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Abstract. We study the a.s. sample path regularity of Gaussian pro-
cesses. To this end we relate the path regularity directly to the theory of
small deviations. In particular, we show that if the process is n-times differ-
entiable, then the exponential rate of decay of its small deviations is at most
e~/ We also show a similar result if » is not an integer.

Further generalizations are given, which parallel the entropy method
to determine the small deviations. In particular, the present approach seems
to be a probabilistic interpretation of the multiplicativity property of the
entropy numbers.
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1. INTRODUCTION

The small deviation problem, also called the small ball problem, consists in
determining the rate of increase of the quantity

(1.1) —logP[|| X| <e¢] ase—0,

where X is a random variable with values in a normed space (E, ||-||).

This problem has several connections to approximation quantities for stochas-
tic processes. We refer to [21] for an overview of the field and links to applications
and to [23] for a regularly updated list of references. Recently, several articles have
focused on the small deviation problem for integrated Gaussian processes; see [15],
[6], [10]-[13], [24], [27]. This is mainly due to the connection of the problem to
the spectral asymptotics of certain boundary value problems.

In some sense, this paper also considers integrated processes. However, we
do not aim at finding the rate in (1.1) for Gaussian processes, but rather at show-
ing that this rate is directly related to the sample path regularity of the process.
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The idea that the small deviation rate encodes the smoothness properties of the
Gaussian process has been present in many articles on small deviations. However,
it seems that no concrete results are available that relate the small deviation rate
directly to smoothness properties of the process, e.g. differentiability. The aim of
this article is to provide this direct link.

In particular, we are going to show (Corollary 3.1 below) that if a Gaussian
process is n-times differentiable then for its small deviation rate

—log P(|X|,_oy <€) <ce /™ ase —0.

We also show a similar result if n is not an integer. As we shall see, this pro-
vides sharp criteria for the path regularity of Gaussian processes. Note that, for
example, for Brownian motion the small deviation rate for L,-norms is £~2, which
corresponds to being Holder continuous up to % Another consequence is that for a
C®° process we have, for any o > 0,

lim & (— log B[ X]] o, < €]) = 0.

These results, combined with Li’s decorrelation inequality [18], have one fur-
ther consequence (Corollary 4.5 below): If the Gaussian process X can be repre-
sentedas X =Y + Z, with Y and Z not necessarily independent, and Z is smooth
enough, then X and Y have the same small deviation order. This can be used to
show that the small deviation order of smoother ‘remainder terms’ does not matter,
as will be demonstrated with some examples. This simplifies some existing proofs,
e.g. the one of Theorem 12 in [24] or of Theorem 2.1 in [3].

For showing the relation between path regularity and small deviations we em-
ploy a result developed by Chen and Li in [6]. They show the following (Theo-
rem 1.2 in [6]):

PROPOSITION 1.1. Let X be a centered Gaussian random variable with val-
ues in some separable Banach space (E, ||-||). Let H be the reproducing kernel
Hilbert space of X and denote by | - |34 the norm in H. Let Y be another Gaus-
sian random variable in (E,|-||), not necessarily independent of X such that
|Y |5 < 00 a.s. Then, for any \,e > 0,

)\2
(12) PIIYI <] > BIIX < Al Eexp (5 V).

In particular, let E be a space of functions from [0,1] to R and let B be
Brownian motion. Then

)\2
13 PYI<d > PUBY < AEexp (<5 IV )

for any X\, e > 0 and any Gaussian random variable Y with values in E such that
Y’ € Ls[0,1] a.s., where Y is the derivative of Y .
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This result was used to derive the small deviation rate for the m-fold integrated
Brownian motion in [6]. The procedure is as follows: Let Y be integrated Brownian
motion. Knowning the small deviation rate of Brownian motion Y’ gives the rate
of the Laplace transform on the right-hand side in (1.3), when A\ — co. The small
deviation probability of Brownian motion B with respect to ||-|| on the right-hand
side in (1.3) is known as well. This gives a lower bound for the small deviation
probability of integrated Brownian motion Y for basically any norm ||-||. The pro-
cedure can be iterated. On the other hand, the upper bound for the small deviation
rate of Y, e.g. for the L,,-norm, can be obtained simply by comparison to the
easier Lo-norm.

The focus of the present note is:

« to formulate the idea from [6] in a general framework (Section 2.1), to ex-
tend it to fractional derivatives (Section 2.2) and to even more general operations
on the process (Section 2.4);

« to show that this leads to information on the a.s. path regularity of the Gaus-
sian process under consideration (Section 3);

« to study a conditional version of (1.2) that can be applied in particular to
stable processes (Section 4.1); and

« to investigate relations to other questions — such as eigenvalues of the re-
lated covariance operator (Section 4.2) and quantization (Section 4.3) — and con-
crete examples (Section 4.4). The mentioned combination with Li’s decorrelation
inequality is presented in Section 4.5.

In this paper, we let X be a real-valued, centered Gaussian process indexed
by [0, 1] with X (0) = 0 a.s. The restriction X (0) = 0 is for simplicity only. We
use ~, <, and > for strong asymptotics, i.e. f S gor g 2 fif limsup f/g < 1,
f ~giflim f/g = 1, whereas ~, <, and  stand for weak asymptotics, i.e. f < g
or gz fiflimsup f/g <ooand f =~ gif f T gand f T g. We frequently use
1/0 = oo and 1/00 = 0.

2. RESULTS FOR SMALL DEVIATIONS

2.1. First results. The purpose of this section is to illustrate the type of results
that we are going to prove in this paper. More general situations follow later on,
which is why we omit the proofs. The first theorem concretizes the method used
in [6]. Here, X’ denotes the derivative of X.

THEOREM 2.1. Let0 <7 < 00,0 € R,and1 < p < 0. Then
(2.1) —10g P[||X|| 1y00) < €] S ke M| logel’
implies

—log P[|| X |z 01 < €] S Ce VD Jog e|07/(THD),

where C = C(k, kp) and k), is the small deviation constant of Brownian motion
with respect to the L,-norm.
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The proof goes along the lines outlined above; we skip it since it is included
in the more general Theorem 2.4 below.

REMARK 2.1. We remark that the constant C' = C(k, k,,) can be computed
explicitly. The constant is, in general, not the correct small deviation constant for
X with respect to the Ly,-norm. For 7 = oo (explicitly permitted in Theorem 2.1)
we get C' = k. The case 7 = 0 is of special interest; and we treat it in Corollary 3.1.

Using the same idea as in Theorem 2.1 we can obtain a converse estimate.
THEOREM 2.2. Let0 < (< 1,d € Rand1 < p < oo. Then
—logPl[|X]|, 01 <€l 2 C57<| log e’
implies
—1og P[|| X || y10.) < €] 2 we™/ 17 log e /179),
where k = k(C, Kp) and Ky is the small deviation constant of Brownian motion
with respect to the Ly-norm.

The cases ¢ = 0 (included above) and ( = 1 (treated in Corollary 3.1) are of
special interest.

2.2. Fractional derivatives. After demonstrating the method from [6], we now
extend the idea to a more subtle situation. Here we define the fractional derivative
as follows (cf. [29]). Recall that we work with processes with X (0) = 0. For a
given function F' with F'(0) = 0 and M > 0, we set

dM

(2.2) —T

() = 1) it (1) { M1 f(s) ds

We stress that the M -th derivative of F' (M integer) coincides with dM F / atM . 1f
there is no ambiguity, we also write for simplicity

Now we get an analog of Theorem 2.1.

THEOREM 2.3. Let0 < 7 < 00,0 € R, 1 < p < o00,and M > 1/2. Then
—10gP[HX(M)||L2[0,1] <el Sre V| logel’

implies
—log ]P’[HXHLP[M] <el < 05*1/(T+M)| 10g€|97/(T+M)7

where C = C(k, /iI])V[ ) and mi’,\/f is the small deviation constant of a standard Rie-

mann—Liouville process RH (cf. (2.5) below) with H = M — 1 /2 with respect to
the Ly-norm.
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Theorem 2.3 is included in Theorem 2.4, which is why we skip the proof. An
analog of Theorem 2.2 also holds true.

For 7 = oo (explicitly permitted in the above theorem) we get C' = k. Re-
mark 2.1 applies accordingly.

2.3. A result for translation invariant, self-similar, pseudo-additive norms.
In this section, we give a general result for the small deviations with respect to
certain norms. To this end, we recall from [24] the notion of ||-|| being a translation
invariant, 5-self-similar, and p-pseudo-additive functional semi-norm in the wide
sense with respect to the Schauder system, for short ||-|| € N(8, p).

Here, we require that ||-|| be a true norm of a separable Banach space. Instead
of rewriting the definition from [24] we recall that the notion includes, for exam-
ple, L, [0, 1]-norms (€ N(—1/p, p)), n-Holder norms (€ N(7, c0)), the p-variation
norm (€ N(O, p)) and certain Besov and Sobolev norms; see remarks in [24]. Since
X (0) = 0, we are sure that we deal with a norm rather than a semi-norm.

THEOREM 2.4. Let ||-|| € N(B,p), M > 8+ 1/p+1/2,0 < 7 < o0, and
0 € R. Then

(2.3) _logP[HX(M)H[Q[OJ] <egl < m571/7| loge\e
implies
—logP[||X|| < ] < Ce™V/THM=F=1/p)|1og ¢|07/(T+M=F=1/p)

where C' = C(k, /-fﬁ) and KIJI\-4|| is the small deviation constant of a standard Rie-
mann—Liouville process RH (cf. (2.5) below) with H = M — 1 /2 with respect
to |[-]].

This theorem is included in Theorem 2.6 below. We still give its proof here,
because its modification is used for the proof of the path regularity results in Sec-
tion 3.

Proof. Note that (2.3) implies

Kk T
—log Pl XM 7,0,y < e] S 55/ logel”.

By de Bruijn’s Tauberian theorem (Theorem 4.12.9 in [4]), this implies
A2 T
—log E exp (—2||X(M)||%2[071]) < KM +1/2)| 1Og)\|97'/(7'+1/2)

as A — oo. Here, the constant K can be computed explicitly from . We only
remark that kK = K for 7 = oo. Note that the set

(t _ S)H—1/2

t
s i {o: 00~ & o) = [0 fds g < Lo}
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with H = M — 1/2 >  + 1/p and the norm

lgllre = 11 oo = 19 N 2ato
is the reproducing kernel Hilbert space (cf. [22]) of the Riemann-Liouville process

(2.5) RHE(t) .= L

_ g\H-1/2 s
Fy J ()" aBG),

O%w

where B is a Brownian motion. Therefore, Proposition 1.1 implies that
H A? M) 2
PIIXI| < > PR < 2] Bexp( - 51X 12 )

We can use the results for the Riemann-Liouville process from [24], which yield
(2.6) —log P[|R7[| < A ~ k|l (Ae) =1/ (H=01/p),
as long as \e — 0. Sety :=1/(H —  — 1/p) and use this with

A= Dg_(7+1/2)/(1/7+7'+1/2)| 1Og€‘—79/(7(1/7+7+1/2))7
where D is some constant. This gives

limsupsl/(l/'y+7'+1/2)| log€|—76/(1/7+7+1/2) (_ logP [HXH < 8])

e—0

< inf (k) D77+ KDYH2) = ¢ = C(k,k]]). =
D>0

Analogously to Theorem 2.2 we can prove the following in the more general
setup.

THEOREM 2.5. Let 0 < ¢ < 1/(M — 8 —1/p), d € R, and ||-|| € N(B, p).
Then

—log P |1 X]| < &] 2 Ce™¢|log el
implies

—10gIP’[||X(M)||L2[071] <] 2 ke VA/CMABHP)| o o |4/ (C(1/C=M+B+1/p))

The proof is analogous to the one of Theorem 2.4.
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2.4. General operators acting on the process; comparison to the entropy
method. The results in this section are going to be even more general than those
in the preceding section. We do not only consider derivatives or the corresponding
integral operators, we consider abstract operators on the process. This approach
parallels the entropy method to determine the small deviation probabilities started
in [16] and continued in [20] and [2]. We give a discussion below on how our
results relate to those obtained from the entropy method.

To this end, let us define the entropy numbers. For a linear operator v : £ — F
between Banach spaces F and F' one defines the entropy numbers as follows [5]:

en(v: E— F)
=inf{e >0 : 3f1,..., fon-1 € FVx € E, ||z <13k : [Ju(z) — fill < e}
The entropy numbers are a measure of compactness of the operator v. It turns
out that there is a close relation between the small deviation problem for a Gaussian

process Z attaining values in F and the entropy numbers of a certain compact
operator v : L2[0,1] — E related to Z via

(2.7) Ee%h) = exp ( -5 ||v’(h)\%2[071}>, hekFE,

where v’ : E/ — L3|0, 1] is the dual operator. Here, (E, ||-||) is some Banach space
of functions on [0, 1] that start at zero.
Our result reads as follows.

THEOREM 2.6. Letv: Ly[0, 1] — E be a linear operator related to the Gaus-
sian process Z via (2.7). Let 0 < 7 < 00, 8 € R, and assume that

2.8) —1og P Xl 1,01 < €] S mae™ /7| logel’

and that, for some v > 0 and p € R,

2.9) en(v) < kon V2 (logn)? or  —P[||Z]| < €] < ke | logel’.
Then for some k4 > 0

—logP[[[v(X)]| <e] S H4€_1/(1/7+T+1/2)\ log £](p+797)/(1+”+7/2).

For the reader that is not familiar with the entropy method, we remark that,
by virtue of [20] and [2], the two assumptions in (2.9) are equivalent (in particular,
the constant k3 can be calculated from x2). In the case v = 0 the first assumption
in (2.9) has to be replaced by |log e, (v)| = kan!/?.

Theorem 2.6 is a more abstract version of Theorem 2.4, where v was a (frac-
tional) integration operator and (2.9) was known from [24].
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Let us compare this theorem (and the method of this paper) to the often used
entropy method. In particular, Theorem 5.2 in [20] is very similar to our Theo-
rem 2.6. The differences are as follows.

Theorem 5.2 in [20] has the following advantages: It does not only consider
function spaces F as we do (even though the method of the present paper can be
adjusted). Further, it is not required that the operator v be associated with Gaussian
process (called Z in our case). In particular, v does not need to map from an Lo-
space.

On the other hand, the present result has some advantages. The proof is easier,
more direct and purely probabilistic. The main advantage, however, is that the less
general statement in Theorem 2.4 makes the results concerning the path regularity
in Section 3 rather intuitive. Further, it allows an extension to the case of stable
process. Finally, we remark that our theorem also includes the case v = 0.

To put it in the right perspective, we recall that Theorem 5.2 in [20] is proved
with the help of the multiplicativity property of the entropy numbers (see the top of
p. 1570 in [20]). So, the method of the present paper can be seen as a probabilistic
interpretation of the multiplicativity property of the entropy numbers. In its core
(see Theorem 2.4) the present approach is purely probabilistic.

Similarly to Theorem 2.5, we can show the following result.

THEOREM 2.7. Letv : L9[0,1] — E be a linear operator associated with the
Gaussian process Z via (2.7). Let ¢ > 0, d € R and assume that

—log P [[u(X)] < &] Z r1e ¢ loge]?

and that for some v > 0 and p € Rwith 1/¢ > 1/v + 1/2 we have

(2.10)
en(v) < ken V2 ogn)? or =P Z]| <] < kze | logel’.

Then for some k4 > 0
—logP[||X||,, <¢] 2 ka eV =1/2) | 1og ¢ (/=PI /(1/¢=1/7=1/2)
2 ~Y
Theorem 2.7 does not seem to have a direct counterpart in the entropy method,

even though presumably one can prove a similar result with the techniques in [20].
Its proof is analogous to the one of Theorem 2.6, which we give now.

Proof of Theorem 2.6. Note that (2.8) implies
K1 _ -
—log P[|| X 17,01 <] S 5 € 1/ 1og e

By de Bruijn’s Tauberian theorem (Theorem 4.12.9 in [4]), this implies

)\2
(2.11) —logEexp (-2 HXH%Q[OJ]) < KAV 1og |07/ (7H1/2)
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as A — oo. Here, the constant K can be computed explicitly from . We only
remark that kK = K for 7 = oo. Note that the set

H:={g:[0,1]] =R [g=vf, f € L[0,1],9(0) =0}
with norm
ol = llglly = ||f||L2[071]

is the reproducing kernel Hilbert space (cf. [22]) of the process Z connected to v
via (2.7). Therefore, Proposition 1.1 implies that

2
Plllo(X)|| <e] > P[[|Z]] < Ae] Eexp (A ||U(X)||${>

)\2
~ B[12] < ) Eexp (1 1XIE 0 )

Note that P[|| Z|| < Ae] can be obtained from the assumption (2.9), as long as
Ae — 0. Furthermore, observe the last term is known from (2.11). We first treat the
case v > 0. We set

A= Dg—(7+1/2)/(1/v+7'+1/2)| log6|(p(T+1/2)—T9)/(1+’yT+’y/2)’
where D is some constant. This gives

lim sup '/ (/7H7 2 Jog g ~(0HTIN/ ATV (_Jog P [||u(X)| < €])

e—0

< inf (kgD™7 + KDY (T+1/2),

inf
D>0
The case v = 0 can be handled analogously. =

3. RESULTS FOR THE PATH REGULARITY

We now come to the mentioned results on the path regularity. In many articles
on small deviations for Gaussian processes the authors remark that one can read
off the path regularity from the small deviation results. However, to the knowledge
of the author, no concrete result has been available so far.

The results on the path regularity follow from a modification of the proof of
Theorem 2.4. Corresponding to 7 = 0 in Theorem 2.4 we obtain the following.

THEOREM 3.1. Let XM) ¢ L1,[0,1] a.s. with M > 4+ 1/p + 1/2. Then:
(i) Forany1l < p < o0,

_IOgP[”X”LP[OJ} <el 2 et/M,
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(ii) Furthermore, if ||-| € N(B,p), then

~log P X|| < ¢] g e Y/MA-1m),

Proof. We only have to show (ii). The case of L,-norms, part (i), is a special
case. If X(M) € L,5[0, 1] a.s., then there is a K > 0 such that

0< IED[||X(M)||L2[0,1] < K]=:q.

Using the Markov inequality, we obtain

M A2 MY 12 )\2K2
0= P10 < K] = P [oxp (=5 X0 o) > exp( 25 )|

NK? A\
< exp( > ) Eexp( D) ||X(M)||%2[0,1]>'

Concerning the reproducing kernel Hilbert space we argue as in (2.4). Therefore,
Proposition 1.1 implies that, setting H := M —1/2 >+ 1/pand 1/ := H —
B — 1/p, we have

)\2
P[|X|| <e] > P[|RY|| < Ae]Eexp (—2||X(M)Ili2[o,ﬂ>

N K?
>)

> exp (—c(/\e)_V) qexp(—

where we used the result for Riemann—Liouville processes (2.6) for the first term.
Setting \ := £~7/(2+7)  this gives

—logP[||X|| <] S e/t = ¢~/ (M=5-1/p) g

In particular, in the case of integer derivatives, we obtain the following.

COROLLARY 3.1. Let 1 < p < oo. If the process X is n-times differentiable
with X" € Ly[0,1] a.s., then

—log P[|| X|| 101 < €] S
If the process is C*°, then

. 5 B
(3.1) lim e (—log Pl X[l 1,0,y < €]) =0

forall 6 > 0.
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A close look at Theorem 3.1 and Corollary 3.1 reveals the following interest-
ing interpretation: If the process has a certain path regularity — X (M) exists in Ly
— then the small deviation probability cannot be too small — the logarithmic small
deviation probability cannot grow faster than e ~/M . Conversely, if the small de-
viations grow too fast, then the path of the process cannot be too regular.

This is the first very concrete result of the intuitive fact that path regularity
and small deviations for Gaussian processes are closely connected. We stress that
beyond C*° the small deviation asymptotics has still distinct rates giving additional
information.

REMARK 3.1. We remark that Theorem 3.1 and Corollary 3.1 usually do not
give the precise small deviation order even though we know the precise path regu-
larity. Typically, X (M) e Ly for all M > M;. And thus the theorem yields

_1OgP[HXHL,,[o,1] <el= e~ 1/Mo—o(1)

However, in many cases one finds that the above holds without the o(1) term:

—1/M,

—1og (|| X[, o,y < &] & e~ /.

One can think of Brownian motion itself (where My = 1/2) or Riemann—Liouville
processes. So, one can only hope to determine the small deviation asymptotics from
the path regularity up to an o(1) term.

4. RELATED QUESTIONS

4.1. Remarks on stable processes. One may ask whether it is possible to ex-
tend the above results beyond the setup of Gaussian processes. This is indeed pos-
sible.

Since symmetric a-stable processes (in the sense of [31]) can be represented
as conditionally Gaussian processes, the main tool used in the proofs, Theorem 1.2
in [6], can be transferred. Therefore, Theorems 2.1-2.7 as well as Theorem 3.1
and Corollary 3.1 hold true also for symmetric a-stable processes. Here, one has
to stress that the process Z in Theorems 2.6 and 2.7 still has to be Gaussian.

However, it is easy to construct stable processes such that Theorem 3.1 and
Corollary 3.1 do not give useful results. This can be seen from the following ex-
ample.

EXAMPLE 4.1. Let X be a subfractional Brownian motion, i.e.
X(t)y=AVB"(@t), t>0,

where A is a strictly positive «/2-stable random variable and B is a fractional
Brownian motion (see (4.1)) independent of A. Then obviously X has exactly the
same a.s. path properties as B. So, somehow one might want to expect that X
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should have the same small deviation order as B . This is of course not the case,
as shown by Samorodnitsky [30]:

_ 10gP[HXHLOO[0,1] <el~ c—1/(1/a=1/2+H)
versus — logIP’[HBHHLOO[U,l] <el~Ce VA,

This underlines that, partially, the small deviation rate is due to the fluctuations
of the process, i.e. the path regularity, partially it is due to the (in this case: heavy)
tail behaviour of the process, i.e. the amplitudes of the fluctuations.

4.2. Eigenvalues of the covariance operator. We recall that small deviation
probabilities in La-norm are closely connected (see e.g. [26]-[28] and references
therein) to the eigenvalues of the integral equation:

)\nfn(t) =

O%»—A

R(t,s)fn(s)ds, mn>1,

where R(t,s) = EX(¢) X (s) is the covariance kernel of the Gaussian process X.
Our results imply the following.

COROLLARY 4.1. Let 7 > 0 and 0 € R. Let (\,), (\L) be the sequence of
eigenvalues of the operators given by the kernels
0’R

R(t,s) and, respectively, %(t,s).

Then
AL Zn " (logn)?

n
implies
Ao S 0772 (logn)?.

A similar corollary can be obtained for fractional derivatives.

4.3. Quantization. We recall from [8] and [14] that small deviations for Gaus-
sian processes are closely related to the quantization problem. Let D(r|X, ||-||) be
the quantization error of the process X with respect to the distortion given by the
norm ||-|, i.e. for a normed space (E, ||-||), s > 0, and r > 0,

D(r| X, -]} :== D(r| X, |I]] s s)
= inf{(Emin | X - al|)V5: C C E,log#C < r}.
ac

The idea behind this quantity is that a random signal X = X (w) has to be encoded;
as a code one can use a minimizer a(w) € C (minimizing min,ec || X (w) — al));
and if C was chosen close to optimal, this procedure gives a lowest possible mean
error of the coding.
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From the above results on small deviations and the connection established in
[8] and [14] one can obtain the following corollaries. The first gives the flavour of
the more general result.

COROLLARY 4.2. Let X be a centered Gaussian process on |0, 1] that is dif-
ferentiable and such that X' € L0, 1] a.s. Let 7 > 0 and 6 € R. Then

D(r X" | g0.7) S 77 (logr)?

implies
DX, -, o) B 7D (log 7)?

forany 1l < p < oo.

This result can be used in the following way: In order to find the quantization
rate of X with respect to the L,-norm, it suffices to find a good estimate for the
(easier) quantization problem for X’ with respect to the Ly-norm. Unfortunately,
this connection is not constructive, so it is not clear how to obtain a good quantizer
for X in L, given that one has a good quantizer for the derivative X’ with respect
to Lo distortion. It would be interesting to find a constructive proof of this fact.

Now we come to a more general corollary for the quantization error.

COROLLARY 4.3. Let X be a Gaussian process on [0,1], ||-| € N(3,p),
M>p+1/p+1/2,7 > 0,and 0 € R. Then

D(r| XD, |l-y) 377 (logr)?

implies
D(r|X, ) S =TIV (log 7).

In particular, our results have the following corollary corresponding to the case
7 = 0 above.

COROLLARY 4.4. Let X be a Gaussian process on [0,1], ||| € N(8,p), and
M >B+1/p+1/2.If XM) € L5(0,1] as., then

Drl X, |-y £ r= =P,

Results that are very similar to Corollary 4.4 for not necessarily Gaussian
processes were obtained in Lemma 2.1 in [7] (also see [9]). The technique used
there is based on entropy numbers of embeddings and is thus more robust than the
Gaussian techniques employed here. However, it seems only possible to use these
techniques in the sense of ‘remainder terms’ as in Corollary 4.4, not the way we
use it in Theorem 2.4 and Corollary 4.3.

Furthermore, we refer to [25] for similar results translating the mean path
regularity (given by the behaviour of the covariance function in the Gaussian case)
into estimates for the quantization error. There, wavelet representations for the
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process are used to obtain good quantizers. It seems possible that this approach can
help to extend the results of this paper from the Gaussian setup to other processes.

Remark 3.1 applies accordingly to Corollary 4.4. However, we stress that
Corollary 4.3 is sharp.

4.4. Examples. The first example is the integrated fractional Brownian mo-
tion.

EXAMPLE 4.2. Consider the case when X is an integrated fractional Brown-
ian motion. Then one obtains

—1og P[[| X[l o,y < €] S V/HHY,

see e.g. [27]. The lower bound can be obtained by comparing || X{|,, 1, to the
Lo-norm of X itself, which has the same order. Note that the H comes from frac-
tional Brownian motion (and there from being Holder up to H) and the 1 from one
integration.

Consider the case where X is m-times integrated fractional Brownian motion.
Then X (™) is precisely fractional Brownian motion and Theorem 2.3 states that
a lower bound for the Ly small deviations of fractional Brownian motion can be
translated into a lower bound for the L, small deviations of m-times integrated
fractional Brownian motion. The result is

—log P[[|X]|, 04) < €] = g1/ HFm),

which is the correct order, cf. [27] and Theorem 1.3 in [6] for the Brownian case.
The lower bound follows by comparison to the Lo small deviations of X itself.
This method was already used in [6] for the Brownian case H = 1/2.

The second example concerns a conjecture by Lifshits and Simon [24].

EXAMPLE 4.3. Set R asin (2.5) and

4.1) Bf@):=RF 4+ F(lH) } (t —s)T12 — (—s)H=124B(s),

—00

where B is a Brownian motion. Then B¥ is a fractional Brownian motion and
R is a Riemann—Liouville process. Then one can look at the difference process
MH" = RH _ BH_ This process is C* (see [24]); and thus we have by Corol-
lary 3.1

4.2) lir%eé(— log P[[[M]|| 1, 01 <€]) =0 foranyd >0,
e— ’
as conjectured by Lifshits and Simon [24]. The same result is true if BY is a

so-called linear fractional stable motion and R*! is a symmetric stable Riemann—
Liouville process; see [24].
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The next example is of similar type.

EXAMPLE 4.4. We consider so-called stable convolutions [17], i.e. processes
t
t)=[f(t—s)dB(s), t>0,
0

where B is Brownian motion, f is a smooth function except possibly at zero, and
we assume f(z) = 2 ~1/2g(z) with H > 0 and a function g with g(0) = 1. This
setup was studied in [3]. The goal is to show that X has the same small deviation
order (and path regularity) as a Riemann—Liouville process R .

We assume that g has the Taylor expansion

o0
=> apz", 0<z<L

Let R be a Riemann-Liouville process as defined in (2.5). Then we can represent
X as

X(t) = ](t — )1=12g(t — ) dB(s)
0
:}(t )72 dB(s) + f;j s)H=12nq, dB(s)
0 n=10

= RH(t) + fj an R (1).

n=1

Here, the processes R, n > 0, are not independent but rather obtained by inte-
grating the same Brownian motion as in (2.5).

Now the decorrelation inequality of Li [18] implies the following. In order to
show that X and R’ have the same small deviation rate it suffices to know that the
difference process X — R’ has a lower small deviation order than R*. However,
this follows easily from Theorem 3.1, since we know that X — R is smoother
than RY .

This gives a significantly shorter proof of Theorem 2.1 in [3]. The non-Gauss-
ian stable case also treated in [3] cannot be handled this way due to the absence of
the decorrelation inequality.

We finish with another example of stable processes.

EXAMPLE 4.5. Let us consider integrated linear fractional stable motions
(LFSMs); cf. [31]. Let a,b € R and H > 0 and define

Xa’b(t)
—f ((t— )7 — (—a) oy (1 — )7V — (=) dz(s),
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where Z is a symmetric a-stable Lévy process, x4 := max(z,0), x_ 1= (—x)4.
The small ball problem for these processes was treated in [24] (a =1,b6=0)
and in [1] (general a, b) to the end that X*® has the same small deviation rate
(for any ||-|| € N(S,p)) as the corresponding Riemann—Liouville process. From
Theorem 2.4 we obtain a bound for the small deviation rate of integrated X ®°.

4.5. Combination with Li’s decorrelation inequality. The technique used in
Example 4.4 can be applied in general. Assume X can be represented as X =
Y + Z with Y and Z being not necessarily independent Gaussian processes. If Z
is smoother than Y, we can use Theorem 3.1 to show that Z has a lower small
deviation rate and then Li’s decorrelation inequality [18] to show that X and Y
have the same small deviations. We summarize this in the following corollary.

COROLLARY 4.5. Let X be a centered Gaussian random variable with values
in a normed space (E, ||-||), where ||-|| € N(B,p). Let k > 0,y > 0, and { be a
slowly varying function. Assume we can represent X as X =Y + Z with'Y and
Z also Gaussian random variables in E (not necessarily independent). If

logB[|Y]| < ¢] ~ re~T4(e)
and ZM) € Ly[0,1] for some M > 1/~ + B + 1/p, then
—logP[|| X|| < g] ~ ke 7(e).

The same holds for weak asymptotics.

We remark that the above corollary corresponds to and complements the inde-
pendence technique developed and first applied in [19].
Note that (4.2) and Corollary 4.5 give an easy proof of Theorem 12 in [24].
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