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Abstract. We study the behaviour of the excess entropies of stationary
random fields defined by Crutchfield and Feldman in two classes of random
fields: Conze fields and product fields.

2000 AMS Mathematics Subject Classification: Primary: 94A17;
Secondary: 54C70.

Key words and phrases: Entropy, excess entropy, random field.

INTRODUCTION

The excess entropy plays an important role in the theory of dynamical systems
and information theory. It has been introduced by Crutchfield and Packard (cf. [2],
[5], [6]) and then investigated also by other authors (see, e.g., [3], [9], [11]).

In [4] Crutchfield and Feldman defined three generalizations of the excess en-
tropy to stationary random fields. Namely, these are defined as: the convergence
excess entropy EC , the mutual information excess entropy EI , and the subexten-
sive excess entropy ES . In [4] there are studied entropies EC and EI for Ising
models.

The purpose of this paper is to study these entropies on two classes of station-
ary random fields: the Conze fields induced by stationary processes and product
fields induced by pairs of stationary processes.

It is well known (cf. [3], [7]) that the analogues of EC , EI and ES for station-
ary processes coincide. We will show that this is not the case for random fields.
Of course, all these entropies are equal for Bernoulli random fields. We prove that
if one takes a slight and natural modification ẼI of EI , then EC = ẼI for Conze
fields.

We also show that the behaviour of excess entropies for random fields is dif-
ferent than in the case of processes when the entropy of a random field is zero or if
it has the Markov property.

∗ The both authors: Wojciech Bułatek and Brunon Kamiński, were partially supported by Grant
MNiSZW NN201 384834.
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1. EXCESS ENTROPY FOR STOCHASTIC PROCESSES

Let (X,B, µ) be a Lebesgue probability space and let T : X → X be an
invertible, measurable, measure-preserving transformation (automorphism) of
(X,B, µ).

Any pair (P, T ), where P is a finite measurable partition (shortly, partition)
of X , is said to be a stochastic process (or, shortly, process) induced by P and T .

A consideration of the above pairs as processes instead of sequences of ran-
dom variables forming strictly stationary processes with a finite state space is often
applied. This approach is especially convenient when one makes use of entropy
theory.

For a partition P = {P1, P2, . . . , Pr} of X we denote by Hµ(P ) the entropy
of P , i.e.

Hµ(P ) =
r∑

i=1

η
(
µ(Pi)

)
,

where η(x) = −x log x, x ∈ (0, 1] and η(0) = 0.
If Q = {Q1, . . . , Qs} is another partition of X , we denote by Hµ(P |Q) the

conditional entropy of P given Q, i.e.

Hµ(P |Q) =
s∑

j=1

µ(Qj)
r∑

i=1

η
(
µ(Pi|Qj)

)
.

The number
I(P ;Q) = Hµ(P )−Hµ(P |Q)

is called the mutual information of P and Q.
The partition being the join of partitions P, T−1P, . . . , T−(n−1)P is denoted

by
∨n−1

i=0 T−iP, n ­ 1.
We consider the sequence (hn) defined by

h0 = 0, hn = H
(n−1∨

i=0
T−iP

)

and let
∆hn = hn − hn−1, n ­ 1.

The limit
hµ = hµ(P, T ) = lim

n→∞
hn

n

is called the entropy of the process (P, T ). It is well known that this limit exists
(cf. [15]).

Moreover, the sequence (∆hn) is non-increasing and

hµ ¬ ∆hn ¬ hn

n
, n ­ 1.

On the other hand, the sequence (hn − nhµ) is non-negative and non-decreasing.
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One associates with (P, T ) the following three quantities:

EC = EC(P, T ) =
∞∑

n=1

(∆hn − hµ),

EI = EI(P, T ) = lim
n→∞ I

( −1∨
i=−n

T iP ;
n−1∨
i=0

T iP
)

= lim
n→∞(2hn − h2n),

ES = ES(P, T ) = lim
n→∞(hn − nhµ).

Previous studies show (cf. [3], [7]) that these three numbers coincide. Their com-
mon value is denoted by E = E(P, T ) and called the excess entropy of the process
(P, T ).

It is easy to check that

If (P, T ) is Markovian, then E(P, T ) = h1 − hµ.

In particular, E(P, T ) = 0 iff (P, T ) is Bernoullian.
(1.1)

One can show more. Namely (cf. [7]):

(1.2) If (P, T ) is a function of a Markov process, then E(P, T ) <∞.

It is shown in [7] that for any process (P, T ) we have

(1.3) E(P, T ) ­ h1 − hµ.

Now, let us suppose that the process (P, T ) is aperiodic, i.e. for any set
A ∈ ∨+∞

i=−∞ T iP of positive measure µ and any n ∈ N \ {0} there exists a set
B ∈ ∨+∞

i=−∞ T iP, B ⊂ A, with a positive measure µ with TnB ∩B = ∅ (cf. [10]).
It is well known that for this class of processes the Rokhlin–Kakutani lemma

is satisfied. It states that for any n ∈ N \ {0} and ε > 0 there exists a set F ∈∨+∞
i=−∞ T iP such that the sets F, TF, . . . , Tn−1F are pairwise disjoint and

µ
( n−1⋃

i=0

T iF
)

> 1− ε.

It follows that

(1.4) If (P, T ) is aperiodic and hµ = 0, then E(P, T ) =∞.

P r o o f. Since hµ = 0, it is enough to notice the well-known fact:

E(P, T ) = lim
n→∞hn =∞.

Because we have not found its proof in literature, we show it here for completeness.
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Let l be an arbitrary positive integer. It is enough to find m = ml ∈ N such
that

Hµ

( m∨
i=−m

T iP
)

> log l − 1.

Choose δ > 0 such that
l−1∑

i=0

η(xi) > log l − 1
2

for any (x0, . . . , xl−1) ∈ [0, 1]l with |xi − 1/l| < δ, i = 0, . . . , l − 1.
By the Rokhlin–Kakutani lemma there exists a set F ∈ ∨+∞

i=−∞ T iP such that
the sets F, TF, . . . , T l−1F are pairwise disjoint and

µ
(
X \

l−1⋃
i=0

T iF
)

< l · δ.

Let Q be the partition
{
F, TF, . . . , T l−1F,X \⋃l−1

i=0 T iF
}
. Since the num-

bers xi = µ(T iF ) satisfy the inequality |xi − 1/l| < δ, i = 0, . . . , l − 1, we have

Hµ(Q) ­
l−1∑

i=0

η
(
µ(T iF )

)
= l · η(

µ(F )
)

> log l − 1
2
.

Applying the continuity of entropy Hµ(R) as a functional of a partition R with
respect to the standard partition distance | · | (cf. [14]), set γ > 0 such that for any
partition R with ]R = l + 1 and |R−Q| < γ we have

|Hµ(R)−Hµ(Q)| < 1
2
.

Now, let m = ml ∈ N and Q̃ = {F̃0, F̃1, . . . , F̃l}, a partition of X , be such
that

|Q− Q̃| < γ, F̃i ∈
m∨

i=−m
T iP, i = 0, . . . , l.

Therefore, |Hµ(Q)−Hµ(Q̃)| < 1
2 , and so

Hµ

( m∨
i=−m

T iP
) ­ Hµ(Q̃) > Hµ(Q)− 1

2
> log l − 1, l ­ 1,

which implies the desired property.
Let (P, T ) and (Q,S) be two processes P ={P1, . . . , Pr}, Q={Q1, . . . , Qs}

on Lebesgue spaces (X,B, µ), (Y, C, ν), respectively. The process (P×Q,T×S),
where

P ×Q = {Pi ×Qj : 1 ¬ i ¬ r, 1 ¬ j ¬ s},
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is said to be the product of (P, T ) and (Q, S). One can easily prove

(1.5) E(P ×Q,T × S) = E(P, T ) + E(Q,S).

Applying (1.4) and (1.5) one can easily give examples of (P, T ) with positive
entropy and E(P, T ) =∞.

A process (P, T ) is said to be the Pinsker one if for any non-trivial finite
partition Q ⊂ ∨+∞

n=−∞ TnP the entropy hµ(Q,T ) is positive.
This study does not answer the following question: is it possible to find a

Pinsker process with E(P, T ) =∞?

2. EXCESS ENTROPIES FOR RANDOM FIELDS

First, we introduce a notation for some subsets of Z2.
For positive integers m,n we put

Rm,n = {(i, j) ∈ Z2 : |i| ¬ m− 1, |j| ¬ n− 1}, Rn = Rn,n,

R+
m,n = {(i, j) ∈ Rm,n : i ­ 0, j ­ 0},

R−m,n = R+
m,n − (m, 0), R0

m,n = R+
m,n ∪R−m,n.

Let π− (π+) denote the set of all negative (non-negative) elements of Z2 with
respect to the lexicographical order, i.e.

π− = {(i, j) ∈ Z2 : i ¬ −1 or i = 0 and j ¬ −1}, π+ = Z2 \ π−.

We put
π±n = Rn ∩ π±, n ­ 1.

Let now (X,B, µ) be, as in the previous section, a Lebesgue probability space
and let Φ be a measure-preserving Z2-action on it, i.e. a homomorphism of the
group Z2 into the group of all automorphisms of (X,B, µ).

Any pair (P, Φ), where P is a partition of X , is said to be a random field
induced by P and Φ.

As in the theory of stationary stochastic processes, one can think of random
fields as stationary sequences of random variables indexed by elements of Z2 the
state space of which is finite.

For a subset A ⊂ Z2 we put

P (A) =
∨

g∈A

ΦgP.

First, we recall the concept of entropy of a random field.
Let (An) be a Følner sequence in Z2, i.e. every set An is non-empty, finite,

n ­ 1, and

lim
n→∞

][(g + An) ∩An]
]An

= 1

for any g ∈ Z2.
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For example, the sequence (Rn) defined above is the Følner one.
It is well known (cf. [13]) that for any Følner sequence (An) the limit

hµ = hµ(P, Φ) = lim
n→∞

1
]An

H
(
P (An)

)

exists, does not depend on the choice of (An) and is equal to the conditional en-
tropy H

(
P |P (π−ω )

)
, where π−ω denotes the set of all elements of Z2 negative with

respect to any total order ω consistent with the addition in Z2.
The convergence of the above sequence in the case when An, n ­ 1, are par-

allelograms is proved in [1] .
In the sequel we shall use two general well-known classes of random fields.
A random field (P, Φ) is called Markovian if for any positive integer n the

σ-algebras P (Rn−1) and P (Z2 \ Rn) are relatively independent with respect to
the σ-algebra P (Rn \Rn−1), n ­ 2.

It is clear that (P, Φ) is Markovian iff for any m,n ∈ N, m > n, the σ-
algebras P (Rn−1) and P (Rm \ Rn) are relatively independent with respect to
P (Rn \Rn−1). This condition is of course equivalent to the equality

Hµ

(
P (Rm)

)
= Hµ

(
P (Rn)

)
+ Hµ

(
P (Rm \Rn−1)

)−Hµ

(
P (Rn \Rn−1)

)
.

In particular, if the partitions ΦgP, g ∈ Z2, are independent, we say that
(P, Φ) is a Bernoulli random field.

Now we recall the concepts of excess entropies given in [4] applying our no-
tation.

The first excess entropy, called the convergent excess entropy, is defined as
follows:

EC = EC(P, Φ) =
∞∑

n=1

(
hµ(n)− hµ

)
,

where hµ(n) = H
(
P |P (π−n )

)
, n ­ 1. As hµ(n) − hµ is positive for all n ∈ N,

the above infinite sum always makes sense (eventually being infinite).
The second excess entropy, called the mutual information excess entropy, is

defined by the formula

EI = EI(P, Φ) = lim
m,n→∞ I

(
P (R+

m,n);P (R−m,n)
)
.

This limit always exists (eventually being equal to +∞).To see this observe first
that

I
(
P (R+

m,n);P (R−m,n)
)

= Hµ

(
P (R+

m,n)
)

+ Hµ

(
P (R−m,n)

)−Hµ

(
P (R0

m,n)
)
.

If now k, l are such that m < k, n < l, then

I
(
P (R+

k,l);P (R−k,l)
)

= Hµ

(
P (R+

m,n) ∨ P (R+
k,l \R+

m,n)
)

+ Hµ

(
P (R−m,n) ∨ P (R−k,l \R−m,n)

)
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−Hµ

(
P (R+

m,n) ∨ P (R+
k,l \R+

m,n) ∨ P (R−m,n) ∨ P (R−k,l \R−m,n)
)

= Hµ

(
P (R+

m,n)
)

+ Hµ

(
P (R+

k,l \R+
m,n)|P (R+

m,n)
)

+ Hµ

(
P (R−m,n)

)

+ Hµ

(
P (R−k,l \R−m,n)|P (R−m,n)

)−Hµ

(
P (R+

m,n) ∨ P (R−m,n)
)

−Hµ

(
P (R+

k,l \R+
m,n) ∨ P (R−k,l \R−m,n)|P (R+

m,n) ∨ P (R−m,n)
)
.

Because the last term equals Hµ

(
P (R+

k,l \ R+
m,n)|P (R+

m,n) ∨ P (R−m,n)
)

+
Hµ

(
P (R−k,l \R−m,n)|P (R+

m,n) ∨ P (R−m,n) ∨ P (R+
k,l \R+

m,n)
)
, we can write

I
(
P (R+

k,l);P (R−k,l)
)

= I
(
P (R+

m,n);P (R−m,n)
)

+ Hµ

(
P (R+

k,l \R+
m,n)|P (R+

m,n)
)

−Hµ

(
P (R+

k,l \R+
m,n)|P (R+

m,n) ∨ P (R−m,n)
)

+ Hµ

(
P (R−k,l \R−m,n)|P (R−m,n)

)

−Hµ

(
P (R−k,l \R−m,n)|P (R+

m,n) ∨ P (R−m,n) ∨ P (R+
k,l \R+

m,n)
)
.

Obviously, the last two differences are non-negative, hence the double sequence
I
(
P (R+

m,n);P (R−m,n)
)

is non-decreasing (in the sense that I
(
P (R+

m,n);P (R−m,n)
)

¬ I
(
P (R+

m,n);P (R−m,n)
)

for m < k, n < l), and therefore it is either convergent
or diverges to +∞.

The third excess entropy, called the subextensive excess entropy, is defined as
follows:

ES = ES(P, Φ) = lim
m,n→∞

(
hµ(m, n)−E1

S ·m− E2
S · n− hµ ·mn

)
,

where hµ(m,n) = H
(
P (R+

m,n)
)

and E1
S (respectively, E2

S) is the excess entropy
of the process (P, Φ(1,0)) (respectively, (P, Φ(0,1))).

It is clear that for Bernoulli random field we have EC = EI = ES = 0.
There are no natural conditions for ES(P,Φ) to be well defined. Observe

that if at least one of the processes (P, Φ(1,0)), (P, Φ(0,1)) has zero entropy, then
hµ = 0, and so ES(P, Φ) = −∞. (See also conclusion 3 in Section 5, where we
give a class of random fields for which ES(P, Φ) is not defined.)

Now we shall study the behaviour of EC , EI and ES in two classes of random
fields: Conze fields and product fields.

3. CONZE FIELDS

Let (Y, C, ν) be a Lebesgue probability space and let (P,ϕ) be a process on it.
We consider the product space

(X,B, µ) =
+∞∏

n=−∞
(Yn, Cn, νn), (Yn, Cn, νn) = (Y, C, ν), n ∈ Z.
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Let T : X → X be the left shift transformation, i.e. (Tx)n = xn+1, and let
Sϕ : X → X be defined as follows:

(Sϕx)n = ϕxn, n ∈ Z.

The transformations T and Sϕ are commuting automorphisms of X.
We define the action Φ of Z2 on X by the formula (cf. [1])

Φ(m,n)
ϕ = Tm ◦ Sn

ϕ

and let P ∗ = π−1
0 P , where π0 : X → Y is the projection on the zero coordinate.

The random field (P ∗, Φϕ) is said to be the Conze field induced by the process
(P,ϕ).

Observe that the entropy of (P ∗, Φϕ) coincides with the entropy of the process
(P,ϕ). Indeed, we have

Hµ

(
P ∗(Rn+1)

)
= Hµ

( n∨
i=−n

n∨
j=−n

T iSj
ϕP ∗

)
.

Since µ is a product measure, the partitions

T i
( n∨
j=−n

Sj
ϕP ∗

)
, −n ¬ i ¬ n,

are independent, and so applying the definition of Sϕ we get

Hµ

(
P ∗(Rn+1)

)
= (2n + 1) ·Hν

( n∨
j=−n

ϕjP
)
, n ­ 1.

Therefore, we obtain

hµ(P ∗, Φϕ) = hν(P, ϕ).

Now we shall find the values of EC , EI and ES .

THEOREM 3.1. The Crutchfield–Feldman excess entropies for the Conze ran-
dom field have the following values:

(3.1) EC(P ∗, Φϕ) = EC(P, ϕ),

(3.2) EI(P ∗,Φϕ) = 0,

and

(3.3) ES(P ∗, Φϕ) = lim
m,n→∞

[
m

(
Hν

(n−1∨
j=0

ϕjP
)− nhν(P,ϕ)

)
− nES(P,ϕ)

]
.
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P r o o f. In order to show (3.1) observe that

hµ(n) = Hµ

(
P ∗|P ∗(π−n )

)
= Hµ

(
P ∗

(
π−n ∪ {(0, 0)})

)
−Hµ

(
P ∗(π−n )

)
.

Since µ is the product measure, we have

Hµ

(
P ∗

(
π−n+1 ∪ {(0, 0)})

)
= Hµ

( 0∨
j=−n

Sj
ϕP ∗ ∨

−1∨
i=−n

n∨
j=−n

T iSj
ϕP ∗

)

= Hµ

( 0∨
j=−n

Sj
ϕP ∗

)
+nHµ

( n∨
j=−n

Sj
ϕP ∗

)
= Hν

( 0∨
j=−n

ϕjP
)
+nHν

( n∨
j=−n

ϕjP
)
.

Similarly we get

Hµ

(
P ∗(π−n+1)

)
= Hν

( −1∨
j=−n

ϕjP
)

+ nHν

( n∨
j=−n

ϕjP
)
,

and so

hµ(n + 1) = Hν

( 0∨
j=−n

ϕjP
)−Hν

( −1∨
j=−n

ϕjP
)

= Hν

(
P |

−1∨
j=−n

ϕjP
)

= hν(n + 1).

Since
hµ = hµ(P ∗,Φ) = hν(P, ϕ) = hν ,

we get

EC(P ∗, Φϕ) =
∞∑

n=1

(
hµ(n)− hµ

)
=
∞∑

n=1

(
hν(n)− hν

)
= EC(P,ϕ),

i.e. (3.1) is satisfied.
In order to calculate EI(P ∗, Φϕ) observe that proceeding as in the proof of

(3.1) we have

Hµ

(
P ∗(R+

m,n)
)

= mHν

(n−1∨
j=0

ϕjP
)

= Hµ

(
P ∗(R−m,n)

)

and

Hµ

(
P ∗(R0

m,n)
)

= 2mHν

(n−1∨
j=0

ϕjP
)
.

Hence

I
(
P ∗(R+

m,n);P ∗(R−m,n)
)
=H

(
P ∗(R+

m,n)
)
+H

(
P ∗(R−m,n)

)−H
(
P ∗(R0

m,n)
)
=0,
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and so
EI(P ∗,Φϕ) = 0,

which gives (3.2).
For any m,n ­ 1 we have

hµ(m,n) = Hµ

(
P ∗(R+

m,n)
)

= mHν

(n−1∨
j=0

ϕjP
)
.

Since the process (P ∗, T ) is Bernoullian, we have

Hµ

(l−1∨
i=0

T iP ∗
)

= l ·Hµ(P ∗) = l ·Hν(P ).

On the other hand,

Hµ

(l−1∨
i=0

Si
ϕP ∗

)
= Hν

(l−1∨
i=0

ϕiP
)
, l ­ 1.

Therefore,
hµ(P ∗, T ) = Hν(P ), hµ(P ∗, Sϕ) = hν(P, ϕ),

and so
E1

S = 0, E2
S = ES(P,ϕ).

Thus

ES(P, Φϕ) = lim
m,n→∞

(
hµ(m,n)− E1

S ·m−E2
S · n− hµ ·mn

)

= lim
m,n→∞

(
mHν

(n−1∨
j=0

ϕjP
)−ES(P, ϕ) · n− hν(P, ϕ) ·mn

)

= lim
m,n→∞

[
m

(
Hν

(n−1∨
j=0

ϕjP
)− nhν(P,ϕ)

)
−ES(P, ϕ) · n

]
,

i.e. (3.3) is satisfied. ¥

It follows from Theorem 3.1 that in general EC(P ∗, Φϕ) 6= EI(P ∗, Φϕ).
Now we propose a slight modification ẼI of EI to get the equality EC = ẼI

in the class of Conze fields. Namely, for any random field (Q,Ψ) we put

ẼI(Q,Ψ) = lim
n→∞ I

(
Q(π−n );Q(π+

n )
)
.

One can easily show that this limit exists.
Now we shall show the following

PROPOSITION 3.1. If (P ∗, Φϕ) is a Conze random field generated by a pro-
cess (P, ϕ), then

(3.4) ẼI(P ∗, Φϕ) = EI(P,ϕ) = EC(P ∗,Φϕ).
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P r o o f. Arguing as in the proof of (3.1) we have

Hµ

(
P ∗(Rn+1,n+1)

)
= (2n + 1) ·Hν

( n∨
j=−n

ϕjP
)
,

Hµ

(
P ∗(π−n+1)

)
= Hν

( −1∨
j=−n

ϕjP
)

+ n ·Hν

( n∨
j=−n

ϕjP
)
,

Hµ

(
P ∗(π+

n+1)
)

= Hν

( n∨
j=0

ϕjP
)

+ n ·Hν

( n∨
j=−n

ϕjP
)
, n ­ 1.

Hence

I
(
P ∗(π+

n );P ∗(π−n )
)

= Hµ

(
P ∗(π+

n )
)

+ Hµ

(
P ∗(π−n )

)−Hµ

(
P ∗(Rn,n)

)

= I
(n−1∨

j=0
ϕjP ;

−1∨
j=−(n−1)

ϕjP
)
, n ­ 1,

and so
ẼI(P ∗, Φϕ) = EI(P,ϕ).

The second equality in (3.4) follows at once from (3.1) and the known equality
EI = EC for processes. ¥

4. PRODUCT RANDOM FIELDS

Let (X,B, µ) and (Y, C, ν) be Lebesgue probability spaces equipped with
automorphisms T and S, respectively.

Let (Z,A, λ) denote the product space (X,B, µ)× (Y, C, ν). We consider an
action Φ of the group Z2 on (Z,A, λ), called the product one, defined as follows
(cf. [8]):

Φ(m,n)(x, y) = (Tmx, Sny), (x, y) ∈ Z, (m,n) ∈ Z2.

Let P and Q be partitions of X and Y , respectively, and let P ×Q denote the
product partition of Z defined in Section 1.

The pair (P × Q,Φ) is said to be the product random field generated by the
processes (P, T ) and (Q,S).

PROPOSITION 4.1. Any product random field is a Markov field with zero en-
tropy.

P r o o f. Let (P ×Q,Φ) be the product field induced by processes (P, T ) and
(Q,S). One easily checks that for any finite subset A = {(i1, j1), . . . , (ir, jr)} of
Z2 we have

(4.1) Hµ×ν

(
(P ×Q)(A)

)
= Hµ

( r∨
k=1

T ikP
)

+ Hν

( r∨
k=1

SjkQ
)
.
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Therefore, for any n ­ 1 we have

(4.2) Hµ×ν

(
(P ×Q)(Rn+1)

)
= Hµ

( n∨
i=−n

T iP
)

+ Hν

( n∨
j=−n

SjQ
)
.

Hence

hµ×ν(P ×Q,Φ) = lim
n→∞

1
(2n + 1)2

Hµ×ν

(
(P ×Q)(Rn+1)

)
= 0.

Now we shall verify the Markov property of the considered random field.
From (4.1) for any m ­ n ­ 1 we obtain

Hµ×ν

(
(P ×Q)(Rm+1)

)
= Hµ×ν

(
(P ×Q)(Rm+1 \Rn)

)

= Hµ

( m∨
i=−m

T iP
)

+ Hν

( m∨
j=−m

SjQ
)
.

This implies the equality

Hµ×ν

(
(P ×Q)(Rn+1)

)
+ Hµ×ν

(
(P ×Q)(Rm+1 \Rn)

)

= Hµ×ν

(
(P ×Q)(Rm+1)

)
+ Hµ×ν

(
(P ×Q)(Rn+1 \Rn)

)
,

which means that the algebras (P × Q)(Rn−1) and (P × Q)(Rm \ Rn) are rel-
atively independent with respect to (P × Q)(Rn \ Rn−1), i.e. the field (P, Φ) is
Markovian. ¥

THEOREM 4.1. The Crutchfield–Feldman excess entropies for product ran-
dom fields have the following values:

(4.3) EC(P ×Q,Φ) = 0,

(4.4) EI(P ×Q,Φ) = EI(P, T ) + lim
n→∞Hν

(n−1∨
j=0

SjQ
)
,

(4.5) ES(P ×Q,Φ) = ES(P, T ) + ES(Q, S).

P r o o f. For any n ­ 0 we have

hµ×ν(n + 1) = Hµ×ν

(
P ×Q|(P ×Q)(π−n+1)

)

= Hµ×ν

(
(P ×Q)

(
π−n+1 ∪ {(0, 0)})

)
−Hµ×ν

(
(P ×Q)(π−n+1)

)

df= h̃n+1 − h̃′n+1
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and

h̃n+1 = Hµ×ν

( −1∨
i=−n

n∨
j=−n

(T i × Sj)(P ×Q) ∨ P ×
0∨

j=−n
SjQ

)

= Hµ×ν

( 0∨
i=−n

T iP ×
n∨

j=−n
SjQ

)
= Hµ

( 0∨
i=−n

T iP
)

+ Hν

( n∨
j=−n

SjQ
)
.

Similar calculations give

h̃′n+1 = h̃n+1,

and so hµ(n) = 0 , n ­ 1. Since hµ×ν(P ×Q,Φ) = 0, we obtain (4.3).
In a similar manner we obtain

(4.6) Hµ×ν

(
(P ×Q)(R+

m,n)
)

= Hµ

(m−1∨
i=0

T iP
)

+ Hν

(n−1∨
j=0

SjQ
)
,

Hµ×ν

(
(P ×Q)(R−m,n)

)
= Hµ

( −1∨
i=−m

T iP
)

+ Hν

(n−1∨
j=0

SjQ
)
,

and

Hµ×ν

(
(P ×Q)(R0

m,n)
)

= Hµ

( m−1∨
i=−m

T iP
)

+ Hν

(n−1∨
j=0

SjQ
)
.

Thus

I
(
(P ×Q)(R+

m,n); (P ×Q)(R−m,n)
)

= Hµ

(m−1∨
i=0

T iP
)

+ Hµ

( −1∨
i=−m

T iP
)−Hµ

( m−1∨
i=−m

T iP
)

+ Hν

(n−1∨
j=0

SjQ
)

= I
(m−1∨

i=0
T iP ;

−1∨
i=−m

T iP
)

+ Hν

(n−1∨
j=0

SjQ
)
,

and so

EI(P ×Q,Φ) = EI(P, T ) + lim
n→∞Hν

(n−1∨
j=0

SjQ
)
,

which proves (4.4).
It is easy to check that

hµ×ν(P ×Q,T × I) = hµ(P, T ),

hµ×ν(P ×Q, I × S) = hν(Q,S),
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and due to the equality hµ×ν(P ×Q,Φ) = 0 and (4.6) we get

ES(P ×Q,Φ)

= lim
m,n→∞

[
Hµ

(m−1∨
i=0

T iP
)

+ Hν

(n−1∨
j=0

SjQ
)−m · hµ(P, T )− n · hν(Q,S)

]

= ES(P, T ) + ES(Q,S),

i.e. (4.5) is true. ¥

Applying the remark given in the proof of (1.4) we have

REMARK 4.1. If the process (Q,S) is aperiodic, then EI(P ×Q,Φ) = +∞.

REMARK 4.2. Similarly to (4.4) one proves

(4.7) ẼI(P ×Q,Φ) = EI(P ×Q,Φ).

5. CONCLUSIONS

1. All excess entropies for random fields defined in [4] by Crutchfield and
Feldman coincide (are equal to 0) on the class of Bernoulli fields.

2. The behaviour of EC and EI on the two considered classes of random fields
shows that they are in general incomparable. On the other hand, since EC = ẼI

for Conze fields and EC < ẼI for product fields, one could propose the hypothesis
that EC(P, Φ) ¬ ẼI(P, Φ) for any field (P, Φ). Unfortunately, actually we are not
able to show (or to disprove) this inequality.

3. The formula (3.3) implies that in general the (double) limit defining ES does
not exist. Indeed, suppose that the process (P, ϕ) is Markovian but not Bernoulli.
Then

H
(n−1∨

i=0
ϕiP

)
= H(P ) + (n− 1) · h(P,ϕ), n ­ 1,

and so
E(P, ϕ) = H(P )− h(P, ϕ) > 0.

Therefore,

m
(
H

(n−1∨
j=0

ϕjP
)− nh(P, ϕ)

)
− ES(P, ϕ) · n = (m− n)ES(P, Φ), m, n ­ 1,

which implies the non-existence of the above limit.

4. The formulas of the Crutchfield–Feldman entropies for product fields show
that there are differences between the behaviour of excess entropies for stochastic
processes and random fields.
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Namely, as we know, any stationary Markov process with a finite state space
is finitary, i.e. its excess entropy is finite. The formula (4.4) shows that under a
natural and weak assumption of the aperiodicity of the process (Q,S) for any
process (P, T ) the excess entropy EI of the product field

(
(P ×Q),Φ

)
is infinite

despite this product field is Markovian.
On the other hand, we know that for any aperiodic process with zero entropy

its excess entropy is infinite. Taking (P, T ) and (Q, S) aperiodic and finitary, we
get an aperiodic product random field (P × Q,Φ) with zero entropy for which,
according to (4.3) and (4.5), the excess entropies EC and ES are finite.
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