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WEAK-TYPE INEQUALITY FOR THE MARTINGALE SQUARE FUNCTION
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Abstract. Let f be a martingale taking values in a Banach space B and
let S(f) be its square function. We show that if 3 is a Hilbert space, then

P(S(f) 2 1) < Vellflx

and the constant +/e is the best possible. This extends the result of Cox, who
established this bound in the real case. Next, we show that this inequality
characterizes Hilbert spaces in the following sense: if B is not a Hilbert
space, then there is a martingale f for which the above weak-type estimate
does not hold.
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1. INTRODUCTION

Let (2, F,P) be a probability space, filtered by (F;,)n>0, @ non-decreasing
sequence of sub-o-fields of F. Let f = (f,)n>0 and g = (gn)n>0 be adapted mar-
tingales taking values in a certain separable Banach space (B, || - ||). The difference
sequences df = (dfy)n>0 and dg = (dgn)n>0 of the martingales f and g are de-
fined by dfy = fo and df, = f, — fn—1 for n > 1, and similarly for dg,,. We say
that g is a £1-transform of f if there is a deterministic sequence € = (&5, )n>0 of
signs such that dg,, = e, df,, for each n.

It is well-known that martingale inequalities reflect the geometry of Banach
spaces in which the martingales take values: see e.g. [1]-[4] and [7]. We shall
mention here only one fact, closely related to the result studied in the present paper.
As proved by Burkholder in [2], if f takes values in a separable Hilbert space and
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g is its £1-transform, then

(1.1) P(sup [lgnl > 1) < 2[| f]l1
n

and the constant 2 is the best possible (here, as usual, || f||1 = sup,, || fn|[1)- In fact,
the implication can be reversed: if 3 is a separable Banach space with the property
that (1.1) holds for any B-valued martingale f and its +1-transform g, then B is a
Hilbert space. For details, see Burkholder [2] and Lee [6].

In this paper we shall study a related problem and characterize the class of
Hilbert spaces by another weak-type estimate. Let us introduce the square function
of f by the formula

S(F) = ( ]i ldfil2) .

We shall also use the notation
= 2\1/2
Su(f) = ( X lldfill?)
k=0

for the truncated square function, n = 0, 1, 2, ... Suppose that 5 is a given and
fixed separable Banach space and let (53) denote the least extended real number
B such that, for any martingale f taking values in B,

P(S(f) > 1) <BMB)Iflh-

Using the method of moments, Cox [5] showed that 5(R) = /e: consequently,
B(B) > /e for any non-degenerate 3. We will extend this result to the following.

THEOREM 1.1. We have 3(B) = /e if and only if B is a Hilbert space.

Let us sketch the proof. To show that for any martingale f taking values in a
Hilbert space (H, | - |) we have

(1.2) P(S(f) > 1) < Vellflh,

we may restrict ourselves to the class of simple martingales. Recall that f is simple
if for any n the random variable f,, takes only a finite number of values and there
is a deterministic N such that fy = fy11 = fnvi2 = ... We must prove that

EV (fn, Sn(f)) <0, n=0,1,2,...,

where V(z,y) = 1(y=13 — v/e|z| forz € Hand y € [0, 00).

To do this, we will use Burkholder’s method and construct a function U:
H x [0,00) — R, which satisfies the following three conditions:

1° We have the majorization U > V.



Square function inequality 229

2° Forany x € ‘H,y > 0 and any simple mean-zero random variable 7" taking
values in H we have EU (z + T, \/y? + |T|?) < U(z,y).

3° For any € H we have U(z, |z|) < 0.

Then (1.2) follows.

To see this, apply 2° conditionally on F,,, with x = f,,, y = S, (f) and T =
dfp+1. As the result, we obtain the inequality

E[U(fn+lasn+1(f))|fn] < U(f”’sn(f))’

s0, in other words, the process (U ( fn, Sy (f)))
1° and 3°,

BV (fn, Sn(f)) < EU(fn, Sn(f)) < EU(fo, S0(f)) = EU(fo, |fol) <0

n>0 182 supermartingale. Hence, by

and we are done.

The special function U is constructed and studied in the next section. In Sec-
tion 3 we prove the remaining part of Theorem 1.1: we shall show that the validity
of (1.2) for all B-valued martingales implies the parallelogram identity.

2. A SPECIAL FUNCTION

Let H be a separable Hilbert space: in fact, we may and do assume that
H = ¢2. The corresponding norm and scalar product will be denoted by | - | and -,
respectively. Introduce U : H X [0, 00) — R by the formula

1—(1—yH) Y 2exp (|2*/20 — y?)]) if |z + 4% < 1,

2.1) Ulz,y) =
@b Ulay) {1—\/E|x| if |22 + 42 > 1.

In the lemma below, we study the properties of U and V.

LEMMA 2.1. The function U satisfies the conditions 1°, 2° and 3°.

Proof. To show the majorization, we may assume that |z|? + y? < 1. Then
the inequality takes the form

( |z > < ol 1
ex — 57 S &
Pla =) 1— 2 1— 2

and follows immediately from an elementary bound exp(s2/2) < /es + 1, s €
[0, 1], applied to s = |z|/+/1 — y?. To check 2°, we introduce an auxiliary function

—z(1—y?) Y 2exp (|22/[2(1 — y?)]) if [z[*+ 92 <1,

Alx,y) =
(@y) {—\/Ex’ if 22 + 42 > 1,
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where 2/ = z/|z| for x # 0, and 2’ = 0 otherwise. We shall establish a pointwise
estimate

for all z, d € H and y > 0. Observe that this inequality immediately yields 2°,
simply by putting d = T" and taking expectation of both sides.

To prove (2.2), note first that U (z,y) < 1 — \/e|z| for all z € H and y > 0.
This is trivial for |x|2 4+ y? > 1, while for the remaining pairs (z,y) it can be
transformed into the equivalent inequality:

o (2 1)
X €Xp - s
1 — 2 1 — 2

which is obvious. Consequently, when |z|? + y? > 1, we have

Ul +d,y?+1d?) <1— Vel +d| <1—elz|+ A(z,y) - d

Now suppose that |z|> + y? < 1 and |z + d|? + y* + |d|? < 1. Observe that for
X, D € H with |D| < 1 we have

IDI2| X2 +2X - D+ |DJ? (X-D)?+2X D +|DJ?
o ( 1~ DP )= e 1~ [DP )
(X-D)?+2X D +|DJ?
1—|DJ?
(14+ X -D)?
1—|DP?

> +1

It suffices to plug X = x/4/1 —y? and D = d/+/1 — y? to obtain (2.2). Finally,
if |z? + 9% < 1 < |z + d|? + y? + |d|?, then substituting X and D as previously,
we have | X| < 1, |X + D|? + |D|? > 1 and (2.2) can be written in the form

XP?-1
exp<||2> (1+4X-D)<|X+D|,

or

X[ -1 X + D|? — [X[2 — |DJ?
exp<| ’2 ><1—|—| + Dl 2‘ | | )<|X—|—D|.

Now we fix | X|, | X + D| and maximize the left-hand side over D. Let us consider
two cases. If | X + D|> + (|X + D| — | X])? < 1, then there is D’ € H satisfying
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| X +D|=|X + D'| and |X + D'|? + |D'|* = 1. Consequently,

(X|* -1 [ X + D - |X]*~ |D?
exp — 1+ 5

X2_1 X D/2—X2—D/2
<exp(||2)<1+| + D 2| il |)<|X+D’|:|X+D].

Here the first passage is due to |D’| < |D|, while in the second we have applied
(22)toxr = X,y = 0and d = D’ (for these z, y and d we have already established
the bound). Suppose, then, that | X + D|? + (|X 4+ D| — | X|)? > 1. This inequality
is equivalent to

1—|X|?
| X + D| > |X] ,
V2= X2 - [X]
and hence
X[?-1 X +D|?—|X]*—|DJ?
oxp (X! | HDPIXPDRY
2 2
XZ-1 X+ D]?2—|X|?P— (X +D|—|X])?
<exp(| . >(H| + D~ XP — (X +D| - |>)|Xw|

= exp <|Xy22—1> (1— X%+ {exp (‘Xi_l> | X| - 1} |X + D|

1—|X|? [ <|X|2—1> }
< exp| ——— | V2 — | X2 -1].
Ve IXE-jx| 2 -
It suffices to observe that the expression in the square brackets is nonpositive,
which follows from the estimate exp(1 — | X|?) > 2 — | X|2. This completes the
proof of 2°. Finally, 3° is a consequence of the inequality (2.2): U(z, |z|) < U(0,0)
+A0,0) -2 =0. m

Thus, by the reasoning presented in the Introduction, the inequality (1.2) holds
true. The constant /e is optimal even in the real case: see Cox [5]. In fact, we shall
reprove this in the next section: see Remark 3.1 below.

3. CHARACTERIZATION OF HILBERT SPACES

Let (B, || - ||) be a separable Banach space and recall the number /3(B) defined
in the first section. Thus, for any B-valued martingale f we have

3.1) P(S(f) > 1) < BBl

Forz € Bandy > 0, let M (x,y) denote the class of all simple martingales f given
on the probability space ([0, 1],B(0,1),| ), such that f is B-valued, fo = x and

(3.2) y? — ||lz]|* + S*(f) > 1 almost surely.
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Here the filtration may vary. The key object in our further considerations is the
function U” : B x [0, 00) — R given by

U%(z,y) = inf{E| full},

where the infimum is taken over all n and all f € M (x,y). We will prove that U°
satisfies appropriate versions of the conditions 1°-3°.

LEMMA 3.1. The function U° satisfies the following conditions:
1" Forany x € Bandy > 0 we have U%(z,y) > ||z||.
2°" For any x € B, y > 0 and any simple centered B-valued random vari-

able T,
RU (z + T,y + |T|?) > U°(z, y).

3°" For any x € B we have U°(z, ||z|)) > (B)*l.

Proof. The property 1°" is obvious: when f € M (x,y), then it follows that
Il falli = Ifollx = ||=|| for all n. To establish 2°/, we use a modification of the
so-called “splicing argument’: see e.g. [1]. Let T" be as in the statement and let
{z1,2z2,..., 21} be the set of its values: P(T" = x;) = p; > 0, E?:l pj = 1. For
any 1 < j < k, pick a martingale f7 from the class M(z + zj,\/y% + [|2;]]?).
Letap =0and a; = Y 9 1P g =1, 2, , k. Define a simple sequence f on
([0,1],B(0,1),| - |) by fo =z and

faw) = f1_ ((w=aj-1)/(a; —aj—1)), n>1,

when w € (aj_1,a;]. Then f is a martingale with respect to its natural filtration
and, when w € (a;j_1, aj],

y? = ll* + $*(f)(w)
= y” + |zl = llo + 1* + 8% (F7) ((w — aj-1)/(a; — a-1)) > 1,
unless w belongs to a set of measure zero. Therefore (3.2) holds, so by the definition
of U% we get
fnlls > U° ().

However, the left-hand side equals

Z flfn IdW—ijflfnl )|dw,

Jj=laj—1

which, by the proper choice of n and f7, j = 1, 2, ..., k, can be made arbitrarily

close to Zle piU%x + xj, V/y2 + ||lz;]]?) = EU%(x + T, \/y2 + ||T]|?). This
gives 2°/. Finally, the condition 3°" follows immediately from (3.1) and the defini-

tion of U°. m
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The further properties of U are described in the next lemma.

LEMMA 3.2. (i) The function U° satisfies the symmetry condition
U%(z,y) = U"(~,y)

forallx € Bandy > 0.
(ii) The function U° has the homogeneity-type property

U%(a,y) = V1 —y2U0<\/19072,0>
-y
forallz € Bandy € [0,1).
(iii) If z € B satisfies ||z|]| = 1and 0 < s < t < 1, then

(3.3) U%s2,0) < U°(tz,0) exp ((52 — t2)||z|]2/2).

Proof. (i) It is sufficient to use the equivalence f € M (z,y) if and only if
_f € M(—.%', y)

(i) This follows immediately from the fact that f € M(x,y) if and only if
fIVI=y? € M(z/\/1-y%0).

(iii) Fix x € B with 0 < [|z|| < 1 and § > O such that ||z 4+ dz|| < 1. Apply
2°' to y = 0 and a centered random variable 7' which takes two values: dz and
—2x/(1 + ||z[|?). We get

Sl I(L + [l=]1*) 0< a(l—|lz[?)  2[z| )
UO(:E:O) < U - ’
2[|]l + ofl=([(1 + [|=[1?) L+ l=]> "1+ =]
2||x|
2[||| + 6|1 (1 + f|=[]*)

U° (z + 6z, 8||z])).

By (i) and (ii), the first term on the right equals

olll(1 — fl*)
2fjz ]| + 8l (I(L + [|=[12)

U°(x,0).

The second summand can be bounded from above by

2]

U° (z + 6z,0),
2|l + ol (L + ll=([?)

because M (z + 0x,0) C M(x + ox,d||x||). Plugging these two facts into the in-
equality above yields

Uz + 6x,0)

G U9(2.0)

> 1462
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This gives

Uo(x (1+ k9), )
U°(z(1+ (k—1)d),0)

> 14+ 6(1+ (k—1)0) ||,

provided ||z(1 + k9)|| < 1. Consequently, if IV is an integer such that the condition
|lz(1 4+ N6)|| < 1 holds true, then

0 Xz
(3.5) v (ﬁ)&z(\)ff),o) - <1+5(1+(k— 1)5)|ny2).

k=1

Now we turn to (3.3). Assume first that s > 0. Put x = sz, 0 = (/s — 1)/N and
let N — oo in the inequality above to obtain

U%(tz,0) L, 19,0 o
—_ > — " — ,
9052 0) exp(2uzu< 5%)

which is the claim. Next, suppose that s = 0. For any 0 < s’ < ¢t we have, by 2°/,

1 1
U°(0,0) < U°(s'%, 1821 + 5U°(=5'2, |1s2])
= U°(s'z, |521)) < U°(s'%,0),

where in the latter passage we have used the inclusion M (s'z,0) C M(s'z,||s'z]]).

Thus, o o
U(tz,0) _ U°(tz,0) Lo 2,2 N2
> > Z _
U%0,0) = U%s'z,0) exp(szH (t () )>

and it remains tolet s’ — 0. =

REMARK 3.1. Suppose that B = R. It is easy to see that U°(1,0) < 1: con-
sider f starting from 1 and satisfying P(dfy = —1) = P(df1 = 1) = 1/2, dfs =
dfs = ... = 0. Thus, by 3°' and (3.3), we have

BR)™H <UY(0,0) <U’(1,0)/ve < 1/Ve,

that is, B(R) > +/e. This implies the sharpness of (1.2) in the Hilbert-space-valued
setting.

Now we will work under the assumption 3(B) = /e. Then we are able to
derive the explicit formula for UY.

LEMMA 3.3. If B(B) = \/e, then

0o, 9) = {mexp(””’"”” 20192~ 4) el +a? <1,

] if l=l” +y* > 1.
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Proof. First let us focus on the set {(z,y) : ||=]|*> + 3* > 1}. By 1 we
have U%(x,y) > |z||. To get the reverse estimate, consider a martingale f such
that fy = x, df; takes values —z and x, and dfy = dfs = ... = 0. Then y? —
llz||? 4+ S%(f) = y? +||z||> > 1 (so f € M(x,y))and || f|1 = |||, which implies
U%(z,y) < ||z|| by the definition of U°. Now suppose that ||z||? + y* < 1. Using
the second and third part of the previous lemma, we may write

2
Uz,y) = V1-y?U° (%o) > U%0,0)V/1 —y2exp (M)
— -
so, by 3%/,

2 1
U(z,y) > V1 —y?exp <Hx||—>

21-9%) 2

To get the reverse bound, we use the homogeneity of U° and (3.3) again:

zﬂww>=vﬁ—y%ﬁ(¢fgﬂm)

e (o) 3125 )

l-y
2 1
e 22 1
Ve (3 a)
where in the last line we have used the equality U°(z, 0) = ||Z|| valid for Z of norm

one (we have just established this in the first part of the proof). For completeness,
let us mention here that if x = 0, then /|x| should be replaced above by any vector
of norm one. =

LEMMA 3.4. Suppose that f(B) = /e and let us assume that x, y € B and
a > 0 satisfy ||z|| < 1, ||z 4+ az + y||> + |lax + y[|* < L and ||z + az — y||* +
+llaz —y||* < 1. Then

2 2
(3.6) 2+ 2a|z|2 < \/1— [laz + y|2 exp <2”$+O‘x+y” _ l=l >

=Tzt~ 2
o +az—yl> |l
" 1—mm—m2mp( i
Aoz —yl®) 2

Proof. Consider a random variable T such that

2x I—p
P(T=-—2 ) —p Pl =arty)=PT=az—y)= 2
< LHMP) P Bl V) =K &

where p € (0, 1) is chosen so that ET" = 0. That is,

a4 [l
2+ a(l+||z)|2)
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By 2%, we have U%(z,0) < EU°(x + T, ||T||). Since ||z + T||*> + ||T||*> < 1 al-
most surely, the previous lemma implies that this can be rewritten in the equivalent
form:

exp (1217 \/_ Aal \? (L2l P/ )|
p< 2 ><p 1 <1+|$H2) p< 2(1 = (2ll2ll/ (1 + 12]2))?) >
- X ax 2
+1Tp 1—||ax+y‘2exp<2(” * +ll )

1= [lozx +yl|?)

|l + oz — y|® )
2(1 = flax —yl*) )

Tl esp
However, the first term on the right equals
a(l —[lz[?) exp<!90H2>
2+ a(l+z|?) 2
and, in addition, (1 —p)/2 = (2+ a(1 + H:BHQ))il Consequently, it suffices to

multiply both sides of the inequality above by (2 + a(1 + ||z[|?)) exp(—||z||*/2);
the claim follows. =

Now we are ready to complete the proof of Theorem 1.1. Suppose that a, b
belong to the unit ball K of B and take £ € (0,1/2). Applying (3.6) to = = ¢a,
y = e%band a = ¢ gives
(3.7) 2+ 2¢°|a|* <v/1 —e4]ja + b||Zexp (m(a, b))

+ V1= Ta — b exp (m(a, b)),

where
e = Elate@tdl?  al?
T 2(1 - efja + b]|?) 2

£2 e%lla + e(a + b)||?||a + b|)?
= — b 2 - 2 .
3 (la+e(@+ DI = lal) + =5~ e

It is easy to see that there exists an absolute constant M such that

sup |m(a,b)| < Mye>.
a,be K

Consequently, there is a universal My > 0 such that if ¢ is sufficiently small, then
exp (m(a,b)) < 1+ m(a,b) +m(a,b)?

2
9
<1+ 5 (lla+e(a+b)* = llal?) + Maoe®
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for any a, b € K. Since 1 —z < 1 — z/2 for z € (0,1), the inequality (3.7)
implies

2 + 2% al)?

2
< (1—€a+0b|%/2) (1 + %(Ha +e(a+b)[* - [la]?) + M256>

2
3
et o12/2) (14 5 (la+ ela=DIF = al?) + ).
This, after some manipulations, leads to

la+e(a+b)|%+ [la+e(a —b)|*> — 2|la(l + &)
> &%(||la+ bl + [la — bl|* — 2l|al*) — 2¢*M;,

where M3 is a positive constant not depending on €, a and b. Equivalently,

2 2 2
o+ 5zt + [l = ozt 2 — 2 52
1+e 1+e 1+e
>l bl + fla = b — 2l = 2b]2) — 2— s
z —(||a a— —2||la||” — — .
(1+¢)2 (1T+e2?

Next, let ¢ € B, v > 0 and substitute a = ~yc; we assume that vy is small enough to
ensure that € K. If we divide both sides by 42 and substitute § = (1 +¢) 1y,
we obtain
lle + 6bl* + [le — 6bl* — 2|c* — 2| ab||*
> 6% (|lye + bl* + [lye — blI* = 2llyell® — 2[[b]]*) — 2¢6° M3
> 82 (lye + 0l + [lye = bl* = 2|lve|® — 2[[b]|?) — 26" M.

Let v and € go to 0 so that § remains fixed. As the result, we infer that, for any
0>0,be Kandce B,

(3.8) llc + 6b]|2 + ||c — 6b]|> — 2||c||* — 2||0b))* > —26* M3.

Now, let N be a large positive integer and consider a symmetric random walk
(gn)n>0 over integers, starting from 0. Let 7 = inf{n : |g,| = N}. The inequality
(3.8), applied to § = N1, implies that for any a € B and b € K the process

bgran||® [ IIBI* M
(fn)n}O: <Ha+ g]\;\ _{H]V”2_]Vi}(7-/\n)>n>0

is a submartingale. Since E(7 A n) = Eg2,,,, we obtain

bgrrn|[* [ 1BI* My
E<Ha+ ]Tvn “V Nz Nt Prn | = Bén > E&y = [lal®.
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Letting n — oo and using Lebesgue’s dominated convergence theorem gives

1 2 2 2 M3 2
S+l +fla =b[%) = 6] + 55 > llal”.

It suffices to let N go to oo to obtain

lla +bl* + fla — blI* > 2[|al|* + 2(b]|*.

We have assumed that b belongs to the unit ball K, but, by homogeneity, the above
estimate extends to any b € B. Putting a + b and a — b in the place of a and b,
respectively, we obtain the reverse estimate

lla + BlI* + fla — b]1* < 2[|al* + 2I|b]*.

This implies that the parallelogram identity is satisfied, and hence B is a Hilbert
space.
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