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IN DISCRETE TIME

BY

J.-B. HIRIART-URRUTY (ToULOUSE)

Abstract. A measurable integrand f(s, x) satisfying a Lipschitz
property in x on I'(s) < R" is extended to the whole of R” preserving
the Lipschitz condition in x. This extension is obtained by using the
process developed in [6] for an arbitrary function f, Lipschiiz on a
given subset. The problem of minimizing the integral

I;(x) = [f(s, x(s))dv(s)
5

.over a subset & of measurable functions x satisfying x(s)e I"(s) almost
everywhere is transformed into the problem of minimizing over Z the
integral functional I,(x) associated with the extended integrand g.
Comparison results for optimal values as well as for solutions of the
two problems are described. Finally, the results are applied to obtain
necessary conditions for optimality for a class of multistage nonconvex
stochastic programs.

0. INTRODUCTION

In [6] we studied the way of extending a function f satisfying a Lipschitz
property on an arbitrary subset I' of a metric space E. The problem was in
finding a function fr, defined and having the Lipschitz property on all of E,
which was equal to f on I'. The definition and the properties of the extension
process as well as comparison results with regard to optimization are
developed in [6]. In this paper, we begin by carrying out the extension
procedure to measurable integrands f (s, x) having a Lipschitz property in x on
a subset I'(s) — R" “varying measurably with s”. The new integrand fy; (s, x) is
constructed in such a way that it agrees with f(s, x) on I'(s) and has a
Lipschitz property on the whole R" which is of importance with regard to
optimization problems. Section 1 of this paper is devoted to translating, in
terms of integrands, the properties developed in a “deterministic context” in
[6]. All the definitions and concepts we need for the sequel, concerning
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measurability of multifunctions, integrands, measurable selections, are recalled
in that section. For a full development of such topics in a finite-dimensional-
context, the reader is referred to the lecture notes by Rockafellar [8].

In many areas of mathematics, including optimization, variational
problems, functional analysis, and best approximation, we have to minimize
integral functionals, i.e. functionals of the following form:

- ' x> I (x) = _[f(s x(s))dv (s).

The adm1s51ble X are constramed in %, the subspace of measurable
functions defined on a measure space (S, &, v), and must satisfy x(s)eI'(s)
almost everywhere (a.e.). In a first step, one may drop the latter constraint by
including it in the objective function. Setting f (s, x) = f(s, x) if xeI'(s) and
f(s, x) = + o0 otherwise, we reduce the above minimization problem to

(#) minimize I;(x) = j fs, x(s))dv(s) xedZ.

In the last ten years, convex integral functionals have received a great deal
of attention (see [1], [8], and the references therein). In that context, the key
result was in calculating the conjugate function If. The properties of I, as well
as the determination of its subdifferential were then derived from the
knowledge of If. In the absence of both differentiability and convexity
assumptions on f(s, ), a step has been taken in the calculation of the
generalized gradient 0I; of I,, at least when f(s, ) and I, have appropriate
Lipschirz properties. The method consisted in reducing the problem of
determining 6], to that of evaluating the subdifferential of a certain “tangent
integral functional” which turned out to be convex. In that respect, we mention
[13], Chapter III, for the “tangentially convex” case and Ly as underlying
space, and [14] and [3] for the general Lipschitz case in By (1 < p < o) and

%, respectively. The general situation will be treated in a forthcoming article

: by the author and R. J.-B. Wets. However, our method in deriving necessary

conditions for xp€ Z to be the solution of (P) (Section 2) does not rely upon the
direct calculation. of 0Iy. Our way of grappling with (&) consists in
transforming it into an extended problem

(P)rx  minimize I, () = [frals, x (s))dv(s), xed,
s

where fr, is the extended (Lipschitz) integrand. Comparison results for optimal
values as well as for solutions of (%) and (), will be provided. Afterwards,
necessary conditions for optimality are deduced from the known results on
oI, in the Lipschitz case.

in Section 3, the obtained results aré applied to the study of a class of
multistage nonconvex stochastic programs. We are more particularly
concerned with the optimal recourse problem such as described in [11] and
[12], from which we take most of the prerequisites. Roughly speaking, in a
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multistage stochastic program, we are in the presence of finitely many stages
(N), at each of which a decision (or a recourse) is selected on the basis of prior
observations of random events, and subject to costs and constraints depending
on these observations as well as past decisions. The goal is to minimize an
expected cost (hence an integral functional) taking into account the known
probability distribution of random events. In the case of convex costs and
constraints, necessary and sufficient conditions for a decision rule to be optimal
are derived in [11] and [12] with the powerful tool which is the duality
approach. For related work, especially from the Soviet literature in the
framework of models for optimal economic developments, see the references in
[11]. In the nonconvex but locally Lipschitz case, two-stage (N = 2) stochastic
programs were studied in [4] in their dynamic formulation. Here, we consider a
particular class of N-stage stochastic problems, namely those whose cost
function has a Lipschitz property, but-only in the admissible decision rules.
Thus, the stochastic optimization problem is set in the framework of Section 2,
with Z representing the nonanticipativity constraint. As in the convex case, we
show that it is possible (under certain constraint qualifications) to associate
with nonanticipativity a price system (i.e. a system of Lagrange multlphers)
having a martingale property.

1. EXTENSION OF LIPSCHITZ INTEGRANDS

1.1. In this Section 1, (S, &)is a generél measurable space. A multifunction
I’ (or set-valued mapping) from S into R” will be denoted by I': S 3 R". We
also fix some other notation:

. (i) the graph of I is grI' = {(s, x)eSxR"lxeF(s)};
(ii) the inverse of I' is the multifunction I'"': R" 3 § defined by I'"*(x)
= {seS| xel(s)}; so, for any- X < R", | ‘

Ir~1(X) = {seS| r'synX # O}.

For the most part, the values of the multifunctions which will be considered
in the sequel are either epigraphs of lower-semicontinuous (1.s.c.) functions or
subsets defining the constraints of a certain optimization problem. So, without
loss of generality, we shall be concerned with closed-valued multifunctions.
Such a multifunction is said to be measurable (relatively to &) if, for each closed
set X = R" the set I'"'(X) belongs to &. As a consequence, grl” is an
(¥ ® %,)-measurable subset of S x R” (where £, is the o-field of Borel sets in
R"). The general properties of measurable multifunctions, the basic measurable
selection theorem, and the description of operations on multifunctions that
preserve measurability are fully developed in Part I of [8].

Now, let us consider functions from S x R" into R (the extended reals). Such

functions will be called integrands on S x R". An integrand f is completely
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~ determined by the epigraph multifunction s = epi f (s, ) We shall say that the
" integrand f: SxR" - R is

(i) measurable if f is (¥ ®%,)-measurable on S x R”,
(ii) normal if the epigraph multifunction is a closed-valued measurable
multifunction,
(iii) proper if f (s, ) is proper for every se %, ie. if f (s, °) does not take the
value —oo and is not identically equal to + oo for every s.
- A normal integrand is a measurable integrand. Conversely, if (S, &) is
complete' with respect-to some nonnegative o-finite measure on &, then a

measurable integrand f y1e1ds a normal integrand by the “closure” operation:
cl f defined by

clf(s, xo) = liminf f(s, x) for all (s, xo)€SX R”

x**xo
We also fix another definition which expresses a kind of regular behavior of
f(s, ) on a nonempty set I'(s) “varying measurably with s”.
Definition 1.1. Let f be a measurable integrand on S x R" and let
I': S 33 R" be a nonempty closed-valued measurable multifunction. Then f is
said to be Lipschitz on I if for each se§ there exists k(s)eR, satisfying

(1.1 If (s, X)—f(s, ¥ < k(s)llx—y|| for all x and y in I'(s).

Hence, “f Lipschitz on I presupposes three ingredients : measurability of f
as an integrand, measurability of the nonempty closed-valued multlfunctlon I,
and the Lipschitz property above.

The least positive real k(s) such that (1.1) holds for f(s,") is

' R _ If(ss x)_f(ss y)l
G, M = sup{ T

Clearly, kK may be chosen to be measurable in relation (1.1).
+ The simplest example of the Lipschitz integrand is the indicator mtegrand
6; of a measurable multlfunctlon T, ie.

0 if xel'(s),
or(s, x) = {-f-oo if x¢I'(s).

For another example, let us consider a measurable proper convex integrand
f (i.e. epi f(s, *) is convex for each s); f is Lipschitz on I' whenever I" is a

X, yéF(s), X # y}.

measurable compact-valued multifunction satisfying the condition

I'(s) < int{xeR"| f(s, x)eR} for all s.

By pasting together the results on composition of Lipschitz functions and
the measurability techniques developed in [8], Section II, one gets new
Lipschitz integrands via usual operations like addition, left-scalar multipli-
catlon, etc.




Extension of Lipschitz integrands 23

1.2. Let f be an integrand Lipschitz on I'. In the way of extending f to the
whole R", we shall use the integrand f defined by .

fs, x) = f(s, X)+p (x).

fis clearly measurable; it is moreover normal whenever (S, &) is complete
([8], Theorem 2A). Again f’is normal in the case where fis proper normal and I
nonempty-valued ([8], Proposition 2M). Therefore, when considering an
integrand f Lipschitz on T, it will be assumed throughout that f is proper and
normal. -

THEOREM 1. 1 Let [ bé an integrand Lipschitz on I and let k be a measurable
Junction such that k(s) = ||lf(s, lll for all s. Then the integrand fi, defined by

Jrals, %) = inf {f(s, +ks)lx—ull}

uel'(s)

is Lipschitz on R" with Lipschitz constant k(s) and verifies -

' fea(s, ) =f(s, %) for all xeI'(s).

1.3 Tangent cones, generalized gradients. Let E be a real Banach space, let 4
be a nonempty closed subset of E, and let uge 4.

Definition 1.2. § is a tangent direction to A at u, if for every sequence
{u,} = A converging to u, and for every {i,} = R% converging to 0 there
exists a sequence {d,} converging to é such that u,+4,5,€4 for all n.

The cone of all tangent directions to A4 at ug is the tangent cone to A at ug
and will be denoted by %, (u). Its polar cone, i.e. the set of ne E* (topological
dual space of E) satisfying {n, §) < 0 for all 6 €% 4(uy), is called the normal
cone to A at uy and will be denoted by A", (uo) The cones %, (ug) and A, (uo)
are nonempty, closed and convex.

ProrosiTioN 1.1 ([4]). Let I': S 3 R" be a closed-valued measurable
multifunction and let u: S — R" be a measurable Sunction such that u(s)eI'(s)
for all s. Then the multifunctions s = Gp(u (s)) and 53 ./V o (u(s) are
measurable. :

Let f: E — R be finite at x,. Starting from the geometric concept of
tangent cone, the generalized directional derivative of f at x, is defined by

(12 defPxo; d) = inf{ueR|(d, u)E‘gep;f(Xo,f(x_o))}

with the usual convention that inf @ = + oo. The definition of f=(x,; *) in
(1.2) is “geometric” without any “analytic” formula involving limits of
difference quotients of some kind. Rockafellar [9] gave recently the analytic
form of fU(xq; ) by translating the construction of Cepi f(xo , f(xo)) in terms of
sequences (Definition 1.2) into a statement in terms of “limsup” of certain
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quotients. When f is Lipschitz around x,, f© (x,; d) has a simpler expression.
f°(xo; d) which was first produced by Clarke [2],

f°(x0; d) = limsup [f(x+Ad)—f(x)]A"*.

-
cho

FET R
In the general case, the geometric definition (1.2) will be well adapted for

measurability purposes. The generalized gradient of f at x,, in Clarke’s sense, is
defined as follows: :

6f(x°) = {x*eE* | {x*, d) < fP(xo; d) for all deE}.

When f is convex, df(xy) is the subdifferential in the sense of convex

analysis; when fis C' at xg, 9f(x,) is reduced to one element, namely Ff (x,).

 THEOREM 1.2. Let f: Sx R" — R be a normal integrand and let x,: S — R"
be a measurable function such that |f(s, xo(s)) < oo for all s. Then

(@) (s, d) — f(s, xo(s); d) is a normal convex integrand on S x R",

(b) the multifunction s = of (s, xo(s)) is measurable.

Proof. (a) The function s — (xo(s), f(s, Xo(s))) is measurable. Therefore,
according to Proposition 1.1, the multifunction 4: s =3 R"*' which assigns to
s the tangent cone to epi f (s, *) at [xo(s), f(s, Xo(s))] is measurable. Now, 4 (s)
is, nothing but

{d, WeR™ 1| fO(s, x(); d) < u}

(see [5]). Hence the normality of the mtegrand (s, d) — fO(s, xo(s); d) is
proved.

(b) The multifunction 4°: s = R"*! which assigns to s the normal cone to
epi f(s, *) at [xo(s), f(s, Xo(s))] is closed-valued and measurable; the constant
multifunction s = R"x {—1} is measurable. Hence the multifunction

sIZA%(s)n (R*x {—1})
is measurable (closed-valued); see [8], Theorem 1M.
(s, xo(s)) is the image of A°(s)n(R"x{—1}) under the projection
‘ mapping (x, u) — x. Thus, following Corollary 1P in [8], the multifunction

F3-0f (s, xo(s)) is measurable.

- Concerning the genéralized gradlents of (s, -y and f, k(s 2) (such as defined
in Section 1.2), we have general comparison results.

THEOREM 1.3. Let f be an integrand Lipschitz on T, let x, be a measurable
function such that xo(s)eI'(s) for all s, and let k be a measurable mapping.

(é) If k(s) = [llf(s, M for all s, then
(1 3) Laf-(s xo(S)) < 5frk(5 xO(s))+r/1/‘r(s) (xo(s)) for all s.
(b) If k(s) > lf (s, Il for all s, then
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(14 Ufru (s, xo(s)) < af_(sa xo(S))ﬂ k(s) B,

where B denotes the closed unit ball in R"
For the proof see [6], Theorem 2.
-When f(s, -) is convex on I'(s) (i.e. f(s, ) is a convex mtegrand) inclusions

(1.3) and (1.4) become equalities. Actually, results (1.3) and (1.4) are

strengthened to equalities for which we shall call “tangentially convex

integrands”.
"Let 4 be a nonempty closed subset of a real Banach space E and let upe4..

A classic way to get a conical approximation of 4 at u, is to consider the

contingent cone to A at u, (also called cone of adherent displacements for A from

ug). This cone, denoted by T, (u,), is defined by

T,(uo) = (6E | 34,10, 5, — & with ug+1,6,€4 for all n}.

ProOPOSITION 1.2. Let I': S =3 R" be a closed-valued measurable multifunction
and let u: S — R" be a measurable function such that u(s)eI'(s) for all s. Then
the multifunction s 3Ty, (u(s)) is measurable.

%re(u(s) is always included in Ty, (u (s)) (see [5]); if, in addltlon to the
assumptions of Proposition 1.2, we suppose that €, (u(s)) = Tr, (u(s)) for all
s, we shall say that I is tangentially convex at u. Concerning the corresponding
notion on integrands, a normal integrand f: SxR" — R will be called
tangentially convex at x if f(s, x(s)) is finite for all s and if s {7 epi f{(s, *) is
tangentially convex at u: s+ (x (), f (s, x(s))). In an analytic way, the
tangential convexity of f at x is translated as '

F9(s, x(s); d) = liminf [f(s, x(s)+40)—f(s, x(s)] A~ for all d.
’ ' d—d
A—=0t :

For a normal iritegrand f, the tangential convexity at x is in particular
ensured whenever f(s, *) is convex in a nelghborhood of x(s} or f (s )is C! at

x(s).

THEOREM 1.4. Let f be an integrand Lipschitz on I', let x, be a measurable
function such that xo(s)eI'(s) for all s, and let k be a measurable mapping such
that k(sy > |||f(s, ||| for all s. We suppose that the integrand f is tangentially
convex at xo. Then fr, is tangentially convex at x, and. ‘

(s, %0(9) = Frals, Xo(®)+ N i (X0 ),
(s, xo(s)) = f(s, xo(5))Nk(s)B- for all s.

The theorem follows from Theorem 1.3-and [6], Theorem 3.
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2. MINIMIZING INTEGRAL FUNCTIONALS

From now on, v will denote a positive o-finite measure on (S, ). For any
normal integrand f: S x R" — R and any measurable function x: § — R" it
follows that s — f(s, x(s)) is measurable, and therefore the integral functional

x> I(x) = [ f(s, x(s))dv(s)

has a well-defined value in R under the convention that I (x) = +o
- whenever

g[f(s, x(s))] " dv(s) =

We denote by L, the space of all measurable functions x: § — R". In
optimization problems dealing with integral functionals I,, there are typically
two kinds of constraints on the admissible functions x. The first type of
constraints concerns the “nature” of x: x must belong to a space 2’ < L.
For the second type of constraints, we are given a closed-valued multifunction

T:S3 R which we will suppose, without loss of generality, is nonempty-
valued on §. We will be concerned with measurable x such that x(s)e I'(s) a.e.
The assumed measurability of I' ensures that such measurable selections do
exist ([8], Corollary 1C). 4 will denote the set of all measurable selections of I".

Typically, the optimization problem we are concerned with is

'(9’) minimize I,(x) over T

By the usual device which consists in “transferring the constraint into the
objective”, (%) is equivalent to
(#) minimize I7(x) over %.
- In writing (%), we implicitly assume that the integrand fis normal, which is
secured whenever f'is proper. As a consequence of assumptlons onfand I, the
function

mp: s+ mp(s) = inf f(s, %)
xel'(s)

is measurable ([8], Theorem 2K) '

The integral functional I, is said to be proper on 7 if I;(x) > —co for all
"xeJ and if I,(X) < +oo for at least one Xe.7. The first general result
relating minimization of I, on  to pointwise minimization of f (s, -) on I'(s) is
the following one:

ProrositioN 2.1. Suppose I < %. Then

(2.1) | inf {f(s, x(s))dv(s) = j[mf f(s, x)Jdv(s).

xeJ § xel'(s)
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If, moreover, the integral functional If is proper on 7, the following
statements are equivalent:
(a) xo minimizes I, on T
" (b) xoe T and x4(s) minimizes f(s, ) on I'(s) ae.
Proof. The proof of (2.1) is contained in the parenthetical case of Theo-
rem 3A in [8]. If I, is proper on 7, then | f(s, xo(s))dv(s) is finite for x,
5

minimizing I; on . Hence the desired equivalence is easily deduced‘from (2.1).

The assumption 7 < & is satisfied when &' = L, and, more generally,
when 2 = E, (ie. E, (S, &, v)) and the function s — sup {lIxl]; xeI'(s)}isin
E,,. For results sm'ular to those of Proposition 2.1 in the L_,-case, see [16],
Theorem 2 and Corollary 2. Actually, except in the case where F is “large
enough”, the constraint imposed on the nature of x (x € Z) is not satisfied for all
selections of I'. We shall study the problem () in the following particular
framework : .

(#/1) the underlying space is K, (1 < p ~<,'oo);

(«#,) fis an integrand Lipschitz on I" and the function s ()l (s, )l is'in
B (1/p+1/q = 1);

(«#3) & is a subspace of mga_lsprable functions in E,, and J < E"‘,,

As usually in the theory of integral functionals, we shall distinguish Z by
.+ the presence or absence of a certain property of decomposability. Following the
definition in [8], 4 is said to be decomposable if S can be expressed as the union
of an increasing sequence of measurable subsets S,, (m = 1, 2, ... such that
for every S,, and bounded measurable function x,: § — R”, and every x;€ %,
the “decomposed” (measurable) function

x.(s) for seS§,,
xg(s) for seS;, (complementary set of S, in §) -

.SI——)xm(S)={

“belongs to Z.

As for (2), we will transfer the constraint 7 inthe objective by redefining a
penalized version of the objective function. For that purpose, we consider the
extension fr, of f such as defined in Section 1. Since v is g-finite, there exists a
functione: § — R% in E,. We consider throughout the extension fr.; built up
withk: s +— k(s) = ||If (s N +&(s). The extended version of (%) becomes now

(?)r,  minimize I, over Z.

We note that, following assumption (&75,), I, is Lipschitz on J with
Lipschitz constant Hk()ll,& whenever Ir . is ﬁmte at some XeJ.
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THEOREM 2.1. Suppose thatllfr' is finite at some X€J and that & is
decomposable. Then
(@) inf I;(x) = mf I (%) = f[ inf f(s, x)]dv(s);
xe¥nd xel(s)
(b) the following statements are equwalent
(i) xo€ X NI minimizes I, on XN T,
(11) Xo€X minimizes Iy, on Z.
Proof. (a) Applying Theorem 3A from [8] to the mtegrands f and f“,
we get
lnf _ff(s x(s))dv(s) = _fm,—(s) dv(s)
and

: mf j’fn (s, x(s))dv(s) = _f[lnf frxls, x)]dv(s)

s xeR"

Now, an easy consequence of the definition of fr, is
mp(s) = inf fr (s, X).
xeR"

Hence the equality of minimum values is proved.
(b) Let xo€ % minimizing I;7 on Z. The integral { f(s, x, (s))dv(s) is finite
and, gccording to the proof of part (a), we have 5

[f(s, xo(s))dv(s) = [ [inf fr.(s, 0] dv(s),
N S xeR"

whence : -
f(s, x0(s)) = inf fr,,‘(s, x) a.e.

Conversely, let xoe & rmmrmzmg If over Z. The only thing to prove is
that x, necessarily belongs to 7. Let oz(s) be the distance from x,(s) to I'(s);

a is measurable and, furthermore, o € E,,. Suppose that a(s) > 0 on a set A of

positive measure. The multifunction 4 defined by

A(s) = {x eI'(s)| f(s, x)+k(s)||x_xo(3)” < frals, xo(s))+a(s)k(s)}

is measurable ([8], Theorem 2I) Hence there is a measurable selection X of 4,
that .is to say: XeZ and

‘ k
@) 22

Observe that X(s) = xo(s) for almost all se 4°. Let S,,(m =1, 2,..) be as
in the definition of decomposability. Intersecting each S,, with the measurable
set {seS | |X(s)) < m} if necessary, we can suppose X to be bounded on S,,. We

~

define a new measurable function %, as follows:

- x(s) for seS,,
m(5) = c
xo(s) for seS:,.

< fru(s, xo(s))  for almost all s.

B
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According to the decomposability assumption, X,,€ 2. Now, following (2.2),
. we have

k
@) [fralo® s))d()+§ ki)

dv(s) < [ frals, %o(9)dv(s).
S

For m sufficiently large, v(S, N A) > 0; hence (2.3) yields
_"frk( (S))dV(S) < jfl",k (Ss Xo (S))dV(S),

which contradlcts the optlmahty of xo. Therefore, a(s}) = 0 ae. and x,e 7.

Remark. As noticed in the proof above, if x, minimizes I (Xyon T nT
(X decomposable or not), then x, minimizes I;,  (x) on Z. This is a weaker
result than (b) in Theorem 2.1 but it will play a key role in the sequel.

Necessary conditions for xoe & N 7 to be a solution of () will be derived
via necessary conditions for optimality in (). For that, let us fix first the
duality framework. The underlying space L = E_,, endowed with the norm
topology, is paired with its topological dual space I* which is supposed to be
equipped with a topology compatible with respect to the pairing. If 1 < p
< o0, the canonical pairing between Eg, and I, (1/p+1/q = 1) is simply

X, x*y o= [ x(s) x*(s)dv(s)

and one can consider . equipped with the norm topology whenever 1 < p
< o. In the situations we will encounter, functionals on L7, will have nice
properties with respect to the norm topology. The space Lg, equipped with the
norm topology, has a dual space which is identified as follows: z* e(L7,)* is
said to be singular if there is an increasing sequence S, (k =1, 2,...) of
measurable sets covering S and such that, whenever xeL?, is a function
vanishing a.e. outside of some S, we have z*(x) = 0. The set of these singular
functionals will be denoted by E:'f. For each x*e(L%,)* we exhibit the
“absolutely continuous part” y* and the “singular part” z*. Under the pairing

6, (7%, 249> = x, y*>+2%(x)  for xeLy,, (7%, 7)€ L x B,

the relation _
( oo)* — I} @Emg

holds isometrically (see [7] and [8]). Actually, the elements of (L,)* we will
produce as elements of the generalized gradient of a certain mtegral functlonal
on L%, will be in L. .

The following statement is the synthesis of results in [14] and [3]
concerning the generalized gradient of a Lipschitz integral functional on E,
(1 <p< o).
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PROPOSITION 2.2. Let g be a measurable integrand on S X R" and let xo€ E,.
We suppose that

(a) f(s, ?) is Lipschitz in a neighborhood of x,(s) a.e.,
(b) the integral functional I, is finitely defined at x,,
(c) there exists a ke, satisfying

lg(s, x(s)~g(s, y©)) < k@ lx©) =yl ae.
for all x,y in a neighborhood of x, in E,.
Then I, is Lipschitz in a neighborhood of x, and
(2.4) d,(xg) < {x*eli, | x*(s)€dg(s, xo(s)) ae.}.
Moreover, if g is tangentially convex at x,, then I, is tangentially convex at
xo and equality holds in (24). _
The intermediate step in deriving (2.4) is in proving that

I2(x0; &) < [ 4°(5, %o(9); d(s))dv(s) for all deE,.
Y

Then the general statements giving the subdifferential of integral convex
functionals yield the desired inclusion. We observe that IJ: d +— I)(xo; d) is
continuous at d = 0 in the norm topology of E_,; hence in the L7 -case, the
subdifferential of I; at 0 (which is nothing but the generalized gradient of I,
at xo) consists of elements of L, (see [7]). '

Now, we turn back to the problem of deriving necessary conditions for
_optimality of (%) under the assumptions described earlier.

THEOREM 2.2. Suppose that I, is finite at some X T . If Xo € B, minimizes 1,
on X' NT, then there exists an x* e I, satisfying

(@) —x*eN g(xo), '

(b) x*(s)edf(s, xo(s)) and ||Ix*(s)| < k(s) ae.

Proof. According to the Remark following Theorem 2.1, x, minimizing I,
on ZNJ minimizes I, .. on Z. Since I 1s Lipschitz on E,, we then

necessarily have 0(561,r (x0)+ N g (Xxq) (s€€ [2] and [5]). Thus there exists an
- x*e B, such that

—x* Ev/yi‘gi(.'-xo) and  x*(s)€dfr,(s, xo.(s)) ae.

The res‘ult (b) is then deduced from inclusion (1.4) in Theorem 1.3.

Remarks. One might try to go further in relation (b) and write, under ™
suitable assumptions, that

F(s, o) = (s, X&)+ r(*o(s)).

Conditions on the initial integrand f and on the multifunction I' for the
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above inclusion to hold are fully developed in {10]. Moreover, when I'(s) has a
representation in terms of equalities and inequalities, i.e.

()= {xeR"|fi(s,x) < 0,i=1,...,a,and hj(s,x) =0,j =1,..., B},

regularity conditions do exist allowing us to compare results between
Ay (Xo(s)) and the cones RVA;(s, xo(s)), Ry dfi (s, Xo(s)) (see [5] and [10]).

e 3. NECESSARY CONDITIONS FOR OPTIMALITY
IN A MULTISTAGE-NONCONVEX' STOCHASTIC PROGRAM

3.1. The problem and the data. For k = 1,..., N, let {,eR™ and u,eR™*
represent the observation and decision associatéd with stage k of a sequential
decision process. The result of observations

6=(£1:---s€N)ERVIX...XRVN=Rv
and of the sequences of decisions
u={ul,....,uN)ERnlx...xR"N=R"

is a “cost” denoted by f, (¢, u). The goal is to find a decision rule (or a recourse
function) & +— u(£) which minimizes the expected value of this cost subject to
certain constraints. An essential constraint on the nature of u is that ¥ must be
nonanticipative, ie. the decision u, at stage k depends only on the past
observations &, ..., &, but not on the future &, 4, ..., éy. The problem of
finding such an optimal u is called the optimal recourse problem (in discrete
time). Our aim here is to derive necessary conditions for the optimality of a
certain u, in the case of costs satisfying Lipschitz assumptions with respect to
the decision variables. Actually, assumptions are decomposed into assumptions
on the underlying probability space, on the class of dc01s1on rules to be
considered, and on the objective f.

A. The probability space. The underlying probability space associated with
the random elements of the problem is (£, %=, P), where £ is a Borel subset of
R, B is the Borel field on Z, and P is a regular Borel probability measure on
(2, %&s):

B. The class of decision rules. A decision rule u is said to be essentially
nonanticipative if it is Borel-measurable and differs only on a set of P-measure
zero from some (Borel) measurable function # of the form

(&15 LR ] éN) = 6"_) ﬁ(é) = (ﬁl(él)a ﬁZ(‘:ls 52)9 ERRE ﬁN(éla reey éN))

Fork=1,..., N; let A, be the o-field generated by the “past” £, ..., &
and completed with respect to P. Then {4, } is an increasing finite sequence of
complete o-fields with #y = %: (completion of £z with respect to P) and
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a function u is essent:ally nonannaparwe :f and only if for k =1, ..., N the
component function u,: E — R™ is %,-measurable ([12], § I). As in [12] we
adopt the latter property as the general definition of nonanticipativity and
work in this notational framework.

In addition to the nonanticipativity constraint, we shall requlre that the
decision rules satisfy almost surely (a.s.)

ERY C u©er®,

—

where I': E 3 R"isa nonempty closed-valued measurable multifunction. One
can always reduce a state constraint to an abstract formulation like (3.1). The
handiness of I' and the determination of concepts associated with it (like
noimal cone) depend heavily on the representation of I'. In that respect, I'(£)
represented by equality and inequality constraints is easier to handle than I' (&)
solution set of the variational equality 0e @(x, £). In our multistage program,
we are concerned with decision rules which are in E, (1 < p < ). Asin the
previous section, we suppose that all the measurable selections of I' are in E,
(7 = Bp).

. C. The objective function. The function f: Ex R" — R is an integrand
Lipschitz on I' and we assume that the function & — ||| fo(&, il is in L%,
(I/p+1/g = 1).

The multistage stochastic program can then be expressed as
(P -minimize I; (u) on ,/Vpny', |
where .4, represents the coﬁstrai_nt of nonanticipativity:
Ny ={u = (U, . un) € By | 1y is ﬂk-meésurablg for k=1, ..., N}.

To avoid somewhat degenerate cases, it will also be assumed that 4, .7
is nonempty and that

§1fol(&, u(f)ldP(é) < 4o for some #e 7.

For purposes of comparison with other hypotheses in stochastic
programming, observe that under the assumptions described above, a decision
rule which associates sequences of acceptable decisions with almost all ¢ should
have an expected cost. Thus, if f is the integrand defined as

(€, x) > foE, x) = fol&, x)+0rg (%),
then
If,(u) < +00 <= u(d)el () as.
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3.2. Necessary conditions for optimality.
TaeoreM 3.1. If ugeE,, is an optimal decision rule for the multistage

stochastic program (%), then
(@) ugeAN, and uy(&)e'(¢) as.,

14

(b) there exists a ¢* = (of, ..., o) € iy, satisfying
(3.2) e*(©)edfo(C, uo(Q)) and  le* ()l < k(Q) as.
and also
33  E{g1#} =0as fork=1,..,N.

Proof. &, is a linear subspace of . Therefore, the normal cone to 4/, at
uge A, is independent of u, and amounts to the orthogonal subspace in the
topological dual space of E,, under the pairing described in Section 2. Let
1 € p < oo; as noticed in [11] and [12], the annihilator subspace .4 j
consists of elements o* = (of, ..., oR) e L, (Q,’:‘EER,,k) which satisfy the
martingale property

E{of| %) =0as. fork=1,...,N.

In the case where p = oo, those elements in (L7,)* which are in ER,, can be
described with the same martingale property.

According to Theorem 2.2, if 4, is an optimal solution to problem (#), then
there exists a o*elf, such that (3.2) holds and —¢*eA] . Hence the
announced optimality conditions are derived from the above description
of /7.

When the given problem has some more structural characteristics,
necessary conditions may be made more precise and thereby more informatory.
We shall especially examine the case where

34 I ={xeR"|fi¢,x)<O0fori=1,...,a
and f;(¢{,x) = 0 for i = a+1, ..., B} nTy(¢).

A. The locally Lipschitz case. We suppose heré that f;)f all xeTI (&)

(3.5) foE, ), fiE, 9, ..., £o(E, °) are Lipschitz around x,
’ Sfas1(Es ), .., f3(E, ) are continuously differentiable at x.

The multifunction I'y entering in the definition of the additional constraint
is supposed to be nonempty, closed-valued, and measurable. Note that the
local Lipschitz property of fo(¢, -) in (3.5) ensures that fo(¢, ) is Lipschitz on
I' (&) whenever I' (€) is bounded. In addition to the assumptions laid out above
and earlier, representation (3.4) is supposed to satisfy the following constraint
qualification:

3 - Prob. Math. Statist. 3(1)
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(CQ) for all ueA,nT, Vo (&, u(d), ..., V(¢ u(@) are linearly
independent a.s. and there exists a d: £ — R" such that
d (@) eintGr e (u(2),
[ u@;de) <0, i=1,..,2,
VA(E, u(@),d(E)) =0as, i=a+l,..,8.
- Under these conditions, relation (b) in Theorem 3.1 takes the form

(b) There exists ao* = (of, ..., o) e Ly, satisfying (3.3) and there exist
Aly .vny Ay in Iy, such that

T L@ =0, AOf(E u@) =0as. fori=1,w.,a

@

36  o*(Oedo(l, uo@)+ X LA, uo(H)+

i=1

8
+_ ZH 4O Vf; (fs uo(f))"‘v"t’pro(.:] (uo.(f)) a.s.
The proof is simply a matter of decomposition and representation of
normal cones; all the necessary ingredients are laid out in [4]. Moreover, the
reader will find himself the generalization of (CQ) for the special structure that
would be the “directionally Lipschitz case™; all the material for that purpose
may be found in [10].

B. The separable case. In order to gain insight into this case without being
wrapped in technical assumptions, we shall simplify our approach by
presupposing we are in the locally Lipschitz situation (case A above) and by
dropping the additional constraint I'y(¢). By a separable problem we mean that

N
() fic,w) = ) fiullw) for i =0,1,...,8,

k=1
(1) fix: & fii (€, w) are ZB,-measurable functions for i =0, 1,..., 8
and k =1,..., N. - :

In such a situation, part (b) of necessary conditions for optimality in
Theorem 3.1 takes a *“decomposed” form.

THEOREM 3.2. If ug € L, is an optimal decision rule for problem (#), supposed
separable, then

| (a) for uge. 'y, fi(¢, uo(&)) < O as. fori=1,...,a and f;(&, u(¢)) = 0
as. for i =a+1,...,8; ‘

(b”) there exist A, ..., Ay in L, such that

MO 20, AOSE u@) =0as. fori=1,..,1,
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(37 Oedfoys (:, Ug,x (E))+Z E {Ail'ﬁk}(é)@ﬁ,k (':': uO,k(:))"‘

i=1

B .
+ Z E {4 B} () Vﬁ,k(‘:; uO,k(L;:)) as. for k=1,...,N.
i=at+1
Proof. Due to the separable structure of all the functions involved in the
problems, we have

N
aj;(ésu) =kX af;,k(é’s uk) for u = (uls ey uN)-
=1

By rewriting relation (3.6) of (b') in such a context, we get -

(3.8)  ogFedfox (f, uo,;:(f))'*‘ Z i (&) i (5, uo,k(f))+
i=1 _

, o
+ Y AOVfii(E, uou() as. for k =1,..., N.

iza+1 .
Since & > ug () is #,-measurable, so are the multifunction
E0fu (&, upy (@) fori=1,...,a
and the mapping o
o Vfir(é, upu(®) fori=a+1,..., 8.

Now, we use a result concerning the conditional expectation of
multifunctions [15]) which claims that if A4: £ =3 R" is a convex compact-
valued #-measurable multifunction (with & P-complete), then E(4| %) is as.
equal to 4.

By plugging the relation E(gf|#%4,) = 0 into (3.8), we get the desired
condition. : '

Remarks. In the convex case (ic. f;(£, ") convex for i = 1, ..., 2 and

fi(€, ) affine for i = a+1, ..., p), relation (3.7) can be translated in terms of
pointwise minimization using information pertinent to stage k. For the salient
features of these conditions in the “decomposed” form in the theoretical aspect
as well as from the computational viewpoint, consult [12], § 3.A. In our
approach, the “conditional multipliers” have been obtained in a rather
mechanical way and this process does not have the flavour of the duality
approach in the convex case [12].
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