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- Abstract. The aim of the present paper* is to prove the existence
of universal Doéblin probability measures for classes of multiply self-
decomposable probability measures on Banach spaces.

1. Introduction and notation. Throughout the paper we shall denote by X
a real separable Banach space with the norm || || and the topological dual
space X*. Given r,s > 0, let

B, = {xeX:r <l <s}, By = {xeX:|xll <s},

and let B; be the complement of B,. We shall consider only o-additive
measures defined on Borel subsets of X. Given a bounded linear operator A
and a measure p on X let Ay denote a measure defined by

(AW(E) = n(A™'E) (E = X).

In particular, if Ax = ¢x (xe X) for some ceR?, then Au w1ll be denoted
by the usual symbol T, j.

Let Ly(X) denote the class of all mﬁmte divisible (1d) probability
measures (p.m.’s) on X endowed with the weak convergence =. It is well
known [3] that for every measure pe Lq(X) its characteristic functional (ch.f)
[i has a unique representation

(L1 AQ) = exp{i(xo, YD —1<Ry, y3+ [ k(x, ) Mdx)} (veX¥),
’ X

where x, is a vector in X, R a covariance operator corresponding to the

* Partially written during the author’s stay at the Wroclaw University (Poland) in the
academic year 1980/81.
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symmetric Gaussian component of u, and M a Lévy measure on X. The
kernel k is given by the formula '

(1.2) k(x,y) = &P —1—ilx, )15, (X) (xeX,yeX¥),

where 1; denotes the indicator of a subset E of X.

In the sequel we shall identify u with the triple [x,, R, M] in (1.1). In
particular, if x, = 0 and R = 0, then p will be denoted 31mp1y by [M]
which, for a finite measure M, is of the form

G]

[M](E) = e(M)(E) = e MO Y M*™EWK (E < X),
. . k=0 '
where the asterisk * denotes the convolution operation. F urther, if ¢ > 0 and
u = [xg, R, M], then we denote by pf the pm. [tx,, tR, tM].
A p.m. pon X is called self-decomposable if for every ce(0, 1) there exists
a p.am. u, such that '

(1.3) : p= TZM*uc-

Note [7] that if u is self- decomposable then p and g, are both id.

Multiply se]f-decomposable p-m/s Were studied by IUrbamki [12] on R!
and by the author [9] on general Banach spaces. Recall [9] that a p.m. g on
X is said to be n times self-decomposable if for every ce(0, 1) the
decomposition (1.3) holds, where the measure y, is n—1 times self-
decomposable. Let L,(X) denote the class of all n times (n = 1, 2, ..) self-
decomposable p.m.’s on X. The class L, (X) of completely self-decomposable
pm.’s on X is defined as the intersection of all L,(X), n =1, 2, ...

In the sequel we shall extend the definition of classes L,(X) to the
fractional case L,(X) (x > 0) by introducing operators J* (x > 0) on some o-
~ finite measures on X. Such operators stand for some analogues of ordinary
fractional integration on functions. »

In [4] Doéblin proved that there exists an id.p.m. belonging to the
domain of partial attraction of every one-dimensional i.d.p.m. A natural
generalization of this theorem in a Hilbert space was done by Bararnska [1],
and in a-Banach space by Ho Dang Phuc [6]. A new version of the theorem
was obtained by the author. Namely, in [10] we presented an operator
approach to Doéblin’s theorem.
~ Let A be a bounded linear operator on X and let K be a subclass of
Lo(X). A pm. p on X is said to be A-universal for K if ue K and for every
pm. veK there exist subsequences {n,} and {m,} of natural numbers such
that the sequence {A™ u™} is shift convergent to v. The case K = Lo(X) was
treated in [10]. In the sequel we shall prove the existence of A-universal
pm.’s for L,(X) (x > 0). Our results are new even in the one-dimensional
case.
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2. Fractional calculus on semi-finite measures on X . The starting point to
this study is a known formula for Lévy measures corresponding to n times (n
=1, 2,...) self-decomposable p.m.’s on X. Namely, in [9], formula (5.2), we
proved that ue L,(X)(n = 1, 2, ...) if and only if its Lévy measure M is of the
form

2.1) M(E) = [ ca(x) Of lg(e ' x) " tdtmdx) (E < X),

X

where m is a ﬁmte measure on X vanishing at 0 and

22 e l(x) = jcb(e-'x)t" 14t (xeX),

@ being a weight function on X in Urbanik’s- sense [13].
Putting G(dx) = (n—1)! c,(x)m(dx) and taking into account (2.1) we gct
a measure G which is ﬁmte on every B, (r > 0), G({O}) =0, "and

23)  M(E) = { j 15! )" dtG(dx)  (E < X),

(n—1) 1)'
where the constant (n—1)! is lntroduced for further convenience.

Let M(X) denote the class of all g-finite measures M on X such that
M{0}) = 0 and M(B)) < oo for every r > 0. A sequence {M,} = M(X) is
said to be convergent to M if M,,lB’ converges weakly to M| B, for every
r>0

- Formula- (2 3) suggests a more general setting. Namely, for « > 0 and
GeM(X) we put

2.4) J"G(E) = (e ' x)t*~ 1 dtG(dx)
( , r (Ot);{ g F !
for all Borel subsets E of X . :
Tt is evident that for any G,, G,eM(X), a > 0, and for every linear
bounded operator A on X we have ‘ ‘

(2.5 o J"(aAG1+G2) |aAJ" G, +J* 62
Further we have the following
2.1 PROPOSITION For any « > 0 and Ge M(X), J“GeM(X) zfand onIy zf
(2.6) . - [ log*|ixI| G(dx) < .
i B{ i
* Moreover, if J*GeM(X), then for every p > 0 we have
[ lIxIP G(dx) < oo
B
if and only if '
f IxPJ*G(dx) < 0.

B,
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" Proof. Given r > 0, by (24) and by a simple computation we have

@7 FGE) - 1 1+1)  tog* s~ G,

which implies the first part of the proposition. Further, for any p > 0 and
6 > 0 we obtain

28) [ IIxIPJ*G(dx)
- BJ = . .
= p~* [ IXIP G(dx)+

B,

o oo o ,
T | e P loglhsll o7 diGa,

o

which, by a simple reasoning, implies the second part of the proposition.
Thus the proof is completed.

2.2. Tueorem. For any a, § > 0 and GeM(X), J*G, J”J‘GEM(X) if
and only if J**# Ge M(X). In any case we have

2.9) | JHBG = JPJEG,
~ Proof. For any a, f > 0 and GeM(X) we have

log?||x|| J* G (dx) = 1 (e " x)logf |le”" x|| *~ 1 dtG (dx)
B

B, T}

Ogllxll |
T s;l' J loglisl —0P~ G (d

= —I;M a+p

F(a+ﬁ+1) j log™™? ||| G (dx) .
Thus
r 1

o J gl G = ﬁ% I log? |14 G (4),

which, by Proposition 2.1, implies that J“*”G'EM(X) iff J*G, JEJ*G e M(X).
On the other hand, by (2 4), for every Borel subset E of X we get
JPJG(E) = r: 5 ,{ g ;E(e-fx)zﬂ L dtJ*G (dx)
F(a)IF(ﬂ)irgzlE(e =5 x) 81 521 dedsG (dx)
1 © u
“T@rBii]

1 -t a+f—1 - a+p
r(a+ﬁ)H1E(e x)t dtG(dx) = J G(E),

which proves (2.9). Thus the proof is completed.

15(e™" x) (u—s)P~ 1 5*~ ! dsduG (dx)
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The following.-theorem can be considered as an analogue of the
Dominated Convergence Theorem for ordinary integrals. ! :

23. THEOREM. Suppose that for a > 0 and G,, G, HeM(X) we have
G,=> G, G, < H for every n=1,2,..., and J*HeM(X). Then
2G> J°G.

Proof. From the assumptmn that J* He M(X) it follows that for every
r>0 .

(211) ’ J“H(B;) = j H(B|)) *ldt < .

1
I g
Let f be a bounded continuous function on B, with

C = sup {|f(x): xeB,}

Then for every t > 0 we have

212 || fle*x)G,(x)| < CG,(B,) < CH(B,) (n=1,2,..).

’
Bre'

Further, since G, = G, we have

lim | f(e” x)G(dx) | fe'x)G(dx),
"o B Bl

which together with (2.11) and (2.12), and the Dommated Convergence

'Theorem implies

lim | f(x)J*G,(dx) = lim —— ! j [ fle %) Gu(dx)t=~ 1 dt
B

n—vaog; n—'w-r()o

Consequently, J*G, = J*G. Thus the theorem is proved.

2.4. COROLLARY. Suppose that G,, Ge M(X), G, = G and, for some s > 0,
G, (n=1,2,..) are concentrated on B,. Then for every a > 0 we have
J°G, = J°G. Co _ '
. Proof Write H = supG,. Then He M(X) and H is concentrated on B,.
Now, by Theorem 2.3 we get the Corollary.

2.5. THEOREM. Suppose that for « > 0 and G,, G, M,, Me M (X) we have
M,=J'G,(n=1,2,..), G, G, and M, = M. Then M = J*G.

Proof. Choose s, r (0 < s < r) such that B;, is a continuous set for G.
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Then, for every bounded continuous function f on B,,, we have

fim | f(x)M,| B, (dx)

m Xl log || x|fs—1
= 31:2 @ g g fleT'x)e ! dtG,,(d.x)-i-
log||x|s=1
+,}B§ T® ) 1.,g”.xj”,—1 fe ' x)t*~ 1 dtG,(dx)
1 log || x|[s~1 . - log || x{|s~1 s w1
= @ J _(’)' fle*x) P~ tdtG (dx)fi—m ) log”Ij”r_lf(e x)t*~ 1 dtG(dx)

= [ S()J*G|B,, (@),

which shows that M|B,, = J*G|B,, and, consequently, M = J*G. Thus
the theorem is proved. ' _
Given o > 0, c = e, t > 0, and MeM(X) we put

oo}

(213) AME) = Y (—1)"(:) T, M(E)

k=0

for all Borel subsets E of X such that 0¢ E, where

(a)=1 and (a)ea(ac—l)...(oc—k+l) k=1,2,.).

0 k k!

Since

. a ge . .
(k) = O‘(k 1),‘ k- o, f

. .
[

g it follows that if O¢ E, then the series (2.13) is absolutely conklergent, and

hence it, defines a signed measure on the field of Borel sybsets E of X such:
that O0¢E. It is clear that A*M is g-additive on every B, (r > 0). '
In the sequel we shall need the following function on (0, o0):

(2.14) )= ¥ (—1)"(2)(x—k“-1 (x > 0).

I'(@) o<i<x

Such a function plays an important role in the study of ordinary
fractional integrals. Recall [14] that p,e L' (0, o) (x > 0) and

(2.15) | S cfpa'(x)dx =1.
\ :
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Further, for any a,t > 0 we define a signed measure on (0, o) by
(2.16) mi(dx) = t~ ! p,(x/t)dx.

Then we get the following lemma:

2.6. LEMMA. For every a > 0O the signed measures mj (t > 0) have a common
finite variation on (0, ov) and mf = 6, as t|0.

Proof. By (2.14), (2.16), and by the fact that p,e I (0, o) the measures m}
(t > 0) have a common finite variation on (0, ). For v > 0 we put

@ - L) = [,

Then, by (2.16) we get the formula
T o
1 = — —1) —kt)*.
218) = Forp Z (D (k)(" )
Therefore

_ 0 ifv=0,
(2.19) im fo, () = {1 if v>0,
which implies that mf = Jo as 1] 0. Thus the lemma is proved.

2.7. LEMMA. Suppose that for a > 0 and M, Ge M(X) we have M = J°G.
Then t*4*M = G on every B, (r > 0) as t]0.

Proof. Given r > 0 and a bounded continuous function f on B, we have,
by (2.13), the formulas

t~® _ff(x) A7 M (dx)

( ) Qf IB;(e”’;"‘x)f(e_""‘x)s“'ldsG(dx)
o ’ ) )

F(a) X k=0
e ellse o o
“T@ ‘!; g f(e"x) 0<§<“/I (— 1). (k)(u—l-ct) duG(dx).

Hence and by (2.14) and (2.16) we get

togl xli/r
t‘“ff(x)Af’M(dx) f f f(e"‘x)m?(du)G(dx),

r

which, by Lemma 2.6, 1mplles that -

hmf“yﬂanwﬂ 5fumun.
tl0 B

Consequently, :™*4f M = G as t 0. Thus the lemma is proved.
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2.8. LEMMA. Suppose that for « > 0 and M, Ge M(R!) we have
(2.20) { log*|x| G(dx) < oo |
|xi>1
and assume that t~* A} M = G on every set {xeR': |x| > r} (t > 0)ast]0.
Then M = J*G.
Proof. We may assume that M and G are both concentrated on (0, o0).
For ueR! and t+ > 0 we put

@2y - .. 4 = | M@,
02 90) = | Gldx, :
(2.23) £ 9@ = ¥ (- 1)"( )q(u-—kr).
k=0
By (2.13), (221), and (223) we get
(2.24) AT q) = [ UM@Y) (ueRY),

which, by the assumption of the lemma, implies

(2.25)  lim %A% q(u) = T G(dx) = g(u)
: 1o o

for every point u of continuity of g. Further, from (2.22) it follows that for every
acR!

_[ (a—uf lgwdu = o~ ! j (a+log x* G(dx),

~ which, by (2.20), implies that for every aeR!

(2.26) j (@—uf~ ' g(uydu < 0.

Finally, formulas (2.25) and (2.26) together give an integral representation
of g (cf. [8]). Namely,

- u—tf" lg()dt (ueRY),
o g | w0
which, by (2.21) and (2.22), 1mphes M = J*G. Thus the lemma is proved.
2.9. THEOREM. For any a > 0 and M, Ge M(X) the relation M = J*G

holds if and only if condition (2.6) is satisfied and t > A?M = G on every B,
(r > 0) as t | 0. Consequently, the operator J* (x > 0) is one-to-one.
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Proof. The necessity follows from Proposition 2.1 and Lemma 2.7. We
prove the sufficiency.

Suppose that for « > 0 we have t7*Af M = G on every B, (r > 0) as
t | 0 and G satisfies (2.6). Given a functional y e X* with {|y}| = 1 let yM and
yG denote projections of M and G on R, respectively. By (2.6) it is evident
that

| log*lx| yG(dx) < oo
|x}>1 )

and, moreover, t * A% yM = yG on every set {xeR: |x| > r}(r > 0)ast 0.
Hence and from Lemma 2.8 it follows that yM = J*yG. Consequently,
yM= yJ*G, and since y is arbitrarily chosen, we get M = J*G, which
completes the proof.

Recall that a Banach space X is of type p (0 < p < 2) if for every sequence
{x,} = X with ¥ |Ix,J’ < oo the series Y x,&, converges with probability 1,

n n
where {¢,} is the Rademacher sequence. Every Banach space X is of type 1 and
every Hilbert space is of type 2. Further, X is of type p(0 < p < 2)if and only

if every M e M (X) with j l|x][F M (dx) < oo is a Lévy measure. Hence and by
: B

1
Proposition 2.1 we get the following |

2.10. ProPOSITION. Suppose that X is of type p (0 < p < 2), « > 0, and .

GeM(X) with f Ix|I° G(dx) < oo. Then J*G is a Lévy measure if and only if

B,

(2.27) - [ log*]Ixl| G(d%) < oo.
F

1
This proposition implies the following
2.11. CoroLLARY. For every Lévy measure on a Hilbert space H and for
every « > 0, J*G is a Lévy measure if and only if condition (2.27) is satisfied.

3. Universal multiply self-decomposable p.m.’s. Operators J* (ax > 0)
defined by (24) allow us to subclassify id.pm’s on X into decreasing
subclasses L,(X) (x > 0) which, for « = n (n =1, 2, ..), coincide with
classes of n times self-decomposable p.m.’s on X . Namely, given a > 0, we
put -

L,(X) = {u = [x, R, M]eLy(X): M = J*G for some GeM(X)}.

By (2.3) and Theorem 2.9' we get the following characterization of multiply
self-decomposable p.m.’s on X:

.
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3.1. THEOREM. A pm. p = [x, R, M]eLO(X) is n times self-decomposable .
if and only If there exists a GeM(X) such that '

{ log"||x|| G(dx) < oo
B :
and t"A} M = G as t |0 on every B, (r > 0).

3.2, THEOREM. For any 0 < a < B we have

GH . L e L.

~Proof. Suppose that ye Ly (X). We prove that ue L, (X). Clearly, one may
assume that u = [M], where M = J? G for some G e M(X). By Theorem 2.2
we have JF*GeM(X) and M = J*J#~ “G which shows ‘that [M] EL,,(X)
and (3.1) is proved.

In [10] we proved that if A is a bounded 1nvert1b1e linear operator on X
such that

(3.2) |44 = 0 . as k — o,

then there exists a pue Ly (X) such that u is A-universal for L,(X). Moreover,

if X is a finite-dimensional space, then from the existence of A-universal

p.m.’s for Ly(X) it follows that A is invertible and condition (3.2) is satisfied.
The same is true for L,(X). Namely, we get the following theorems:

33. THeoREM. Let A be a linear operator on Ri(d =1,2,..) such that
Jor some o > 0 there exists an A-universal pm. for L,(R%. Then A is
invertible and condition (3.2) is satisfied.

Proof is the same as the proof of Lemma 1 in [10] and will be omitted.

3.4. THEOREM. For every invertible bounded linear operdtor A on X
satisfying condition (3.2) and for every a > O there exists an A-universal p.m.

~ for Ly(X).

Proof. Suppose that A4 is an 1nvert1ble bounded linear operator on X such
that condition (3.2) is satisfied. By (3.2), there exist constants ¢ > Oand a > 1
such that :

(3.3) ' 44 S ca™ (k=1,2,..).

Given o > 0 we infer from the definition of L,(X) and Lemma 24 in
[11] that there -exists a countable dense subset {p,} of L,(X) such that
n = [M]*6,,, M, = J*G,, where G, is a measure concentrated on B,,
G.({0}) =0 and G(X) < k (k=1,2,..).

Put . :

(34) ' G = Z £ak2]—1A—k3Gk,
k=1
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where for a real number b its integer part is denoted by [b] and the constant
a is detérmined by (3.3). Since G, (X) <k (k=1,2,..), G is a finite
measure on X and, moreover, G({0}) = 0.

Let f = max(e, ||[4”Y|)). Then, for every k =1, 2, ...,

-, log?llxll A% Gy (dx) = [ log*max(1, |4 x||) G, (dx)
B, : x
< J log*max(L, 47 ) Gy(dx) < klog’ k¥

I:

<> k3a+llog ﬁ
Hence and by (3.4) we get .

3.5) | log*|Ixll G(dx) < 2*log® B i [d¥] 1k < oo,
B, . k=1

which, by the fact that G is finite and by Proposition 2.10, implies that J*G
is a Lévy measure. Put M = J*G and p = [M]. It is evident that pEL,(X);
Our further aim is to prove that p is A-universal for L,(X).

Accordingly, let g be an arbitrary p.m. in L,(X). Then there is
a subsequence ‘{pn} of {p.; converging to gq. Let us put t, = [a%]
k=1,2,..). We shall prove that the sequence v = A prk=1,2,..)
is' shift convergent to g.

For k =1,2,... we write

(3.6) Z t,[a"] 1 A% "G,,
. n>n .
G6n . N2 = ¥ 4[a"1"1 4% "G,
R "<"l
(38) H.=JN. (i=1,2).
It is clear that Ni and Hi are Lévy measures and
39 . v = p,,k*[H,%]*[Hf]sé_x"k k=1,2,..).

Further, for every k = 1,2, ... we have

N; (X) < ) nt,‘[a”z]‘1 < f: (n’;+n)[a"3][a(nk+n)2]—1

n>n, n=1

Sa(@-1)"' Y (m+nma Cuton

n=1
which implies
(3.10) lim N1(X) = 0.
- k-

6 — Prob. Math. Statist. 3(1);
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Let s be an arbitrary positive number. By (3.6) we get
{ log'lIx|| N} (dx) = ¥ t,[a"]1™" [ log*max(1, ||xil) 4% " G,(dx)
Bl’ X

H>J'lk

< Y f[a"17! | logimax(l, 471" % |x) G,{dx)
X

n>nk

< Y n[a”17" logtnpr

n>nk, .

"< ala—1)"tlog' B Y (me+m)(m®+3ngm+3n,m? + n +m)fa” Gt

m=1
where § = max (e, ||A~!||). Consequently,

(3.11) "~ Lim { log*|lx|| N}(dx) = 0.

k— o Bi

- Hence and from (3.10) it follows that for any s, 6 > 0

(3.12) lim | log*(|x||6~*) Ni(dx) = 0.

k—x B;
~ Next, by (3.3) and (3.7) we get |
[IMINZ@x) = 3 f 1A% x|, [a"] 1 G, (dx)
X X

n<nk

<c Z nzan3~n2[ankz][anz]—l
r<n,

3 2

< ca(@a-1)"1 ) n2q=" grm e

<
llllk

- -y — 133 2
< ca(@a—1)"1 Y nta " gD g+
n<m ’

-1 —2a2 — —_n?
sca(a—-l) lﬂ 2m +3n,—1 z n2a n ,

n=1

~ .where the constants a and ¢ are determined by (3.3). Conseduently,

(3.13) _ tim { IXINZ(dx) = 0.

k-~ X

Hence it follows that for any s, 8 > 0

(3.14) lim | log*||x||6™! NZ(dx) = 0.

k—w 33
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Further, formulas (2.7) and (3.8) iinply that, for any r > 0Oand i = 1, 2,

. - 1
. HB) = INGB) = o

Consequently, by (3.12) and (3.14), for r > 0 and i = 1, 2, we get

I log®lixllr~" Ny (d).

(3.15) lim Hi(B) = 0.

k=

On ;the other hand, from (2.8) it follows that for any 6 > Oandi = 1, 2

{ Il H (dx) = f llxll J Ny (dx)

B, ‘ B;

; o
I, HXIINk(d‘CHr( )

Therefore, for i = 1, 2 the following inequality holds:
H lIx|| Ni(dx)+ONi(By) ifO0<a<1,

By

o«

II

e”!(t+log||xl| 6~ 1)~ 1 dtNi (dx).

(316)  { fixll Hi(dx) <q f lix)l Ny (dx) + 2 6N} (B +

B, B,

1+ IF(—)jlog“ Lxl|6- ' Ni(dx) ifa>1.

Consequently, by (3.10), (3.12)-(3.14), and (3.16), we' have

G17)  lim [MH@) =0 @>0,i=1,2.

k—+x B

Noting that every Banach space is of type 1 we infer from formulas (3.15),
(3.17), and Corollary 2.8 in [5] that, for i = 1, 2,

(3.18) [H] =6, ask— .
Fma]ly, since p, = ¢, formulas (3.9) and (3.18) imply that
lim v, *5 = q,

k-

which shows that the sequence {v,} is shift covergent to g. Thus the theorem
is proved.
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