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WEAK-TYPE INEQUALITY FOR THE MARTINGALE SQUARE FUNCTION
AND A RELATED CHARACTERIZATION OF HILBERT SPACES∗
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Abstract. Let f be a martingale taking values in a Banach space B and
let S(f) be its square function. We show that if B is a Hilbert space, then

P
(
S(f) ­ 1

)
¬
√
e∥f∥1

and the constant
√
e is the best possible. This extends the result of Cox, who

established this bound in the real case. Next, we show that this inequality
characterizes Hilbert spaces in the following sense: if B is not a Hilbert
space, then there is a martingale f for which the above weak-type estimate
does not hold.
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1. INTRODUCTION

Let (Ω,F ,P) be a probability space, filtered by (Fn)n­0, a non-decreasing
sequence of sub-σ-fields of F . Let f = (fn)n­0 and g = (gn)n­0 be adapted mar-
tingales taking values in a certain separable Banach space (B, ∥ · ∥). The difference
sequences df = (dfn)n­0 and dg = (dgn)n­0 of the martingales f and g are de-
fined by df0 = f0 and dfn = fn − fn−1 for n ­ 1, and similarly for dgn. We say
that g is a ±1-transform of f if there is a deterministic sequence ε = (εn)n­0 of
signs such that dgn = εndfn for each n.

It is well-known that martingale inequalities reflect the geometry of Banach
spaces in which the martingales take values: see e.g. [1]–[4] and [7]. We shall
mention here only one fact, closely related to the result studied in the present paper.
As proved by Burkholder in [2], if f takes values in a separable Hilbert space and

∗ Partially supported by MNiSW Grant N N201 397437.
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g is its ±1-transform, then

(1.1) P(sup
n
∥gn∥ ­ 1) ¬ 2∥f∥1

and the constant 2 is the best possible (here, as usual, ∥f∥1 = supn ∥fn∥1). In fact,
the implication can be reversed: if B is a separable Banach space with the property
that (1.1) holds for any B-valued martingale f and its ±1-transform g, then B is a
Hilbert space. For details, see Burkholder [2] and Lee [6].

In this paper we shall study a related problem and characterize the class of
Hilbert spaces by another weak-type estimate. Let us introduce the square function
of f by the formula

S(f) =
( ∞∑
k=0

∥dfk∥2
)1/2

.

We shall also use the notation

Sn(f) =
( n∑
k=0

∥dfk∥2
)1/2

for the truncated square function, n = 0, 1, 2, . . . Suppose that B is a given and
fixed separable Banach space and let β(B) denote the least extended real number
β such that, for any martingale f taking values in B,

P
(
S(f) ­ 1

)
¬ β(B)∥f∥1.

Using the method of moments, Cox [5] showed that β(R) =
√
e: consequently,

β(B) ­
√
e for any non-degenerate B. We will extend this result to the following.

THEOREM 1.1. We have β(B) =
√
e if and only if B is a Hilbert space.

Let us sketch the proof. To show that for any martingale f taking values in a
Hilbert space (H, | · |) we have

(1.2) P
(
S(f) ­ 1

)
¬
√
e∥f∥1,

we may restrict ourselves to the class of simple martingales. Recall that f is simple
if for any n the random variable fn takes only a finite number of values and there
is a deterministic N such that fN = fN+1 = fN+2 = . . . We must prove that

EV
(
fn, Sn(f)

)
¬ 0, n = 0, 1, 2, . . . ,

where V (x, y) = 1{y­1} −
√
e|x| for x ∈ H and y ∈ [0,∞).

To do this, we will use Burkholder’s method and construct a function U :
H× [0,∞)→ R, which satisfies the following three conditions:

1o We have the majorization U ­ V .
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2o For any x ∈ H, y ­ 0 and any simple mean-zero random variable T taking
values inH we have EU(x+ T,

√
y2 + |T |2) ¬ U(x, y).

3o For any x ∈ H we have U(x, |x|) ¬ 0.
Then (1.2) follows.
To see this, apply 2o conditionally on Fn, with x = fn, y = Sn(f) and T =

dfn+1. As the result, we obtain the inequality

E
[
U
(
fn+1, Sn+1(f)

)
|Fn
]
¬ U

(
fn, Sn(f)

)
,

so, in other words, the process
(
U
(
fn, Sn(f)

))
n­0 is a supermartingale. Hence, by

1o and 3o,

EV
(
fn, Sn(f)

)
¬ EU

(
fn, Sn(f)

)
¬ EU

(
f0, S0(f)

)
= EU(f0, |f0|) ¬ 0

and we are done.
The special function U is constructed and studied in the next section. In Sec-

tion 3 we prove the remaining part of Theorem 1.1: we shall show that the validity
of (1.2) for all B-valued martingales implies the parallelogram identity.

2. A SPECIAL FUNCTION

Let H be a separable Hilbert space: in fact, we may and do assume that
H = ℓ2. The corresponding norm and scalar product will be denoted by | · | and ·,
respectively. Introduce U : H× [0,∞)→ R by the formula

(2.1) U(x, y) =

{
1− (1− y2)1/2 exp

(
|x|2/[2(1− y2)]

)
if |x|2 + y2 < 1,

1−
√
e|x| if |x|2 + y2 ­ 1.

In the lemma below, we study the properties of U and V .

LEMMA 2.1. The function U satisfies the conditions 1o, 2o and 3o.

P r o o f. To show the majorization, we may assume that |x|2 + y2 < 1. Then
the inequality takes the form

exp

(
|x|2

2(1− y2)

)
¬
√
e
|x|√
1− y2

+
1√

1− y2

and follows immediately from an elementary bound exp(s2/2) ¬
√
es + 1, s ∈

[0, 1], applied to s = |x|/
√

1− y2. To check 2o, we introduce an auxiliary function

A(x, y) =

{
−x(1− y2)−1/2 exp

(
|x|2/[2(1− y2)]

)
if |x|2 + y2 < 1,

−
√
ex′ if |x|2 + y2 ­ 1,
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where x′ = x/|x| for x ̸= 0, and x′ = 0 otherwise. We shall establish a pointwise
estimate

(2.2) U(x+ d,
√

y2 + |d|2) ¬ U(x, y) +A(x, y) · d

for all x, d ∈ H and y ­ 0. Observe that this inequality immediately yields 2o,
simply by putting d = T and taking expectation of both sides.

To prove (2.2), note first that U(x, y) ¬ 1 −
√
e|x| for all x ∈ H and y ­ 0.

This is trivial for |x|2 + y2 ­ 1, while for the remaining pairs (x, y) it can be
transformed into the equivalent inequality:

|x|2

1− y2
¬ exp

(
|x|2

1− y2
− 1

)
,

which is obvious. Consequently, when |x|2 + y2 ­ 1, we have

U(x+ d,
√

y2 + |d|2) ¬ 1−
√
e|x+ d| ¬ 1−

√
e|x|+A(x, y) · d

= U(x, y) +A(x, y) · d.

Now suppose that |x|2 + y2 < 1 and |x + d|2 + y2 + |d|2 ¬ 1. Observe that for
X, D ∈ H with |D| < 1 we have

exp

(
|D|2|X|2 + 2X ·D + |D|2

1− |D|2

)
­ exp

(
(X ·D)2 + 2X ·D + |D|2

1− |D|2

)
­ (X ·D)2 + 2X ·D + |D|2

1− |D|2
+ 1

=
(1 +X ·D)2

1− |D|2
.

It suffices to plug X = x/
√

1− y2 and D = d/
√

1− y2 to obtain (2.2). Finally,
if |x|2 + y2 < 1 < |x+ d|2 + y2 + |d|2, then substituting X and D as previously,
we have |X| < 1, |X +D|2 + |D|2 > 1 and (2.2) can be written in the form

exp

(
|X|2 − 1

2

)
(1 +X ·D) ¬ |X +D|,

or

exp

(
|X|2 − 1

2

)(
1 +
|X +D|2 − |X|2 − |D|2

2

)
¬ |X +D|.

Now we fix |X|, |X +D| and maximize the left-hand side over D. Let us consider
two cases. If |X +D|2 + (|X +D| − |X|)2 < 1, then there is D′ ∈ H satisfying



Square function inequality 231

|X +D| = |X +D′| and |X +D′|2 + |D′|2 = 1. Consequently,

exp

(
|X|2 − 1

2

)(
1 +
|X +D|2 − |X|2 − |D|2

2

)
¬ exp

(
|X|2 − 1

2

)(
1 +
|X +D′|2 − |X|2 − |D′|2

2

)
¬ |X +D′| = |X +D|.

Here the first passage is due to |D′| < |D|, while in the second we have applied
(2.2) to x = X , y = 0 and d = D′ (for these x, y and d we have already established
the bound). Suppose, then, that |X +D|2+(|X +D| − |X|)2 ­ 1. This inequality
is equivalent to

|X +D| ­ 1− |X|2√
2− |X|2 − |X|

,

and hence

exp

(
|X|2 − 1

2

)(
1 +
|X +D|2 − |X|2 − |D|2

2

)
− |X +D|

¬ exp

(
|X|2 − 1

2

)(
1 +
|X +D|2 − |X|2 − (|X +D| − |X|)2

2

)
− |X +D|

= exp

(
|X|2 − 1

2

)
(1− |X|2) +

{
exp

(
|X|2 − 1

2

)
|X| − 1

}
|X +D|

¬ 1− |X|2√
2− |X|2 − |X|

[
exp

(
|X|2 − 1

2

)√
2− |X|2 − 1

]
.

It suffices to observe that the expression in the square brackets is nonpositive,
which follows from the estimate exp(1 − |X|2) ­ 2 − |X|2. This completes the
proof of 2o. Finally, 3o is a consequence of the inequality (2.2): U(x, |x|) ¬ U(0, 0)
+A(0, 0) · x = 0. �

Thus, by the reasoning presented in the Introduction, the inequality (1.2) holds
true. The constant

√
e is optimal even in the real case: see Cox [5]. In fact, we shall

reprove this in the next section: see Remark 3.1 below.

3. CHARACTERIZATION OF HILBERT SPACES

Let (B, ∥ · ∥) be a separable Banach space and recall the number β(B) defined
in the first section. Thus, for any B-valued martingale f we have

(3.1) P
(
S(f) ­ 1

)
¬ β(B)∥f∥1.

For x ∈ B and y ­ 0, let M(x, y) denote the class of all simple martingales f given
on the probability space

(
[0, 1],B(0, 1), | · |

)
, such that f is B-valued, f0 ≡ x and

(3.2) y2 − ∥x∥2 + S2(f) ­ 1 almost surely.
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Here the filtration may vary. The key object in our further considerations is the
function U0 : B × [0,∞)→ R given by

U0(x, y) = inf{E∥fn∥},

where the infimum is taken over all n and all f ∈M(x, y). We will prove that U0

satisfies appropriate versions of the conditions 1o–3o.

LEMMA 3.1. The function U0 satisfies the following conditions:
1o′ For any x ∈ B and y ­ 0 we have U0(x, y) ­ ∥x∥.
2o′ For any x ∈ B, y ­ 0 and any simple centered B-valued random vari-

able T ,
EU0(x+ T,

√
y2 + ∥T∥2) ­ U0(x, y).

3o′ For any x ∈ B we have U0(x, ∥x∥) ­ β(B)−1.

P r o o f. The property 1o′ is obvious: when f ∈M(x, y), then it follows that
∥fn∥1 ­ ∥f0∥1 = ∥x∥ for all n. To establish 2o′, we use a modification of the
so-called “splicing argument”: see e.g. [1]. Let T be as in the statement and let
{x1, x2, . . . , xk} be the set of its values: P(T = xj) = pj > 0,

∑k
j=1 pj = 1. For

any 1 ¬ j ¬ k, pick a martingale f j from the class M(x + xj ,
√
y2 + ∥xj∥2).

Let a0 = 0 and aj =
∑j

ℓ=1 pℓ, j = 1, 2, . . . , k. Define a simple sequence f on(
[0, 1],B(0, 1), | · |

)
by f0 ≡ x and

fn(ω) = f j
n−1
(
(ω − aj−1)/(aj − aj−1)

)
, n ­ 1,

when ω ∈ (aj−1, aj ]. Then f is a martingale with respect to its natural filtration
and, when ω ∈ (aj−1, aj ],

y2 − ∥x∥2 + S2(f)(ω)

= y2 + ∥xj∥2 − ∥x+ xj∥2 + S2(f j)
(
(ω − aj−1)/(aj − aj−1)

)
­ 1,

unless ω belongs to a set of measure zero. Therefore (3.2) holds, so by the definition
of U0 we get

∥fn∥1 ­ U0(x, y).

However, the left-hand side equals

k∑
j=1

aj∫
aj−1

|fn(ω)|dω =
k∑

j=1

pj
1∫
0

|f j
n−1(ω)|dω,

which, by the proper choice of n and f j , j = 1, 2, . . . , k, can be made arbitrarily
close to

∑k
j=1 pjU

0(x + xj ,
√

y2 + ∥xj∥2) = EU0(x + T,
√

y2 + ∥T∥2). This
gives 2o′. Finally, the condition 3o′ follows immediately from (3.1) and the defini-
tion of U0. �
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The further properties of U0 are described in the next lemma.

LEMMA 3.2. (i) The function U0 satisfies the symmetry condition

U0(x, y) = U0(−x, y)

for all x ∈ B and y ­ 0.
(ii) The function U0 has the homogeneity-type property

U0(x, y) =
√
1− y2U0

(
x√

1− y2
, 0

)
for all x ∈ B and y ∈ [0, 1).

(iii) If z ∈ B satisfies ∥z∥ = 1 and 0 ¬ s < t ¬ 1, then

(3.3) U0(sz, 0) ¬ U0(tz, 0) exp
(
(s2 − t2)∥z∥2/2

)
.

P r o o f. (i) It is sufficient to use the equivalence f ∈ M(x, y) if and only if
−f ∈M(−x, y).

(ii) This follows immediately from the fact that f ∈ M(x, y) if and only if
f/
√

1− y2 ∈M(x/
√

1− y2, 0).
(iii) Fix x ∈ B with 0 < ∥x∥ < 1 and δ > 0 such that ∥x + δx∥ ¬ 1. Apply

2o′ to y = 0 and a centered random variable T which takes two values: δx and
−2x/(1 + ∥x∥2). We get

U0(x, 0) ¬ δ∥x∥(1 + ∥x∥2)
2∥x∥+ δ∥x∥(1 + ∥x∥2)

U0

(
−x(1− ∥x∥

2)

1 + ∥x∥2
,

2∥x∥
1 + ∥x∥2

)
+

2∥x∥
2∥x∥+ δ∥x∥(1 + ∥x∥2)

U0 (x+ δx, δ∥x∥).

By (i) and (ii), the first term on the right equals

δ∥x∥(1− ∥x∥2)
2∥x∥+ δ∥x∥(1 + ∥x∥2)

U0(x, 0).

The second summand can be bounded from above by

2∥x∥
2∥x∥+ δ∥x∥(1 + ∥x∥2)

U0 (x+ δx, 0),

because M(x + δx, 0) ⊂M(x+ δx, δ∥x∥). Plugging these two facts into the in-
equality above yields

(3.4)
U0(x+ δx, 0)

U0(x, 0)
­ 1 + δ∥x∥2.
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This gives

U0
(
x(1 + kδ), 0

)
U0
(
x
(
1 + (k − 1)δ

)
, 0
) ­ 1 + δ

(
1 + (k − 1)δ

)
∥x∥2,

provided ∥x(1+ kδ)∥ ¬ 1. Consequently, if N is an integer such that the condition
∥x(1 +Nδ)∥ ¬ 1 holds true, then

(3.5)
U0
(
x(1 +Nδ), 0

)
U0(x, 0)

­
N∏
k=1

(
1 + δ

(
1 + (k − 1)δ

)
∥x∥2

)
.

Now we turn to (3.3). Assume first that s > 0. Put x = sz, δ = (t/s− 1)/N and
let N →∞ in the inequality above to obtain

U0(tz, 0)

U0(sz, 0)
­ exp

(
1

2
∥z∥2(t2 − s2)

)
,

which is the claim. Next, suppose that s = 0. For any 0 < s′ < t we have, by 2o′,

U0(0, 0) ¬ 1

2
U0(s′z, ∥s′z∥) + 1

2
U0(−s′z, ∥s′z∥)

= U0(s′z, ∥s′z∥) ¬ U0(s′z, 0),

where in the latter passage we have used the inclusion M(s′z, 0) ⊂M(s′z, ∥s′z∥).
Thus,

U0(tz, 0)

U0(0, 0)
­ U0(tz, 0)

U0(s′z, 0)
­ exp

(1
2
∥z∥2

(
t2 − (s′)2

))
and it remains to let s′ → 0. �

REMARK 3.1. Suppose that B = R. It is easy to see that U0(1, 0) ¬ 1: con-
sider f starting from 1 and satisfying P(df1 = −1) = P(df1 = 1) = 1/2, df2 =
df3 ≡ . . . ≡ 0. Thus, by 3o′ and (3.3), we have

β(R)−1 ¬ U0(0, 0) ¬ U0(1, 0)/
√
e ¬ 1/

√
e,

that is, β(R) ­
√
e. This implies the sharpness of (1.2) in the Hilbert-space-valued

setting.

Now we will work under the assumption β(B) =
√
e. Then we are able to

derive the explicit formula for U0.

LEMMA 3.3. If β(B) =
√
e, then

U0(x, y) =

{√
1− y2 exp

(
∥x∥2/[2(1− y2)]− 1

2

)
if ∥x∥2 + y2 < 1,

∥x∥ if ∥x∥2 + y2 ­ 1.
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P r o o f. First let us focus on the set {(x, y) : ∥x∥2 + y2 ­ 1}. By 1o′ we
have U0(x, y) ­ ∥x∥. To get the reverse estimate, consider a martingale f such
that f0 ≡ x, df1 takes values −x and x, and df2 = df3 ≡ . . . ≡ 0. Then y2 −
∥x∥2 +S2(f) = y2 + ∥x∥2 ­ 1 (so f ∈M(x, y)) and ∥f∥1 = ∥x∥, which implies
U0(x, y) ¬ ∥x∥ by the definition of U0. Now suppose that ∥x∥2 + y2 < 1. Using
the second and third part of the previous lemma, we may write

U0(x, y) =
√

1− y2U0

(
x√

1− y2
, 0

)
­ U0(0, 0)

√
1− y2 exp

(
∥x∥2

2(1− y2)

)
,

so, by 3o′,

U0(x, y) ­
√

1− y2 exp

(
∥x∥2

2(1− y2)
− 1

2

)
.

To get the reverse bound, we use the homogeneity of U0 and (3.3) again:

U0(x, y) =
√

1− y2U0

(
x√

1− y2
, 0

)
¬
√

1− y2U0

(
x

|x|
, 0

)
exp

(
1

2

(
∥x∥2

1− y2
− 1

))
=
√

1− y2 exp

(
∥x∥2

2(1− y2)
− 1

2

)
,

where in the last line we have used the equality U0(x, 0) = ∥x∥ valid for x of norm
one (we have just established this in the first part of the proof). For completeness,
let us mention here that if x = 0, then x/|x| should be replaced above by any vector
of norm one. �

LEMMA 3.4. Suppose that β(B) =
√
e and let us assume that x, y ∈ B and

α > 0 satisfy ∥x∥ < 1, ∥x + αx + y∥2 + ∥αx + y∥2 < 1 and ∥x + αx − y∥2 +
+∥αx− y∥2 < 1. Then

2 + 2α∥x∥2 ¬
√

1− ∥αx+ y∥2 exp
(
∥x+ αx+ y∥2

2(1− ∥αx+ y∥2)
− ∥x∥

2

2

)
+
√

1− ∥αx− y∥2 exp
(
∥x+ αx− y∥2

2(1− ∥αx− y∥2)
− ∥x∥

2

2

)
.

(3.6)

P r o o f. Consider a random variable T such that

P
(
T = − 2x

1 + ∥x∥2

)
= p, P(T = αx+ y) = P(T = αx− y) =

1− p

2
,

where p ∈ (0, 1) is chosen so that ET = 0. That is,

p =
α(1 + ∥x∥2)

2 + α(1 + ∥x∥2)
.
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By 2o′, we have U0(x, 0) ¬ EU0(x + T, ∥T∥). Since ∥x + T∥2 + ∥T∥2 < 1 al-
most surely, the previous lemma implies that this can be rewritten in the equivalent
form:

exp

(
∥x∥2

2

)
¬ p

√
1−

(
2∥x∥

1 + ∥x∥2

)2

exp

(∥∥x((−1 + ∥x∥2)/(1 + ∥x∥2))∥∥2
2
(
1−

(
2∥x∥/(1 + ∥x∥2)

)2) )
+

1− p

2

√
1− ∥αx+ y∥2 exp

(
∥x+ αx+ y∥2

2(1− ∥αx+ y∥2)

)
+

1− p

2

√
1− ∥αx− y∥2 exp

(
∥x+ αx− y∥2

2(1− ∥αx− y∥2)

)
.

However, the first term on the right equals

α(1− ∥x∥2)
2 + α(1 + ∥x∥2)

exp

(
∥x∥2

2

)
and, in addition, (1 − p)/2 =

(
2 + α(1 + ∥x∥2)

)−1. Consequently, it suffices to
multiply both sides of the inequality above by

(
2 + α(1 + ∥x∥2)

)
exp(−∥x∥2/2);

the claim follows. �

Now we are ready to complete the proof of Theorem 1.1. Suppose that a, b
belong to the unit ball K of B and take ε ∈ (0, 1/2). Applying (3.6) to x = εa,
y = ε2b and α = ε gives

2 + 2ε3∥a∥2 ¬
√
1− ε4∥a+ b∥2 exp

(
m(a, b)

)
+
√

1− ε4∥a− b∥2 exp
(
m(a,−b)

)
,

(3.7)

where

m(a, b) =
ε2∥a+ ε(a+ b)∥2

2(1− ε4∥a+ b∥2)
− ε2∥a∥2

2

=
ε2

2

(
∥a+ ε(a+ b)∥2 − ∥a∥2

)
+

ε6∥a+ ε(a+ b)∥2∥a+ b∥2

2(1− ε4∥a+ b∥2)
.

It is easy to see that there exists an absolute constant M1 such that

sup
a,b∈K

|m(a, b)| ¬M1ε
3.

Consequently, there is a universal M2 > 0 such that if ε is sufficiently small, then

exp
(
m(a, b)

)
¬ 1 +m(a, b) +m(a, b)2

¬ 1 +
ε2

2

(
∥a+ ε(a+ b)∥2 − ∥a∥2

)
+M2ε

6
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for any a, b ∈ K. Since
√
1− x ¬ 1 − x/2 for x ∈ (0, 1), the inequality (3.7)

implies

2 + 2ε3∥a∥2

¬ (1− ε4∥a+ b∥2/2)
(
1 +

ε2

2

(
∥a+ ε(a+ b)∥2 − ∥a∥2

)
+M2ε

6

)
+ (1− ε4∥a− b∥2/2)

(
1 +

ε2

2

(
∥a+ ε(a− b)∥2 − ∥a∥2

)
+M2ε

6

)
.

This, after some manipulations, leads to

∥a+ ε(a+ b)∥2 + ∥a+ ε(a− b)∥2 − 2∥a(1 + ε)∥2

­ ε2(∥a+ b∥2 + ∥a− b∥2 − 2∥a∥2)− 2ε4M3,

where M3 is a positive constant not depending on ε, a and b. Equivalently,∥∥∥a+
ε

1 + ε
b
∥∥∥2 + ∥∥∥a− ε

1 + ε
b
∥∥∥2 − 2∥a∥2 − 2

∥∥∥ ε

1 + ε
b
∥∥∥2

­ ε2

(1 + ε)2
(∥a+ b∥2 + ∥a− b∥2 − 2∥a∥2 − 2∥b∥2)− 2

ε4

(1 + ε)2
M3.

Next, let c ∈ B, γ > 0 and substitute a = γc; we assume that γ is small enough to
ensure that a ∈ K. If we divide both sides by γ2 and substitute δ = ε(1+ ε)−1γ−1,
we obtain

∥c+ δb∥2 + ∥c− δb∥2 − 2∥c∥2 − 2∥δb∥2

­ δ2(∥γc+ b∥2 + ∥γc− b∥2 − 2∥γc∥2 − 2∥b∥2)− 2ε2δ2M3

­ δ2(∥γc+ b∥2 + ∥γc− b∥2 − 2∥γc∥2 − 2∥b∥2)− 2δ4M3.

Let γ and ε go to 0 so that δ remains fixed. As the result, we infer that, for any
δ > 0, b ∈ K and c ∈ B,

(3.8) ∥c+ δb∥2 + ∥c− δb∥2 − 2∥c∥2 − 2∥δb∥2 ­ −2δ4M3.

Now, let N be a large positive integer and consider a symmetric random walk
(gn)n­0 over integers, starting from 0. Let τ = inf{n : |gn| = N}. The inequality
(3.8), applied to δ = N−1, implies that for any a ∈ B and b ∈ K the process

(ξn)n­0 =

(∥∥∥∥a+
bgτ∧n
N

∥∥∥∥2 −{∥b∥2N2
− M3

N4

}
(τ ∧ n)

)
n­0

is a submartingale. Since E(τ ∧ n) = Eg2τ∧n, we obtain

E
(∥∥∥∥a+

bgτ∧n
N

∥∥∥∥2 −{∥b∥2N2
− M3

N4

}
g2τ∧n

)
= Eξn ­ Eξ0 = ∥a∥2.
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Letting n→∞ and using Lebesgue’s dominated convergence theorem gives

1

2
(∥a+ b∥2 + ∥a− b∥2)− ∥b∥2 + M3

N2
­ ∥a∥2.

It suffices to let N go to∞ to obtain

∥a+ b∥2 + ∥a− b∥2 ­ 2∥a∥2 + 2∥b∥2.

We have assumed that b belongs to the unit ball K, but, by homogeneity, the above
estimate extends to any b ∈ B. Putting a + b and a − b in the place of a and b,
respectively, we obtain the reverse estimate

∥a+ b∥2 + ∥a− b∥2 ¬ 2∥a∥2 + 2∥b∥2.

This implies that the parallelogram identity is satisfied, and hence B is a Hilbert
space.
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