extended to the case where the 
random measure corresponding to the additive functional satisfies the regular- 
ity assumptions required in 111. 

Our representation (2) corresponds to the singular case 3, = lLc,m)(t) 
where the random measure is given by the Dirac measure dc. This singular 
representation problem, which does not satisfy the regularity assumptions 
of [I], is discussed in Fijllmer and Knispel [lo] for the special case of a poten- 
tial u. The purpose of the present paper is to consider a general excessive 
function u and to clarify the impact of the boundary behavior on the represen- 
tation of u as an-expected supremum. We concentrate on those proofs which 
involve explicitly the boundary behavior of u, and we refer to [lo] whenever 
the argument is the same as in the case of a potential. 

Achowleelgememt. While working on his thesis in probabilistic potential 
theory, a topic which is revisited in this paper from a new point of view, the 
first author had the great pleasure of attending the beautiful Lectures on predic- 
tion theory of Kazimierz Urbanik (see [12]), given at the University of Erlangen 
during the winter semester 1966/67. We dedicate this paper to his memory. 

2. PRELIMINARIES 

Let (X,),>, be a strong Markov process with locally compact metric state 
space (S, d), shift operators (8t)t30, and life time c, defined on a stochastic base 
(a, E (e), 30, (PJ,,) and satisfying the assumptions in [6] or [lo]. In par- 
ticular, we assume that the excessive functions of the process are lower-semi- 
continuous. As a typical example, we could consider a Brownian motion on 
a domain S c Rd. 

For any measurable function u 2 0 on S and for any stopping time T we 
use the notation 

P*u(x) := EX[u(XT); T < I]. 
Recall that u is excessive if P, u 6 u for any t > 0 and limtlo P, u (x) - = u (x) for 
any x E S. In that case the process (u(Xt) 11,,0),> , is a right-continuous~Px-super- 
martingale for any x E S such that u (x) < a, and this implies the existence of 

uc : = lim u (X,) Px-a.s. 
r t c  

Let us denote by Y(x) the class of all exit times 

from open neighborhoods U of x E S, and by Yo ( x )  the subclass of all exit times 
from open neighborhoods of x which are relatively compact. Note that 
[ = E ~ ( x ) .  For TE Y(x) and any measurable function u 2 0 we introduce 
the notation - 

UT : = u(XT) liTin+limu(X,) lIT=i) 
t t c  
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and 

We say that a function u belongs to class (D) if for any X E S  the family 
( u ( X T )  I T E ~ ( x ) )  is uniformly integrable with respect to P,. Recall that an 
excessive function u is harmonic on S if PT u (x) = u (x )  for any x E S and any 
T E % (x). A harmonic function u of class (D) also satisfies u (x )  = pT u (x) for alI 
T E ~ ( X ) ,  and u is uniquely determined by its boundary behavior: 

(3) 
. . 

u (x) = E,  [lim u (X,)] = Ex [ur] for any x E S. 
t t i  

P~oms1TIo~ 2.1. Let f 2 O be an upper-semicontinuous function on S and 
kt # 3 0 be 9-measurabk such that 4 = 4 0 8, P,-as. for any x E S and any 
TE (x). Then the function u on S de-ned by the expected suprema 

is excessive, hence lower-semicontinuous. Moreover, u belongs to class (D) if and 
only i f  u is finite on S. In this case u has the boundmy behavior 

and u admits a representation (2), i.e., a representation (4) with 4 = ui. 

then 
Proof. It follows as in [lo] that u is an excessive function. If u(x )  < a, 

Thus {u (X,) I T E  % (x)} is uniformly integrable with respect to P,, since 

0 < ~ ( X T )  = E x [  sup f ( X ~ ) V ( ~ * ~ T )  1 FT] 
T<t<[  

<Ex[sup f ( X t ) v # I F T ]  for all T E % ( x ) .  
04t<C; - 

conversely, if u belongs to class (D), then u is finite on S s'i"nce by lower- 
semicontinuity 

u (4 < Ex [b u (XTs,l] < & E, [u (XTsn)] < co for E,, J 0, 
n t m  n t m  

where T,,E%(x) denotes the exit time from the open ball U,,,(X). 
In order to verify (3, we take a sequence (U,),, of relatively compact open 

neighborhoods of x increasing to S and denote by T, the exit time from U,. 
Since u is excessive and finite on S, we conclude that 

- 
lim f (X,) v 4 = lim sup f (Xs) v (6 0 O,,,) 
ttc ,trn T,<s<c 
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= lirn Ex [ sup f (X,) v I# 0 OT.) I %-.I 
n t m  Tn<sc(  

where the second identity follows from a martingale convergence argument. 
In view of (5) we have 

(4  < sup f (XJ) = (uc < sup f @,)I P,a.s. 
o < r < [  0 < t < 5  

and 4 = U r  on A {4 > s ~ p ~ , , , ~  f (XJ) P,-a.s. Thus we can write _ 

u Ix) = E x  C sup f (X3;  #J < sup f(X*)I + E x  C+; # > sup f ( X J l  
o<r<< O<t<l ;  O<t<i ;  

In the next section we show that, conversely, any excessive function u of 
class (D) admits a representation of the form (Z), where f is some upper-semi- 
continuous function on S. 

3. CONSTRUCTION OF A WEPRESENTING FUPJCTION 

Let u 2 0 be an excessive function of class (D). In order to avoid ad- 
ditional technical difficulties, we also assume that u is continuous. For con- 
venience we introduce the notation uc : = u v c. 

Consider the family of optimal stopping problems 

RuC (x) : = sup Ex [uC (XT) ]  
TE%(X) 

for c 2 0 and X E  S. It is well known that the value function RuC of the optimal 
stopping problem (6) can be characterized as the smallest excessive function 
dominating uc. In particular, Ru' is lower-semicontinuous. Moreover, 

for any stopping time T < [, and equality holds for the first entrance time into 
the closed set {Rue = uC); 6. for example the proof of Lemma 4.1 in [6]. 

The following lemma can be verified by a straightforward modification of 
the arguments in [lo]: 

LEMMA 3.1. 1) For any XES, RuC(x) is increasing, convex and Lipschitz- 
continuous in c, and 

lim (RuC (x)  - c) = 0. 
c t m  
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2) For any c 3 0, 

(9) RuC (x) = Ex [u:26CDc] = pDc uC (x)  , 

where Dc : = in f { t  3 0 I RJ (X,) = u (X,)) A 5 is the $rst entrance time into the 
closed set {RuC = u). Mweover, the m a p c w D c  is increasing and P,-U.S. 
left-continuous. 

Since the function c H RuC (x) is convex, it is almost everywhere differen- 
tiable. The following identification of the derivatives is similar to Lemma 3.2 
of [lo]. 

LEMMA 3.2. The lef-hand derivative 8-  Ruc(x) of RuC(x) with respect to 
c > 0 is given by 

a-  R U ~ ( X ) = P , C U ~ <  C, D C =  a. 
Proof. For any 0 < a < c, the representation (9) for the parameter c to- 

gether with the inequality (7) for the parameter a and for the stopping time 
T = Dc implies 

Since 
u (X,,) = Ruc (XW) 3 c > a on {DC < 5) 

and ut-$ < (c -a)  l+,,,G, the previous estimate simplifies to 

This shows that 8 - Ruc(x) Q P,  (ui < c, Dc = %I. In order to prove the converse 
inequality, we use the estimate 

Ruc(x)-Rua(x) 2 (c -a)  Px[ul < a,  Da = 

obtained by reversing the role of a and c in the preceding argument. This 
implies 

- 
since Ua,c {Da = 6) = {Dc = 5) on (uC < c) ,  due to the Lipschitz-continuity of 
RuC(x) in c. rn 

Let us now introduce the function f *  defined by 

for any x E S. Note that f * (x)  2 c is equivalent to RuC(x) = u (x)  due to the 
continuity of Ruc(x) in c. As in [lo], Lemma 3.3, it follows that the function f * 
is upper-semicontinuous and satisfies 0 < f * < u. 

We are now ready to derive a representation of the value functions RuC in 
terms of the function f *. In the special case of a potential u, where ui = 0 and 
ui = c Px-as., our representation (11) reduces to Theorem 3.1 of [IO]. 
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THE~REM 3.1. For any c 2 0 and any x E S, 

(11) RuC (x)  = Ex [ SUP f * (Xd v ~3 = Ex [ SUP f * (Xt) v u:]. 
O<t-=[ o<tcg  

Proof. By Lemma 3.2 and (8) we get 

Since 
{ D c + e < [ > ~ ( s u p  f * ( X t ) > c )  c { D E < [ )  - 

O<t<T 

for any c 2 0 and for any E > 0, we have 

By continuity of GI+ R u W e  obtain 
m 

Ruc(x)-c 2 5 ( 1 - ~ , [  sup f * ( X , ) v u ~ < a ] ) d ~  
C o < t < <  

hence 
m 

RuC (3) = j P,  sup f * (X t )  v uc > a] da + c 
c 0st<5 

= E x [  sup f * ( x t ) v q I .  c.s,- 

O S t < <  

Moreover, we can conclude that 

Ruc (x)  = lim Pt (RuC) (x)  
f l 0  

= l i m E , [ s u p  f*(X,)vuE; t < 51 = E x [  SUP f*CXs)vufl  
t i 0  t S s < <  o < s < <  

since RuC is excessive, i.e., Ruc(x) also admits the second representation in 
equation (11). 

As a corollary we see that f * is a representing function for u. 
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COROLLARY 3.1. The excessive function u admits the representations 

in terms of the uppm-semicontinuous function f * 2 0 defined by (10). Moreover, 

f *(x) 6 sup f * (XJ v uc P,-as. for any x E S. 
o<r<g 

Proof. Note that u = Ruo since u is excessive. Applying Theorem 3.1 with 
c = 0 we cibtain 

In particular, we get 

sup f * (XJ v uc = sup f * (XJ v eri Px-a.s., 
ost<c o<t<5 

and this implies f * (x) < supo,, , f * (XI) v uc P,-a.s. for any x E S. rn 

Remark 3.1. Under additional regularity conditions, the underlying 
Markov process admits a Martin boundary BS, i.e., a compactification of the 
state space such that l imtfb u ( X I )  can be identified with the values f (Xc )  for 
a suitable continuation of the function f to the Martin boundary; cf., e.g., [9], 
(4.12) and (5.7). In such a situation the general representation (12) may be 
written in the condensed form (1). 

Corollary 3.1 shows that u admits a representing function which is regular 
in the following sense: 

DEFINITION 3.1. Let us say that a nonnegative function f on S is regular 
with respect to u if it is upper-semicontinuous and satisfies the condition 

(13) f (x) < sup f (X t )  v uc P,-a.s. 
o<t<< 

for any x ES. 

~ o t e  that a regular function f also satisfies the inequality 

t 14) f ( X T )  < sup f (X,) v ur P,-as. on (T < () 
T C t < [  

for any stopping time T, due to the strong Markov property. 

4. THE MJNIlMAL AND THE MAXIMAL REPRESENTATION 

Let us first derive an alternative description of the representing function 
f * in terms of the given excessive function u. TO this end, we introduce the 
superadditive operator 

Du(x) - := id{c  2 0 [ ~ T E ~ ( x ) :  P T d ( x )  > u(x ) ) .  
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PROPOSITION 4.1. The functions f * and - Du coincide. In particular, x w  
&(x)  is regular with respect to u. 

Proof ,  Recall that f * (x) 2 c is equivalent to RuC (x )  = u (x). Thus 
f * (x) 2 c yields, by (7), 

u (x) = Ruc (x) 2 pT d (x)  for any T E 3 (x). 

This amounts to Eu (x) 2 c, and so we obtain f * (x) < Du(x). In order to prove 
the converse inequality, we take c > f *ex) and dkfine ZE FIX) as the first exit 
time from the -open neighborhood { f * < c )  of x. Then 

u (x) < Ruc (x) = Ex [ sup f * (X,) v u;] 
0 6t < g  

= E x [  sup f*(X,)vu,;  r < c l + E x [ u f ;  Tf=cl 
T,<t<C 

and hence &(x) < c. This shows that pu (x )  q f * (x). ar 

Remark 4.1. A closer look at the proof of Proposition 4.1 shows that 

For any potential u of class @) we have ui = 0 P,-a.s., and so we get 

Du (x )  = inf u(x)-P,u(x) 
- PxCT= cl ' 

where the infimum is taken over all exit times T from open neighborhoods of 
x such that P,[T = > 0. Thus our general representation in Corollary 3.1 
contains, as a special case, the representation of a potential of class (D) given 
in [lo]. - 

We are now going to identify the maximal and the minimal representing 
function for the given excessive function u. 

THBOREM 4.1. Suppose that u admits the representation 

u(x)=E,[sup f ( X r ) v u J  f o r a n y x ~ S ,  
O < t < [  

where f is regular with respect to u on S. Then f satisfies the bounds 

f* sf Gf* = @ ,  

where the function f, is defined by 

f , ( x ) : = i n f ( c ~ O ~ 3 T ~ ~ ( x ) : ~ ~ u ~ ( ~ ) ~ e 6 ( ~ ) )  for any XES. 
12 - PAMS 26.2 
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Proof. Let us first show that f < f * = - Du. If f (x) 2 c, then we get for 
any T ~ y ( x )  

due to our assumption (13) on f and Jensen's inequality. Thus & (x) 2 c, and 
this yields f (x) < Du (x). In order to verify the lower bound, take c > f (x), and 
Iet T, E 5 (x) denote the first exit time from { f < c). Since by property (14) of j 

c < f (;KT,) < sup f (X,) v u< = sup f (X,) v Px-a.s. on {T, < 51, 
T c < f  4 j  O < t < <  

we obtain 

= E , [ E , [  sup f ( X t ) v u ~ I F ~ , ] v c ; ~ < ~ I + E X C ~ i ; T c = ~ I  
T , < t < (  

and hence c 2 f, (x). This implies f, (x) < f (x). ea 

The following example shows that the representing function may not be 
unique, and that it is in general not possible to drop the limit in the represen- 
tation (2). 

EXAMPLE 4:l. Let (X,),,, be a Brownian motion on the interval 
S = (0, 3). Then the function u defined by 

is concave on S, and hence excessive. Here the maximal representing function 
f * takes the form 

f * (x) = 4 1[1,2) (x) f l[2,3) (X), 

and f, is given by 
f* ( 4  = : 1{1) (XI + 112) ( 4 .  

In particular, we get 

u(x)>EX[sup f*(Xt)] for any x ~ ( 2 , 3 ) .  
o < t < <  
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This shows that we have to include ul; into the representation of u. Moreover, 
for any X E S  

sup f* (Xr) v ur = SUP f * (X , )  v uc 2 f * (x) 2 f, (x) P,-a.s., 
O < t < C  O < t < [  

and so f, is a regular representing function for u. In particular, the representing 
function is not unique. 

We are now going to derive an alternative description of f, which will 
allow us to identify . . f, as the minimal representing function for u. 

DEPINITION 4.1. Let us say that a point xo E S is harmonic for u if the 
mean-value property 

(xo) = Ex0 [u (X dl 
holds for xo and for some E > 0, where T,  denotes the first exit time from the 
ball U,(x,).  We denote by H the set of all points in S which are harmonic with 
respect to u. 

Under the regularity assumptions of [ l o ] ,  the set H coincides with the set 
of all points xo E S such that u is harmonic in some open neighborhood G of xo,  
i.e., the mean-value property 

holds for all x E G and all E > 0 such that U ,  ( x )  c G; cf. Lemma 4.1 in [lo]. In 
particular, H is an open set. 

The following proposition extends Proposition 4.1 in [lo] from potentials 
to general excessive functions. 

PROPOSITION 4.2. For any x E S, 

In particular, f, is upper-sernicontinuous. 

Proof.  For X E H  there exists E > 0 such that - 

and this implies f, (x)  = 0. Now suppose that x E Hc, i.e., u is not harmonic in x. 
Let us first prove that 

(16) p T u ( x ) < u ( x )  for all T E ~ ( x ) .  

Indeed, if T is the fust exit time from some open neighborhood G of x, then 
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for any E > 0 such that U,(x) G G. In view of Theorem 4.1 we have to show 
that f, (x) 2 f * (x), and we may assume f * (x) > 0. Choose c > 0 such that 
f * (x) > c. Then there exists E > 0 such that RuC+' (x) = u(x), i.e., by (71, 

for any TE 9tx). Fix S E (0, E) and T E Fix) .  If 

we get the .estimate 

p T ~ C + d ( ~ )  = E, [uC+'(XT); T < I;] +E,[uf+'; T = 51 < p T ~ C + e ( ~ )  6 u ~ x ) .  

On the other hand, if 

then, by (16), 

Thus we obtain ~c (x) > pT uC" (x)  for any T E FIX), and hence f, ( x )  2 c + 6. 
This concludes the proof of (15). Upper-semicontinuity of f, follows imme- 
diately since f * is upper-semicontinuous and Hc is closed. FJ 

Our next purpose is to show that f * is constant on connected components 
of H. 

PROFQSITION 4.3. For any x EH, 

where T denotes the Jirst exit time $ + o m  the maximal connected neighborhood 
H (x) E H of x. In particular, f * is constant on H(x). 

P roo f .  1) Let us first show that, for a connected open set U c S and for 
any x, y E U ,  the measures P, and P, are equivalent on the cr-field describing 
the exit behavior from U: -- 

~ ~ d l -  

(1 9) P, w P, on gU : = a ((g,, I g measurable on S ) ) .  

Indeed, any A€&, satisfies 1,o OTZ = 1, if T,  denotes the exit time from some 

neighborhood U, (x) such that U,(x) c U .  Thus 

P,  [ A ] =  E x  C 1 A 0 ~ T J  = 1 P= CAI PX,E  9 

where p,,, is the exit distribution from U,(x). Since fix,, w p,,, by assumption 
A3) of [ l o ] ,  we obtain P, w P, on gU for any y E U, (x). For arbitrary y E U we 
can choose x,, . . ., x, and EI, . . ., E, such that xo = X ,  X, = y, xk E U,,(xk- and 

VEk (xk- c U. Hence P,, x Pxk- ,  on &, and this yields (19). 
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2) For X E H  let c ( x )  be the right-hand side of equation (18). In order to 
verify f * ( x )  < c (x) ,  we take a sequence of relatively compact open neigh- 
borhoods (U,, ( x ) ) , , ~  of x increasing to H ( x )  and denote by T, the first exit time 
from U,(x).  Since f * is upper-semicontinuous on S, we get the estimate 

- 
and hence P, DimnT, f * (XT,,)  < C] > 0 for any c > c (x ) .  Thus, there exists 
no such that 

P. 'CR~C(X,J  > u (X,,JI = Px [f * ( X T . )  < c1 > 0, - 
' 

and this implies 

since Ruc is excessive. But this amounts to f*(x) < c, and taking the limit 
c L c (x) yields f * (x) < c (x). 

3) In order to prove the converse inequality, we use the fact that for any 
c < c ( x )  

(20) Ex [uc ( X T ) ]  < u ( x )  for all TE Fo ( x ) ,  

which is equivalent to Ruc(x) = u (x) .  Thus f * (x) 2- c for aII c < c (x),  and in 
view of 2) we get f * ( x )  = c (x).  Since, by (19), c ( x )  = c ( y )  for any y E H(x) ,  we 
see that f * is constant on H ( x ) .  

It remains to verify (20). To this end, note that, by (19), for any y E H ( x )  we 
have c < c (x) = c (y) < f,* P,-as. Thus, f * (X,) > c P,-a.s. on {T < for any 
y E H (x),  and this yields 

Moreover, we get c < fi8 < uS Py-as. on (T = c). Let us now fix T'EY* (x). 
Since Xi. E H ( x )  on f < T), we can conclude that 

On the other hand, we have ( T  < F) c {T < 51, and by the Px-supermartin- 
gale property of (Ruc(Xt)  lv ,O)t , ,  we get the estimate 
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where the first equality follows from f * (XT) 3 c (x) > c Px-a.s. on {T < I ) .  This 
together with (21) yields 

Remark 4.2. A point XES is harmonic with respect to u if and only if 
there exists E > 0 such that f * is constant on U,(x) c S.  

Indeed, Proposition 4.3 shows that this condition is necessary. Conversely, 
take xrHC and assume that there exists E > 0 such that f * is constant on 
U,,{x) c S.  Then the exit time T : = Tv,(,) satisfies 

in contradiction to (16). 

Our next goal is to show that f* is the minimal representing function for tk. 

THEOREM 4.2, Let f be an upper-semicontinuous function on S such that 
f, < f < f *. %en f is a regular representing function for u. In particular, we 
obtain the representation 

and f, is the minimal regular function yielding a representation of u. 

Proof. Let us show that 

(22) sup f, (Xt) v ul; = sup f (Xt) v us = sup f * (X,) v uc Px-as. 
O < t < [  O<t -= [  O < t < i  

for any x E S. Suppose first that x EH. We denote by T,  the exit time from the 
open set { f * < c). Since 0 < f, < f < f *, it is enough to prove that for fixed 
c >f*(x) 

(23) sup f, (X,) v us > c Px-a.s. on (T, < 6). 
O c r < i  

By (15) we see that 

sup f* (X,) 2 f, (XTJ = f * (XT~) 2 c Px-a.s. on (T, < C, XT= E HC) . 
O < t < C  

On the set A : = (T, < 6, XTc E H) we use the inequality 

(24) f*(XTJ < f: Px-a.s. on A 

for T : = T,+ TH o 8,,, which follows from Proposition 4.3 and the strong Mar- 
kov property. Using (15) and (24) we obtain 

sup f. (x,) 2 f, (x,) =I* (x,) f * (xd 3 c pX-as. on A* { T  < S} 
o<tc5 

and 
uc 2 J;* 2 f * (XTc) 2 c Px-a.s. on A n ( T  = [) . 
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Hence supo < < s  f* (X,) v ui 2 c Px-a.~. on A. This concludes the proof of (23) 
for XEH, and so (22) holds for any XEH. In particular, we have 

(25) sup f, (X,) v uc = sup f * (XJ v ui Px-a.s. on (T < <> Xi. E H) 
? < t < 5  

for any stopping time $?, due to the strong Markov property. 
Let us now fix x E HC and denote by ?k the first exit time from HC. Since the 

functions f, and f* coincide on Hc due to Proposition 4.2, the identity (22) 
follows immediately on the set ( p  = 1;). On the other hand, using again Propo- 
sition 4.2, we get 

(26) sup f * (Xt) v uc = sup f * (X,) v sup f  * (X,) v US 
o c t < ~  o c t s 4  t<r<[ 

= sup f* (Xt) v sup f  * (XJ v uc on { F  < c) .  
0 < t < f  f <t-=[  

By the definition of F7 on {? < <} there exists a sequence of stopping times 
? < T, < <,  EN, decreasing to ? such that X=,E H. Thus, 

sup f  * (X,) v us = lim sup f * (Xt)  v uc = lim sup f* (XJ v erl; 
f - < t < g  n t w  Tn<t<[ f i tm T,,<t<< 

due to (25). Combined with (26) this yields (22) on {F<  [). Thus we have 
shown that (22) holds as well for any x € H C .  

In particular, f  is a representing function for u. Moreover, by (22), 

f (x) < f  * (x) < sup f * (XJ v us = SUP f (Xr) v ui P,-a.s. 
O < t - = [  O i t ' r ;  

for any x E S, and so f is a regular function on S with respect to u. In view of 
Theorem 4.1 we see that f, is the minimal regular representing function for u. 

Remark 4.3. Suppose that u admits a representation of the form 

for all x E S and for some regular function f on S. Then f satisfies the bounds 
f * < f < f * .  

This follows from Theorem 4.1 combined with Proposition 2.1 for 4 = 0. 
Clearly, such a reduced representation, which does not involve explicitly the 
boundary behavior of u, holds if and only if us <  up,,,,^ f  (X,) Px-a.s. In 
particular, this is the case for a potential u where ui = 0, in accordance with the 
results in [lo]. Example 4.1 shows that a reduced representation (27) is not 
possible in general. If u is harmonic on S, (27) would in fact imply that u is 
constant on S. Indeed, by Proposition 4.3, harmonicity of u on S implies that 
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f *= c on S for some constant c. Using f d f * < tk and (3) we get 

and so (27) would imply u (x) = c for all x E S.  
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